
2

Magnetic materials

We saw in the previous chapter that magnetic fields are produced in a vacuum by
currents in conductors. In this chapter, we will consider magnetic effects asso-
ciated with matter. All materials have spin and orbital motion of charges at the
atomic scale. For most materials, the random orientations of these internal
currents tend to cancel out significant magnetic effects. However, in certain
magnetic materials, such as iron or permanent magnets, these internal currents
do not cancel, and there is a net external effect that also produces or enhances
magnetic fields. In the field theory we have been discussing, the magnetic field
B must be a continuous function of position. Thus, in magnetic materials, the
macroscopic field B must be an average of the rapidly varying local fields
surrounding the atoms in the material.[1]

2.1 Magnetization

When a magnetic material is placed in an external magnetic field, magnetic dipoles
in the material set up internal fields that modify the applied field. We saw in
Equation 1.10 that a current loop has an associated magnetic moment m.
We define the magnetization vector M as the average magnetic moment per unit
volume

M
! ¼

X
i

m!i

V
¼ NiIiAi

V
n̂i ; (2.1)

where Ai is the area of loop i. The volume V must be large enough so the sum is
statistically significant, yet small enough so that we can treat the variation ofM as
approximately continuous. For uniform magnetization, all the internal current
loops cancel. However, as shown in Figure 2.1, there is still a net current around
the surface of the material.
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It follows that

M ¼
Im
X

i
Ai

AL
¼ Im

L
¼ Km;

where Im is the Amperian loop current and Km is the magnetization surface current
density. In vector terms,

K
!

m ¼ M
!� n̂ : (2.2)

Now consider the case when there is a nonuniform distribution of magnetization
inside the volume, as shown in Figure 2.2. For the current loop on the left we have

M0
z ¼

I 0

Δz
;

while the loop on the right gives

M00
z ¼ M0

z þ
∂Mz

∂y
Δy ¼ I 00

Δz
:

Along the line AB, there is a net current

Im
Δz

¼ I 00 � I0

Δz
¼ ∂Mz

∂y
Δy: (2.3)

Figure 2.1 Magnetic moment loops in a uniformly magnetized material.
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If we integrate around the front face (CDEF), we findþ
M
!

·dl
!¼ M0

z þ
∂Mz

∂y
Δy

� �
Δz�M0

z Δz ¼
∂Mz

∂y
Δy Δz:

Therefore, using Equation 2.3 we find, in analogy with the Ampère law, thatþ
M
!
·dl
!¼ Im; (2.4)

where Im is the effective number of internal amp-turns through the loop of integra-
tion. Applying Stokes’s theorem, we can rewrite Equation 2.4 asð

ðr � M
!Þ · dS�! ¼

ð
J
!

m· dS
�!

:

The Amperian volume current density is then

J
!

m ¼ r� M
!

: (2.5)

This implies that the volume current density vanishes for homogeneous materials.
When magnetic materials are present, the Biot-Savart law must be generalized to

B
! ¼ μ0

4π

ð ðK!þ K
!

mÞ � R
!

R3
dS þ μ0

4π

ð ð J!þ J
!

mÞ � R
!

R3
dV;

where J and K without a subscript refer to the conduction current densities of free
charges.

Figure 2.2 Magnetic moment loops in a nonuniform magnetized material.
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2.2 Magnetic field intensity

Returning to the Ampère law, we take into account the effect of Amperian currents
by writing þ

B
!

·dl
!¼ μ0ðI þ ImÞ:

Using Equation 2.4, we haveþ
B
!

· dl
!¼ μ0I þ μ0

þ
M
!

· dl
!
:

Combining the line integrals givesþ
ðB!� μ0M

!Þ · dl
!¼ μ0I:

We can define an auxiliary vector H, known as the magnetic intensity, as

H
! ¼ B

!
μ0

� M
!

; (2.6)

so that the magnetic flux density is

B
! ¼ μ0ðH

!þ M
!Þ: (2.7)

In free space, this reduces to

B
! ¼ μ0 H

!
: (2.8)

The vectors B and H describe different aspects of the same magnetic field.
The advantage of working with this new vector is that the Ampère law for Hþ

H
!
·dl
!¼ I (2.9)

only depends on the true conduction current that crosses the path of integration,
despite the presence of any magnetic materials. Applying Stokes’s theorem to
Equation 2.9, we get ð

ðr � H
!Þ · dS�! ¼

ð
J
!
· dS
�!

:

Since the surface of integration is arbitrary, we find that H satisfies the differential
equation

r� H
! ¼ J

!
; (2.10)

where J is the conduction current density.
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We have introduced the vector H here as a useful mathematical artifact to take
into account the averaged behavior of atomic currents in matter. However, there is
a long history of trying to understand the physical meaning of H and of examining
the distinction between vectors B and H.[2, 3]

2.3 Permeability and susceptibility

In homogeneous and isotropic materials, the magnetization is usually found to be
proportional to the magnetic intensity, or

M
! ¼ χ H

!
; (2.11)

where the dimensionless coefficient χ is known as the susceptibility. Using this, we
find that Equation 2.7 can be rewritten

B
! ¼ μ0H

!þ μ0χH
! ¼ μ0ð1þ χÞ H!:

It is useful to define the permeability for magnetic materials as

μ ¼ μr μ0; (2.12)

where μr is a dimensionless quantity known as the relative permeability.
The susceptibility and the relative permeability are related by

μr ¼ 1þ χ; (2.13)

and the general relation between B and H can be written as

B
! ¼ μ H

!
: (2.14)

Materials where the directions of B and H are parallel are called linear materials.

2.4 Types of magnetism

Normally the random orientations of atomic orbits and particle spins cause
the associated magnetic moments in a material to cancel, so there is no net
magnetization. However, when an external magnetic field is applied to the
material, the electron orbital velocity increases for one direction of circula-
tion and decreases for the opposite direction. This results in a small net
magnetic moment that is present in all materials and is known as diamagnet-
ism. The difference in frequency between the two orbital directions can be
shown to be
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Δω ¼ � eB
2me

;

where e is the electron charge and me is its mass.[4] The resulting net magnetic
moment Δm is

Δm ≃� e2r2B
4me

; (2.15)

where r is the radius of the atomic orbit. Note that the induced moment is opposite
to the direction of the applied magnetic field. This effect is very small and is
masked by larger effects in paramagnetic and ferromagnetic materials.
Diamagnetic materials have χ < 0 and μr < 1, independent of temperature.
In paramagneticmaterials, the magnetic moments from orbital motion and spins

do not cancel, resulting in a small permanent moment. In an external magnetic
field, torques tend to align the magnetic moments with the direction of the field.
In these materials, the induced fields act to increase the magnitude of the applied
field and μr > 1. The degree of alignment is decreased by internal collisions,
vibrations and thermal agitation inside the material. The resulting magnetization
is a spin effect given by the Langevin equation

MðHÞ ¼ Nm coth
mH
kT

� kT
mH

� �
; (2.16)

whereN is the number of atoms per unit volume, k is Boltzmann’s constant, and T is
the temperature.[5] Note that the dependence of M on the magnetic intensity H is
temperature dependent and nonlinear in general. However, in the case where
mH
kT � 1, the paramagnetic susceptibility is given by Curie’s law

χ ¼ M
H

¼ N m2

3kT
: (2.17)

In certain crystalline materials where one of the electron shells is not filled, it is
possible for one or more electrons to have unbalanced electron spins. In these
ferromagnetic materials, it is possible to achieve a very high degree of magnetic
alignment. Below a characteristic temperature known as the Curie temperature,
coupling is possible between neighboring atoms, which can act together in regions
known as domains. In an external magnetic field, the size of favorably oriented
domains can grow. In addition, the magnetization directions in each domain tend to
align with the external field. The dependence of B or M on H is very nonlinear in
ferromagnetic materials. For example, we show a BH curve for a low-carbon steel
alloy in Figure 2.3.[6] The flux density increases extremely rapidly for small values
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ofH. Then, asH increases further, the magnetization domains begin to saturate, and
the curve starts to level out. Finally, for very large applied fields, the magnetization
domains become completely saturated, and the growth in B is only due to the
increase in the conduction current.
The relative permeability in a ferromagnetic material can be much larger than 1,

as shown in Figure 2.4. The permeability in this example quickly reaches
a maximum value ~1,525 for an excitation of 365 A/m. For larger excitations,
the relative permeability decreases steadily.
If the current and thusH is cycled up and down in a ferromagnetic material, we find

that a plot of B versus H has the characteristic shape illustrated in Figure 2.5.

Figure 2.3 A BH curve for SAE 1020 low-carbon steel.

Figure 2.4 A μH curve for SAE 1020 low-carbon steel.
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The material exhibits hysteresis because B is not a unique function ofH. The value of
B depends on the previous history of how H was varied. The dotted line shows the
increase inB asH is increased, starting from an unmagnetized sample. After the initial
excitation, BðHÞ follows the arrows around the hysteresis loop. This effect arises
because the domain boundaries don’t completely return to their previous locations
when H is reversed. The remanence or remanent field BR is the value of B when H is
returned to 0. The nonzero value for the remanence shows that thematerial can remain
magnetic when the external driving current is turned off. This leads to the possibility
of making permanent magnets,1 so long as the temperature remains below the Curie
temperature. The coercivity HC is defined2 as the value of H in the negative direction
that is required to get B = 0. The intrinsic coercivity HCi is the reverse field required to
remove themagnetization in a plot ofM versusH.[7] The hysteresis loop is symmetric
around the origin. Heat is generated for each cycle around the hysteresis loop.3

Magnetic materials with low values of coercivity are designated as “soft.” In this
case, it is easy for the magnetization to change direction as the external current
changes, so these materials are suitable for ac operation.[8] A number of soft
magnetic materials that have high permeabilities at low values of B are listed in
Table 2.1. Also listed are the values of B corresponding to the maximum perme-
ability, the coercivity, and the saturation value of B. The electrical resistivity ρe of
the material is important for considerations of eddy current4 losses in time-varying
operations. Values for pure iron are also listed for comparison.

Figure 2.5 Hysteresis loop for a ferromagnetic material.

1 Permanent magnets are discussed in more detail in Chapter 9.
2 Historically, this quantity is known as the coercive force.
3 The energy loss in the hysteresis loop is discussed in Chapter 10.
4 Eddy currents are discussed in more detail in Chapter 10.
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2.5 Magnetic circuits

Ferromagnetic materials tend to concentrate magnetic flux. The permeability of
iron can be thousands of times larger than that of free space. When analyzing
“circuits” made up of coils and pieces of ferromagnetic materials, it is common to
assume that all the flux goes through and is uniformly distributed inside the
ferromagnetic material. A coil sets up Amperian currents in the material near the
coil that continue to initiate further currents along the material.[10] Assume that
we have an iron ring that is energized with a coil, as shown in Figure 2.6. From
the Ampère law for H (Equation 2.9), we find that B inside the ring is

Bϕ ¼ μN I
2πR

;

and the magnetic flux inside the ring is

ΦB ¼ μπr2

2πR

� �
N I: (2.18)

This expression is only approximate because it ignores any leakage of the flux from
the ring. Equation 2.18 resembles Ohm’s law for circuits

I ¼ V
Re

;

where NI corresponds to the driving voltage and the resulting flux corresponds to
the current. The term “analogous to the electrical resistance” Re is called the
reluctance, which we see can be expressed as

R ¼ L
μA

; (2.19)

where L is the path length in the material, and A is its cross-sectional area.

Table 2.1 Selected soft magnetic alloys [9]

Alloy Initial μr Max μr B at max μr [T] Hc [Oe]* Bsat [T] ρe [μΩ-cm]

Sinimax 2,200 50,000 0.54 0.06 1.10 90
Monimax 3,000 60,000 0.62 0.06 1.45 80
16 Alfenol 4,000 80,000 0.35 0.044 0.80 153
Mumetal 20,000 100,000 0.20 0.30 0.65 60
1040 alloy 20,000 100,000 0.20 0.20 0.60 56
Supermalloy 55,000 300,000 0.40 0.006 0.68–0.78 65
Iron 150 5,000 0.80 1.00 2.14 10

* 1 Oe = 1 10−4 T/μ0
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Example 2.1: C-shaped electromagnet
Consider an electromagnet with an air gap, as shown in Figure 2.7. From the
Ampère law

N I ¼ HiLi þ HgLg; (2.20)

where L is the mean length through the region, and the subscripts i and g refer to the
iron and the gap. On the assumption there is no leakage flux, we have BiAi ¼ BgAg.
Substituting into Equation 2.20, we get

N I ¼ Bi

μ
Li þ Bg

μ0
Lg ¼ BgAg

Ai

Li
μ
þ Bg

μ0
Lg;

so that

N I ¼ BgAg
Li
μAi

þ Lg
μ0Ag

� �
:

Figure 2.6 Magnetic circuit (Rowland ring).

Figure 2.7 Magnetic circuit for a C-dipole magnet.
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Since μ � μ0, we can neglect the reluctance in the iron for reasonable values of L and
A and find that the field in the gap is

Bg ≃
μ0N I
Lg

: (2.21)

2.6 Boundary conditions between regions with different μ

We now consider the constraints on the magnetic field at the boundary between two
regions having different permeabilities. The pillbox construction in Figure 1.8 still
applies in this case, so

B1n ¼ B2n: (2.22)

However, when dealing with permeable materials, Equation 1.30 for the tangential
component of B is no longer accurate. In the present case, we can use the Ampère
law for H for a path that encompasses both sides of the boundary to find that

H2t � H1t ¼ K; (2.23)

where we recall that K is the surface current density. If there is no surface current at
the boundary, then the tangential component of H is continuous.
Consider a linear material with K = 0 and let θ be the angle between the magnetic

field and the normal to the surface, as shown in Figure 2.8. Then we have from
Equations 2.22 and 2.23

μ1H1cos θ1 ¼ μ2H2cos θ2

H1sin θ1 ¼ H2sin θ2:

Figure 2.8 Refraction of H at the boundary between two permeable materials.
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Dividing these two equations, we find that

tan θ1
tan θ2

¼ μ1
μ2

: (2.24)

If the field is incident from region 1 and μ is much larger in region 2 than region 1,
then θ1 will be smaller than θ2. Thus, the field will make a larger angle with respect
to the normal in the region with larger μ.
As a special case, consider the boundary between vacuum in region 1 and

iron in region 2 when K = 0. Then, using Equation 2.23, we find

Bt2

Bt1
¼ μ2

μ1
:

It is often useful to make the approximation that μ2 in the iron is infinite. Then
the right-hand side of this equation is infinite, which demands that Bt1 ¼ 0.
In this case, the field in the vacuum region would be perpendicular to the iron
surface.

2.7 Method of images

Some magnetostatic problems with planar or spherical boundaries can be solved
using the method of images.[11] In this method, the presence of an iron boundary is
replaced with virtual currents, which, together with the currents from true con-
ductors, reproduce the correct boundary conditions. Consider a current I in a
region 1 with permeability μ1 a distance d from the planar boundary with
a region 2 of material with permeability μ2, as shown in Figure 2.9. Let us designate
case (a) to be the situation when the observation point P is in region 1. Then, to
satisfy the boundary conditions, we assume there is a virtual current I0 in region 2.

Figure 2.9 Image currents near a plane boundary.
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We designate case (b) to be the situation when the observation point is inside the
iron in region 2. In this case, there is no conduction current in the observation
region. We assume the resultant field is due to a virtual current I00 in region 1.
By symmetry, the original current and the two image currents lie on a line perpen-
dicular to the boundary. We assume that the currents all flow in the same direction
and that the distances of the currents from the boundary are equal and look for
a solution for the magnitude of the currents. Consider a point P along the boundary
at a distance y from the line connecting the currents. In case (a), the boundary
conditions are

HðaÞ
t ¼ d

2πðd2 þ y2Þ ðI � I 0Þ

BðaÞ
n ¼ μ1 y

2πðd2 þ y2Þ ðI þ I0Þ;

whereas for case (b) we have

HðbÞ
t ¼ d

2πðd2 þ y2Þ I00

BðbÞ
n ¼ μ2 y

2πðd2 þ y2Þ I 00:

Both cases must give the same solution for any position y along the boundary. Thus,
we obtain the two equations

I � I 0 ¼ I 00

μ1I þ μ1I
0 ¼ μ2I

00:

Solving these two equations for the unknown magnitudes of I 0 and I 00, we find the
solution [12]

I 0 ¼ μ2 � μ1
μ2 þ μ1

I (2.25)

and

I 00 ¼ 2μ1
μ1 þ μ2

I: (2.26)

In the special case (a) when region 1 is vacuum and region 2 is infinitely permeable
iron, Equation 2.25 reduces to I0 = I.
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Example 2.2: Field enhancement in a planar iron slab
Consider a filamentary conductor a distance d away from an infinite slab of iron.
We use the method of images and replace the iron slab with a virtual filament, as
shown in Figure 2.10.

Let us examine the field for locations P along the line perpendicular to the boundary.
Assume the observation point is at x and the filament is located at a. Then the boundary
is located at a + d, and the image current is at a + 2d. The field at P is

ByðxÞ ¼ � μ0I
2πða� xÞ �

μ0I
0

2πðaþ 2d � xÞ :

Assuming μ1 ¼ μ0 and μ2 ¼ μr μ0 and using Equation 2.25, we find that

ByðxÞ ¼ � μ0I
2π

1

a� x
þ μr � 1

μr þ 1

� �
1

aþ 2d � x

� �
:

In the limit when μr→∞ we find that Byðaþ dÞ ¼ 0, as it should at the surface of the
iron. We define the iron enhancement factor E(x) to be the ratio of the field at x with
the iron present to the field at x from the conductor by itself. In the limit μr→∞, the
enhancement factor is

EðxÞ ¼ 1þ a� x
aþ 2d � x

:

We show the dependence of the enhancement factor on x in Figure 2.11.
The enhancement is greater than 1 in the region to the left of the filament and then
becomes less than 1 in the region between the filament and the iron boundary.

It is also possible to use the method of images to solve problems with more
complicated arrangements of planar surfaces. For example, a line current between
two parallel iron boundaries can be solved using an infinite series of image

Figure 2.10 Line current near a planar iron slab.
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currents,[13] and a line current near the corner of two perpendicular iron planes can
be solved using three image currents.5

The method of images is also useful when considering a line current near
a circular boundary surface. Consider a line current I0 at radius a in a region with
permeability μ1 near a circular boundary of radius R of a region with permeability
μ2, as shown in Figure 2.12.
In case (a), the magnetic field at a point P inside the aperture of the magnet (r < a)

can be written as the sum of the fields due to the conduction current I0 at r = a and
the image current I1 at r ¼ r1 inside region 2, where

Figure 2.11 Planar iron enhancement factor for a = 8 and d = 2.

Figure 2.12 Images for a line current near a circular boundary.

5 This is discussed in Chapter 5, Section 5.13.
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I1 ¼ μ2 � μ1
μ2 þ μ1

I0 (2.27)

r1 ¼ R2

a
: (2.28)

In case (b), the magnetic field at a point Q inside region 2 (r > R) can be written as
the sum of the field from two image currents in region 1, I2 at r = 0 and I3 at r = a,
where

I2 ¼ μ2 � μ1
μ2 þ μ1

I0 (2.29)

I3 ¼ 2μ1
μ2 þ μ1

I0: (2.30)

The justifications for these statements come from the solution of the corresponding
boundary value problem, which we will discuss in Chapter 4, Section 4.2.
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