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To Bernhard Neumann with respect and gratitude

In 1987 Sullivan determined the elements of the semigroup N(X) generated by all
nilpotent partial transformations of an infinite set X; and later in 1997 he studied
subsemigroups of N(X) denned by restricting the index of the nilpotents and the
cardinality of the set. Here, we describe the ideals and Green's relations on such
semigroups, like Reynolds and Sullivan did in 1985 for the semigroup generated by
all idempotent total transformations of X. We then use this information to de-
scribe the congruences on certain Rees factor semigroups and to construct families
of congruence-free semigroups with interesting algebraic properties. We also study
analogous questions for X finite and for one-to-one partial transformations.

1. INTRODUCTION

In [12] the authors described the ideals of the semigroup E(X) generated by all
proper (that is, non-identity) idempotent total transformations of an infinite set X.
Given that the semigroup P(X) of all partial transformations of X contains nilpotents
(as well as idempotents) and that the semigroup N(X) generated by all nilpotents in
P(X) has been determined by Sullivan [13], an obvious problem is to describe the ideal
structure of N(X).

In this paper, we solve that problem for X finite and infinite, and do the same for
some natural subsemigroups of N{X): for example, the semigroup N(X, 2) generated
by all nilpotents of P(X) with index 2. We also characterise Green's relations on such
semigroups and produce a new class of congruence-free 0-bisimple semigroups. In doing
all this, we also consider analogous questions for the nilpotent-generated subsemigroup
of I(X), the symmetric inverse semigroup on X.
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304 M.P.O. Marques-Smith and R.P. Sullivan [2]

2. INFINITE SETS

In this section, X will be an infinite set with cardinal k, and if n is any infinite
cardinal then n' will denote the successor of n (that is, the least cardinal greater than
n).

All notation and terminology will be from [1] and [5] unless specified otherwise.
In particular, P{X) denotes the semigroup under composition of all partial transfor-
mations of X (that is, all transformations a whose domain, doma, is a subset of X).
Note that P(X) contains a zero (namely, the empty mapping 0): we say a 6 P(X) is
nilpotent with index r if ar = 0 and a1""1 ^ 0.

If a € P(X), we let r(a) denote the rank of a (that is, \Xa\) and put

D(a) = X\Xa, d(a) = \D(a)\,

G(a) = X\doma, g{a) = \G(a)\.

The cardinal numbers d(a) and g (a) are called the defect and the gap of a and were
used by Sullivan [13] to characterise the elements of P(X) that can be written as a
product of nilpotents in P(X). For convenience we state his main results for infinite
X in the following two Theorems.

However, before doing that, recall that a cardinal k is regular if \\J{Ai : i € / } | = k

implies either | / | = k or some Ai has cardinal k; and k is singular if it is not regular.
Also, if m is any infinite cardinal then cf (m), the cofinality of m, is the least cardinal
n such that m can be expressed as a sum of n cardinals each less than m. Hence,
cf (m) ^ 77i, and equality occurs if and only if m is regular. Finally, we say a € P(X)

is spread over its rank if for each cardinal p < r(a), there exists y S X with (J/CK X | > p.

The following two results summarise [13, Corollary 3 and Theorem 4] and [15,
Lemmas 2.5 and 3.2].

THEOREM 1. Let k be regular and a 6 P{X). Then a € N(X) if and only if
g(ct) ^ 0, d(ct) = k and g(a) = k or \ya~1\ — k for some y e X. Moreover, when
this occurs, N(X) is a regular semigroup and each a 6 N(X) is a product of three or
fewer nilpotents with index at most 3.

THEOREM 2 . Let k be singular and a e P{X). Then a e N(X) if and only if
g{a) # 0, d(a) = k and either g(a) ^ r(a) or a is spread over its rank. Moreover,
when this occurs, N(X) is a regular semigroup and each a € N(X) is a product of
four or fewer nilpotents with index at most 4.

While showing in [15] that the numbers 3 and 4 above are best possible, Sullivan
considered another two nilpotent-generated semigroups: namely, N(X, 2) generated by
all nilpotents in P[X) with index 2, and N(X, 3) generated by all nilpotents in P(X)
with index at most 3. The following two results are [15, Theorems 2.3, 3.3 and 5.1].
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[3] Nilpotent-generated transformation semigroups 305

THEOREM 3 . Let k be an arbitrary infinite cardinal and a G P(X). Then a is

a product of nilpotents in P(X) with index 2 if and only if d(a) — k and g(a) ^ r(a).

Moreover, when this occurs, N(X, 2) is a regular semigroup and each a G N(X, 2) is

a product of three or fewer nilpotents with index 2.

THEOREM 4 . Let k be singular and a G P{X). Then a is a product of nilpotents
in P{X) with index at most 3 if and only if g(a) ^ 0, d(a) = k and

(a) g(a) ^ r(a), or

(b) Ij/a"1! ^ r(a) for some y G X, or
(c) g(cn) ^ cf (k) and a is spread over its rank.

Moreover, when this occurs, N(X, 3) is a regular semigroup and each a G N(X, 3) is
a product of three or fewer nilpotents with index at most 3.

As usual, we let I(X) denote the symmetric inverse semigroup on X and recall
a theorem describing the semigroup NI(X) generated by the nilpotents of I{X) (see
[13, Corollary 4]).

THEOREM 5 . Let k be an arbitrary infinite cardinal and a G I(X). Then a is
a product of nilpotents in I{X) if and only if d(a) = g(a) — k. Moreover, when this
occurs, NI(X) is an inverse semigroup and each a G NI(X) is a product of three or
fewer nilpotents with index 2.

Our aim in this section is to describe the ideals and Green's relations on each of
the afore-mentioned semigroups:

(*) NI(X) C N(X, 2) C N(X, 3) C N(X)

when \X\ = k is infinite. To do this, we let 1 < £ < k' and write

Since r(aP) s$ min {r{a),r(/3)} for all a , p € P(X), each NC(X) is an ideal of N(X).

In what follows, we extend the convention introduced in [1, vol. 2, p.241]: namely,

if a G P(X) is non-zero then we write

- C )
and take as understood that the subscript i belongs to some (unmentioned) index set

/ , that the abbreviation {x<} denotes {xt : i G / } , and that Xa = {ZJ}, Zja"1 = -4<

and doma = U{-̂ « : i G / } .
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REMARK. If a 6 P{X) is a product of idempotents then d(a) ^ 0 and if it is a
product of nilpotents then g(a) / 0. In addition, if 0 G P{X) then Xa0 C Xf3
and doma/3 C doma imply d(a0) ^ d(0) and g(a0) ^ g(a). Rather surprisingly, if
both a and 0 are generated by idempotent total transformations then d(a/3) ^ d(a),
whereas if they are generated by nilpotent partial transformations, it is possible that
g{a(3) < g(0): the first statement follows from [12, Theorem 1] (when a,0 have finite
shift) and from [6, Lemma 2.10] (when at least one of a,0 has infinite shift); and for
the second statement we provide the following example.

Let X = A U {xt} U {y} where |A| = k ^ No, and write

A ), P(
y Xi) \y

T h e n , b y T h e o r e m s 1 a n d 2 , a,/3e N(X) a n d g(a0) = l<k = g { f i ) .

This means that, whereas "defect" played a major role in describing the ideals of
idempotent-generated transformation semigroups in [12], the corresponding problem
for nilpotent-generated semigroups does not appear to depend on "gap" in the same
way.

THEOREM 6 . If \X\ = k is infinite, the ideals of N(X) are precisely N^X) for

P R O O F : We follow the argument of [1, vol. 2, Theorem 10.59]. Let / be an ideal of
N(X) and let f be the least cardinal greater than r(a) for all a € / . Then I C N^(X)
and if 0 € N^(X), there must exist some a € I with r{0) ^ r(a) (otherwise, we
contradict the choice of £). Write

\yn )

and {yn} = {ym}{J{yP} where P is possibly empty. Choose am € Am for each TO and
let

\amj \xmj

By Theorems 1 and 2, d(a) — k = d{0) and so g([i) = k — d{n); hence, by Theorem 5,

Also, if k is regular then g(a) — k or some An has cardinal k and, in each case,
d{\) = k. In addition, A o A"1 = 0 o 0-1 and hence, since 0 6 N(X), g(X) ^ 0 and
either g(X) = k or some Bm has cardinal k. That is, A € N(X), 0 = Xa/j. € / and
therefore N^X) = I.

Suppose k is singular. If r(a) = k, we can arrange for the index set P to have
cardinal k, and then <i(A) = | X \ { a m } | = k. On the other hand, if r(a) < k then
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\M\ < k and again d{\) = k. Next, if g{@) > r(/3) then

and so A € N(X). Clearly, the same conclusion holds if P is spread over its rank, and
the proof is complete. D

THEOREM 7 . If \X\ = k is infinite, the ideals of N(X, 2) are precisely N(X, 2)
for 1 s$f < k'.

PROOF: Using the same argument and notation as in the above proof, we find that
H G NI(X) C N(X,2). In addition, by Theorem 3, g(0) ̂  r((3), so the argument in
the last paragraph in the proof of Theorem 6 shows d(X) = k and g(X) ^ r(X): that
is, A G N(X, 2), and the result follows. D

THEOREM 8 . If \X\ = k is infinite, the ideais of N(X, 3) are precisely N(X, 3)
r \ N ^ { X ) for l^Z^k'.

PROOF: Again, using the same argument and notation as in the proof of Theo-
rem 6, we find that n G NI{X) C N{X,3). In addition, since A o A"1 = 0 o / ? - ' , if
p satisfies one of the conditions in Theorem 4 then A does also. Hence, A € N(X, 3),
and the result follows. D

In a similar way, using Theorem 5, we obtain the following result.

THEOREM 9 . If \X\ = k is infinite, the ideals of NI(X) are precisely NI(X)

nN^X) for 1 ^ £ O ' -

We now describe Green's relations on each of the semigroups in (*). But first we
recall T.E. Hall's Theorem [5, Proposition II.4.5]: namely, if 5 is a regular subsemigroup
of a semigroup T then the £ and 1Z relations on 5 are the restrictions to 5 of the
corresponding ones on T. Since each of the semigroups in (*) is regular, and the £
and 71 relations on P(X) are well-known [2], we restrict our attention in what follows
to V alone. However, before doing that, we prove the following result for comparison
with [12, Theorems 5 and 6].

THEOREM 10 . If X is an arbitrary set and a,(3e P(X) then

(a) (J = Xa for some X 6 P{X) if and only if XpcXa,

(b) P = a/i for some fi G P(X) if and only if dom/3 C doma and

(aoa"1)n(domaxdom/3) C P°P~l,

(c) P = Aa/i for some A, fj. G P(X) if and only if r(P) ^ r(a),

(d) V = J.
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P R O O F : The proof of (a), (c) and (d) is similar to the corresponding statement for
T(X) [1, vol. 1, pp 52-53], so we omit the details. For (b), note that 0 = afi implies
dom/? C dome*. Also, if

(u, v) £ (a o a " 1 ) n (doma x dom/3)

then ua — va and v £ dom /? imply that (va)n / 0 and u £ dom/?, so (u, v) £ /?o/?-1.

Conversely, if the condition holds, every /Jo/?"1 -class is a union of some a o a " 1 -classes.

To see this, write

\XmJ VVnJ

and, for each m, let

Note that Nm ^ 0 since dom/? C doma. Now Bm C \J{An : n £ Nm} and we
assert equality holds. For, if y £ Bm n An and x £ An then xa — ya and (x, y) £
dom a x dom /?, so the condition implies xj3 = yj3. Hence, x £ Bm and the assertion
follows.

We now rewrite a as

\ Vmn Vp )

where {Amn} = {An : n £ Nm} and {yp} = {yn}\{ymn}, and define n £ P(X) as
follows:

»=({Vmn}).
\ xmn J

Then, since Bm = \J{An : n £ Nm}, we have /? = a/i as required. D

The next result is surprising, especially when compared with the description of V
for certain idempotent-generated transformation semigroups (see [12, Theorems 5 and
6]).

THEOREM 1 1 . If \X\ = k is infinite and a,0 £ N{X) then /? = Xa/i for some
\,H£ N(X) if and only if r(/3) ^ r(o). Hence, V = J for N(X).

PROOF: If r(/?) < r(a), an argument similar to that in the proof of Theorem 6
shows there are \,fi£ N(X) with /? = Xay,. Since the converse is clear, we conclude
that a J (3 in N(X) if and only if r(a) = r(/?), and we assert the same is true for V.

For, if a, /3 £ N(X) and r(a) = r(/?), we can write
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and it is straightforward to check that 7 6 N(X). Moreover, l a = X'y implies a £ 7 ,
and 0o /3" 1 = 7 0 -v"1 implies 7 ft/?, so a D @ as required. D

Since similar statements can be readily verified for each of NI(X),N(X,2) and
N(X, 3), we omit the details.

3. F INITE SETS

Sullivan described the elements of N(X) for X finite in a seminar at the University
of St Andrews in 1984 and in a paper [13] submitted for publication in November 1984.
In that work, he also studied products of nilpotents in I(X) for X finite, a topic that
was later examined more closely by Gomes and Howie [3]. We summarise the relevant
ideas as follows.

Let X be finite and \X\ = n and write

It is well-known that Z?n-i is a X?-class of I(X). Moreover, by [3, Corollary 2.9], each
nilpotent A € A>- i has index n: that is, in the terminology of [13, p.325], A is an
(n - 1)-chain which means

_ /ai

\ a 2

a2 ••• an_
a3 ••• an

for some {ai, • • • ,an-\} C X.

Note that any a € -Dn-i has a unique completion a € G{X), the symmetric group
on X, defined by:

doma,
xa { xa, if x € de

6, if x = a,

where X\doma - {a} and X\Xa = {b} [3, p.388]. In addition, if a,0 € I(X) and
aP € .Dn_i then a ,0 € A , - i and a/? = 5/3. Hence, if

En-i = {a e Dn-i : a is an even permutation}

then a, a/3 e 25n_i and /3 S I>n_i imply /3 € -En_i.

Finally, we recall that the ideals of I(X) are

Ir(X) = {a€ I(X) : r(a) < r}

where 1 ̂  r ^ n + 1. In [3, Theorem 3.18], the authors proved the following result.
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THEOREM 12. Suppose n > 3 .

(a) Ifn is even then NI(X) = In(X).
(b) If n is odd then NI(X) = /n_i(X) U £ n _i .

Moreover, in each case, each non-zero a € NI(X) is a product of n - 1 or fewer
nilpotents, each with index n (and rank n — 1).

The corresponding result for P(X) is as follows (see [13, Theorems 1 and 2]): to
state it, we let

Pr(X) = {a€ P(X) : r(a) < r}

where 1 ^ r $J n + 1.

THEOREM 1 3 . Suppose n ^ 3 and a € P(X).

(a) Ifn is even then a € N(X) if and only if g(a) ^ 0.
(b) If n is odd then a € N{X) if and only if g(a) ^ 0 and a € Pn_i(X) u

We now determine the ideal structure of NI(X) for finite X.

THEOREM 14. If\X\=n^3, the ideals ofNI(X) are precisely NI(X)nNr(X)
for 1 ^ r ^ n where Nr(X) = {a € N(X) : r(a) < r}.

PROOF: AS in the proof of Theorem 6, we let / be a non-zero ideal of NI(X) and
let r be the least integer greater than r(a) for a € / . If 0 € NI(X) D Nr(X), there
must exist a € I with r{0) ^ r(a) and we write

XP ) \Vp Vq

where P and Q are finite sets (the latter possibly empty). Put

and note that if r(f3) < n - 1 then A, fi have rank less than n - 1 and so, by Theorem
12, A , / J 6 NI(X). The same conclusion is valid if r(/3) = n - 1 and n is even. Hence,
we have /3 = Xan € / in these two cases.

Hence, we suppose r{0) = n — 1 and n is odd. In this case, a,/3 6 2?,»_i and

{&i, • • • , bn-i, u} = {oi , • • • , an_!, t>}

for some u ^ {6i, • • • ,&n-i} and w ̂  { a i , - • , a n _ i } . If u = v, we let /* be as before
and let
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If u ^ v then u = an-i and v = 6n_i say, and

In this case, we let
/ a i ••• an_3 an_2 bn-\ \

\a\ ••• a n _ 3 a n _ i a n _ 2 /

whose completion A = (an_2,an_i,6rl_i) which is even. In addition, we have

f 0.1 ••• a n _ 3 a n _ i a n _ 2 N

\ a i a ••• a n _ 3 a an—\a an-20c)

and we let
_ic* an-2a\

_2/3 bn-if3 ) '
an_3a

Then, regardless of whether u = 1; or u / v, we have /? = Aa^i 6 -En-i and Aa G
En-\. Hence, by a comment before the statement of Theorem 12, we conclude that
H € En-i- That is, in each case, A, p. € NI(X) by Theorem 12, and we have shown
that NI(X) r\Nr{X)CI, and equality follows. D

It is now an easy matter to determine the ideals of N(X) for finite X.

THEOREM 1 5 . If \X\ = n ^ 3 then the ideals of N(X) are precisely N{X)
r\Pr(X) for 1 s j r < n .

PROOF: With the same notation as in the proof of Theorem 14, if /3 € N(X)
n Pr{X), there must exist a £ I with r(/3) ^ r(a) and we write

Then we choose ap € Ap for each p and write

- ( : ) •

Then g(X) = g{(3) ^ 0 and g(n) ^ d(a) > 0. In addition, if r(0) < n - 1 then A,/x
have rank less than n - 1. Hence, by Theorem 13, A, n € N(X). The same conclusion
is valid if r((3) = n - 1 and n is even. Also, if r(/3) = n - 1 and n is odd then j3 is
1 - 1, in which case we can complete the proof as in that of Theorem 14. D

We now characterise Green's relations on NI(X) and N(X) for finite X. To
begin, we provide the analogue of Theorem 10 for I(X) (compare [11, Lemma 1.2]):
we omit the straight-forward proof.
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THEOREM 16 . If X is an arbitrary set and a, (3 € I(X) then

(a) 0 = Xa for some A € I{X) if and only if X0CXa,
(b) 0 = afi for some n 6 I{X) if and only if dom/3 C doma,
(c) 0 — \otfj. for some A, /* € I{X) if and only if r(0) ^ r(a),

(d) V=J.

THEOREM 17 . Suppose \X\ = n is finite and a, /3 € NI(X). Then 0 = Xafi for
some A,/ie NI(X) if and only if r{0) ^ r(a). Hence, V = J for NI(X).

PROOF: If r{0) ^ r(a), the proof of Theorem 14 shows that there exist A,/i6
NI(X) with 0 = Aa/i. Since the converse is clear, we conclude that a J /? in NI(X)

if and only if r(a) = r(j3), and we assert the same is true for 23.

For, if a,0 S NI(X) and r(a) = r(/3), we can write

and clearly if r(a) < n — 1 then 7 € NI(X). Moreover, by Theorem 16, we have
aC~f7ip, so aV0 as required. In fact, the same is true if r(a) — n - 1 and n is
even.

Therefore, suppose r(a) = n — 1 and n is odd. In this case, a e i?n-i and we can
follow the proof of Theorem 14 to find A € £n_i with dom(Aa) = dom/3, XAa = Xa
and Aa € -EW-i. Letting 7 = Aa, we have therefore shown a V /3 in this case also. D

Since a similar statement can be easily verified for N(X), we omit the details.

4. INFINITE CONGRUENCE-FREE SEMIGROUPS

In [8, Theorem 3.2], the authors showed that if \X\ = k ^ No then the semigroup

T = {a G I(X) : g(a) = d(a) - k}

equals the subsemigroup of I(X) generated by the nilpotents in I(X) with index 2,
that every a 6 T is a product of three or fewer nilpotents with index 2, and that 3 is
best possible.

Hence, T is an inverse semigroup containing an ideal / = T n Ik(X) and in [8,
Theorem 4.3], the authors proved that the Rees factor semigroup 5 = T/I is a 0-
bisimple inverse semigroup generated by its nilpotents with index 2. Moreover, after
observing that

5k = {(a,0) &TxT: | a \ / 3 u / 3 \ a | < k}

is a congruence on T, they showed that T/6k is a congruence-free, 0-bisimple, inverse
semigroup generated by its nilpotents with index 2 [7, Theorem 4.10].
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From what we have shown in section 2, the above work can be generalised as
follows. We know from Theorem 5 above that T — NI(X), the semigroup generated
by all nilpotents in I(X). In addition, by Theorem 9, the ideals of NI(X) are the sets

M€ = {a € NI(X) : r(a) < £}

for 1 ^ £ ^ k' and we let Q^(X) denote the Rees factor semigroup M^/M^. An
argument similar to that in the proof of Theorem 11 shows that Q$ (X) is O-bisimple;
and it is an inverse semigroup since a"1 6 Q^(X) for each non-zero a 6 Q^(X).

It is also generated by its nilpotents with index 2. For, if a € Q^(X) is non-zero
then a = Ai • • • Ar for some nilpotents Aj € NI(X) with index 2. Since NI(X) is
regular and contains a zero, we can apply [9, Lemma 2.5]: that is, we can assume that
each Aj has the same rank as a (using standard knowledge of Green's relations on
I(X): see Theorem 16 above). In this case, each Aj € Q((X) and r(A?) = 0 < £, so
each Aj is a nilpotent in Q^(X) with index 2.

To determine the congruences on each Q$(X), we adapt the notation and results
of [14, Section 3]. That is, for each n ^ No, we let

D(a,0) = {x€X:xa? x0}, dr (Q,/3) - max(|D(a,/?)a|, \D{a,0)0\)

An = {(a,P) € P(X) x P(X) : dr(a,/3) < n}

and note that, by [14, Theorem 3.1], each An is a congruence on P(X). Hence, its
restriction to M$ is a congruence on M$ for No < n ^ £ (note that r(a),r(/3) < £
implies dr(a,0) <(,)• In addition, by writing

(or simply Q$ when no confusion will arise) and letting

we find Sn is a congruence on Q$ (compare [14, p.567]) called the reduction of An to

Qv
Next we recall the notation in [14, p.567]: namely,

S(X, k, k)={ae I(X) : r(a) = d(a) = g(a) - k} U {0}

which equals Qk(X) in our present notation. The next result is [14, Corollary 3.12]:
it was used in [14, pp.578-579] to deduce a major part of [8, Theorem 4.10].
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THEOREM 1 8 . If \X\ = k ^ No then every non-trivial proper congruence on
Qk{X) equals 6n for some n satisfying No ^ n ^ k.

We now determine the congruences on Q^ for No ^ £ < k.

THEOREM 1 9 . If \X\ = k ^ No then every non-trivial proper congruence p on
Qt(X), No ^ £ < k, equals Sn for some n satisfying No ^ n ^ £.

PROOF: Suppose (a, 0) € p and dr (a, 0) = r > 0. By definition,

D(a,0) C doma U dom/3

and, since a, /3 are 1 - 1 and have rank £, we know | doma U dom/3| = £. Let

E/ = doma U dom/3 UXa U

and note that Ua C U and U0 CU. Since |J7| = £ < k, we can choose V C
with |V| = £. Then V lies entirely outside the domains and ranges of both a | U
and 0 \ U. Hence, if Y = U U V then a ' = a | Y and /?* = /3 | Y are 1-1 partial
transformations of y with gap and defect equal to £.

We now adapt an idea of [1, vol. 2, pp 244-247], and define a relation py on
Q$(Y) as follows: (A,/J) € py if and only if (\,n) — (6*,e*) for some (S,e) e p
where 6",e* € Q^(Y). It is easy to check that py is a congruence on Q^(Y) and, by
assumption, there exists (a*,0*) € py with dr (<**,/?*) = dr(a ,0) — r > 0. Hence,
by Theorem 18, py = Sn for some n satisfying No < n ^ £. This means in particular
that all a,0G Q$(X) which map Y into itself and differ in finitely many places, are
p -equivalent.

Thus, if m is the least cardinal greater than dr (a, 0) where (a, 0) £ p then m is
infinite. Let (a,/?) € <5m on Qe(X) and suppose dr(a,/3) = p (finite or infinite). If
dr (A, n) < p for all (A,/z) e p, we contradict the definition of m. Hence, there exists
(A, n) € p with p ^ dr(A,^i) ^ f. In this event, we can repeat our argument at the
start to show that there is a set Z with cardinal £ and a congruence pz on Q^(Z)
containing a pair of elements a , 0 with dr(a,/?) ^ p. By Theorem 18, this means
that all elements of Q$ {Z) which differ in p places are pz -equivalent. In particular, if
Z — {m} U {bi} U {cr} U {dr} is a disjoint union where | / | = p and \R\ = £ then

fdi Cr\ /di

V bi Cr ) ' V a.

are pz -equivalent. Consequently, as elements of Q^(X), these transformations are also
p -equivalent and, by squaring them, we obtain:
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If p = £, we can multiply the above equivalence on the right by 7 e Q((X) with
dom7 = {a,} U {cv} and an = a*, Crj = dT to obtain:

<*i dr

Squaring this equivalence then shows there is a non-zero element of Q^{X) which is
p-equivalent to 0; and, since Q$(X) is 0-simple, this means p is universal.

If p < £ and A,/x € Q^{X) with dr(A,ji) = p , write D - D(X,fx),{xi} =
DX,{yi} — D/j,,Ui = xiX~1,vi = 2/i/x"1 a n d {wr} = (domA U dom/j.)\D. Note that,
as in the notation of [14, p.565], this means possibly one (but not both) of {x;}, {j/i}
is empty. Also, from the way in which D(X,/J.) is defined, wrX = wr/z = zr ^ 0. We
now let

/ Uj Wr \ I Oj Cr \
ni=\a- c, ) ' *2 = I x « •

\ O, Cr / \ Xt Zr /

Multiplying (1) on the left and the right by 7Ti,7r2 respectively, we obtain:

Clearly, we can do the same for \i to obtain:C)
and hence (A,/i) € p. That is, any two elements of Q^(X) differing in p places are
p-equivalent. In particular, (a, ff) € p and we have shown 5m C p. Since p C 6m by
choice of m, it follows that p = 6m. D

COROLLARY 1 . If \X\ = k ^ ^ ^ Ko then Qi(X)/8i is a congruence-free, 0-

bisimple, inverse semigroup which is generated by its nilpotents with index 2.

In [7, Theorem 4.1], Howie proved that any semigroup is embeddable in a
congruence-free bisimple semigroup which is generated by its idempotents. Given
the above Corollary, and the fact that any inverse semigroup can be embedded in
a nilpotent-generated inverse semigroup [13, Theorem 6], we present another conse-
quence of Theorem 19: its proof follows that of [10, Theorem 5.4] which in turn owes
much to Howie's ideas in [7].

COROLLARY 2 . Every inverse semigroup can be embedded in a congruence-free

0-bisimple inverse semigroup which is generated by its nilpotents with index 2.

PROOF: Let S be an inverse semigroup and let k be an infinite cardinal such that
k ^ \S\. Also, let X = S x (Y U Z) where Y, Z are disjoint sets with cardinal fc,
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in which case \X\ = k. For each a € S, we define <j>a 6 I{X) by letting dom$o =
Saa'1 x Y and

1^)^ = (sa,y)

where s € S, y 6 Y. Since the action of <j>a on 5 is simply the Vagner-Preston
embedding a —*• pa of 5 into I{S) [5, Theorem II.1.10] the map $ : a -t 4>a embeds
S into I{X). Moreover, since 5 x Z is contained in both D(4>a) and G(<f>a), we have
d(<fia) = k = g{4>a): t ha t is, <j>a € Qk(X).

Next we recall the discussion in [14, pp.566-567] t o the effect that, within I(X)
for any infinite set X ,

(a, 0) € An if and only if \a\P U (3\a\ < n.

In addition, since a -»• pa is 1 — 1, we know that pa\Pb U Pb\pa ^ 0 whenever a ^ 6 in
5 . Moreover, if (u,v) € pa\P6Upb\^a then, for each j / E F , w e have:

((u, y), (v, y)) e (t>a\<t>b U 4>b\<j>a

and so \<j>a\<t>b U<i>b\<f>a\ = \Y\ = k. In other words, if a £ b in 5 then (4>a,(/>b) ^ f̂c

and hence the map

S->Qk(X)/6k,a-*[4>a],

where [<j>a] denotes the Sk -class containing <j>a, is an embedding of S into a congruence-
free semigroup with the stated properties. D

5. CONGRUENCES ON FINITE SEMIGROUPS

In view of Theorem 14, we know that the ideals of JWI(X) are the sets

Mr = {aeNI(X) :r(a) < r}

for 1 $J r ^ n and we let Qr denote the Rees factor semigroup Mr+i/Mr for 1 $C r $C
n — 1. Note that each Qr is an inverse semigroup since a"1 € Qr for each non-zero
a E Qr- And an argument similar to that near the start of section 4 shows that Qr is
generated by its nilpotents with index 2.

Also, an argument similar to that in the proof of Theorem 17 shows that Qr is 0-
bisimple (and hence 0-simple). Hence, by [1, vol. 1, Corollary 2.56], Qr is completely
0-simple. That is, Qr is a 'natural' example of a nilpotent-generated completely 0-
simple semigroup as discussed in [4].

We now aim to show that Qn-i is 'almost' congruence-free for odd integers n ^ 6.
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We start by letting n be odd and observe that, by Theorem 12, Qn-\ = £ n - iU{0}
where the operation • on Qn-i is given by:

{ a/3 if r(aP) = n - 1,

0 if r(aP) < n - 1.

Next, we recall that if aP € En-i then a/3 — a/?: this and the argument required for
Theorem 16 produces the following result.

THEOREM 2 0 . Suppose a, /3 e Qn-\ are non-zero. Then

(a) a £ P in Qn-i if and only if Xa = Xp,
(b) a 11. P in Qn-i if and only if dom a = dom/3.

Consequently, the non-zero % -classes of Qn—i are determined by ordered pairs
(A, B) where A,BcX and \A\ = \B\ — n — 1. la fact, if a € Qn-i is non-zero and
if dom a = A, Xa = B then

Ha = {Pe Qn-i : dom/? = A, XP = B}.

Clearly, if Ha is a group, it contains an idempotent; and, since an idempotent transfor-
mation fixes its range, it follows that A — B. In this case, since n is odd, Ha consists
of all 1 - 1 transformations a mapping A into A whose completion a is even. But,
since |^4| = n — 1, this can only occur if a is an even permutation of A: that is, HQ

is the alternating group on A. In other words, the non-zero group H-classes of Qn-\

are all isomorphic to An-i, the alternating group of degree n — 1.

The next result produces a class of interesting finite semigroups which have exactly
one congruence other than the identity and universal congruences: that is, they are
'almost' congruence-free (compare [5, Theorem III.6.1]).

THEOREM 2 1 . Suppose \X\ — n and n is odd. Then Qn-i is a completely 0-
simple inverse semigroup which is generated by its nilpotents with index 2 and whose
non-universal congruences are in 1 - 1 correspondence with the normal subgroups of
An-i. In particular, if also n ^ 6 then Qn-i has exactly one non-trivial congruence
that contains all the non-zero elements of Qn-i >a one class and 0 in another class.

PROOF: We assert that the non-universal congruences on Qn-i are in 1 — 1 corre-
spondence with the normal subgroups of the non-zero group H-classes of Qn-\, hence
with those of An-\. Since the latter is simple if n — 1 ^ 5 , the result then follows.

To prove the assertion, we first note that if Alt A2 are distinct subsets of X with
n - 1 elements then there exists Y C X such that the H -class in <3r»-i determined by
(J4I, Y) is a group and the % -class determined by (A2, Y) is not a group: for example,
let Y = Ai. Since the dual of this is also true (compare [1, vol. 2, Lemma 10.57]) the
assertion follows as in [1, vol. 2, p 225]. D
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Finally, we note that a finite inverse semigroup cannot always be embedded in some
Qn-i, for the simple reason that every idempotent in a completely 0-simple semigroup
is primitive, and that is seldom true for an inverse semigroup.
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