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Abstract

We introduce sign-preserving charges on the system of all orthogonally closed subspaces, F (5), of an inner
product space S, and we show that it is always bounded on all the finite-dimensional subspaces whenever
dim S — oo. When S is finite-dimensional this is not true. This fact is used for a new completeness
criterion showing that S is complete whenever F(S) admits at least one non-zero sign-preserving regular
charge. In particular, every such charge is always completely additive.
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1. Introduction

Gleason [4] characterised the set of all a-additive states on the system L(H) of
all closed subspaces of a real, complex or quaternion separable Hilbert space, H,
showing that there is a one-to-one correspondence among a-additive states, s, on
L{H), 3 < dim H < Ko, and positive trace operators with unit trace, T, on H given
by

(1.1) s(M)=tr(TPM), MeL(H),

where PM is the orthogonal projector from H onto M.
In the paper [4], there is an example (see (2.1) below) showing that for any finite-

dimensional Hilbert space H of dimension at least three, L(H) admits many un-
bounded charges (= signed measures). The result of Dorofeev and Sherstnev [1] that
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every cr-additive measure on L(H) with dim// = oo is bounded was therefore very
surprising.

In what follows, we show that an analogical result can be extended to sign-
preserving charges on F(S) with dim S = oo, that is, for charges m satisfying
that if m(Af,) is strictly positive (negative) for a sequence of mutually orthogonal
finite-dimensional subspaces {A/,}, then tn(\/j Mt) is not negative (not positive).

We recall that if 5 is an inner product space over real, complex or quaternion
numbers, we can define two families of closed subspaces of S.

Let us denote by F(S) the set of all orthogonally closed subspaces of 5, that is,

F(S) = [M c S : M x l = M),

where ML = {x 6 5 : (x, y) = 0 for all y e M). Then F(S) is a complete lattice
with respect to the set-theoretical inclusion [7, 2].

Let us denote by E(S) the set of all splitting subspaces of S, that is,

E(S) = {M c S : M + ML = S}.

Thus, E(S) is the collection of all subspaces M of 5 where the projection theorem
holds. Observe that every complete subspace is splitting, and E(S) c F(S). In fact,
S is complete if and only if E(S) - F(S) (see [2]).

The paper is organised as follows. A charge on F(S) is a finitely additive mapping.
A charge is regular if the value of m (M) for M e F(S) can be approximated by values
on finite-dimensional subspaces of M. In Section 2 we characterise P\ (S)-bounded
charges on F(S)—charges bounded on one-dimensional subspaces. In Section 3 we
introduce sign-preserving charges, and we show that these are always bounded on all
the finite-dimensional subspaces of S whenever dim S — oo.

In Section 4 we apply this result to obtain a new completeness criterion showing
that S is complete if and only if F(S) admits at least one non-zero sign-preserving
regular charge. In addition, every such charge is of the form (1.1) for some Hermitian
trace operator T (not necessary positive and of trace one), and moreover, such a regular
charge is even bounded.

We recall that our completion criterion is not valid for sign-preserving charges
on E(S), because every E(S) (also for incomplete S) admits many regular charges.

2. P!(5)-bounded charges on F(S)

A charge on F(S) is any mapping m : F(S) ->• K such that

(*) m(M V N) = m(M) + m(N)
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[3] Boundedness of sign-preserving charges 201

whenever M, N e F(S) and M _L N. A positive valued charge m such that m(S) = 1
is said to be a state. A charge m : F(S) ->• IR is a a-additive measure or a completely
additive measure if (*) holds for any sequence {Mn} or any system {M,} of mutually
orthogonal elements from F(S). In a similar manner we can define a charge on E(S).

We denote by P(S) and Fi(5) the set of all finite-dimensional and of all one-
dimensional subspaces of 5, respectively. We say that a charge m on F(S) is

(i) bounded if sup{|m(M)\ : M e F(S)} < oo;
(ii) P(S)-bounded if sup{|m(M)| : M € P(S)} < oo;

(hi) Px(S)-bounded if sup{|m(M)| : M e Pi(S)} < oo.

For example, let <f> : IR —*• R be a discontinuous additive functional on R (see for
example [5], or [2, Proposition 3.2.4]). Let us define the mapping, m : L(H) -> IR,
by

(2.1) m(M) := 4>{ix{TPM)), M e L{H),

where 0 ^ T ^ kl is a Hermitian trace operator on H, k ^ 0. Then, for any H,
dim H > 3, w is an unbounded charge.

In a similar way, now let 0 ^ T ^ k I be a Hermitian trace operator on the
completion 5 of 5, where k is a non-zero real constant and / is the identity on S. The
mapping m : E(S) -> IR defined by

(2.2) m(Af) = 0 ( t r ( r / ^ ) ) , ilf e £(S),

is an unbounded charge on E(S).
A mapping/ : y{S) := {x e S : ||JC|| = 1} -* IR is said to be a frame Junction if

there is a constant W (called the weight of / ) such that £ , . / (*,-) = W holds for any
maximal orthonormal system (MONS, for short) {.*,} in S.

The mapping/ : y(S) -> IR is said to be a frame type function on S if (i) for any
orthonormal system (ONS, for short) {xt} in 5, {/ (*,)} is summable; and (ii) for any
finite-dimensional subspace K of S, f \y{K) is a frame function on K.

The following result was originally proved for states in [6], where the first a-
additive state completeness criterion was presented, and then generalised for charges
in [2, Lemma 4.2.1]. In order to be self-contained, we present the proof in details and
in a little bit more general form—for Px{S)-bounded charges.

LEMMA2.1. (1) For any Px (S) -bounded charge m on F(S) or E(S), dim S £ 2,
there exists a unique Hermitian operator T = Tm : 5 -> S such that

(2.3) m(sp(jc)) = (rjc,x), xey(S).

(2) Let v be a unit vector in the completion S of S, dim S ^ 2. Then for any e > 0
and any K > 0, there exists a 8 > 0 such that the following statement holds: IfweS
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is a unit vector such that \\v — w\\ < 8, then for any Pt {S)-bounded charge m such that
the norm ofT= Tm is less than K, and for each finite-dimensional A c S satisfying
the property v ± A, we have the next inequality

(2.4) | m(A V sp(u>)) - m(A) - m(sp(w)) | < e.

PROOF. (1) Suppose that m is a Pi(S)-bounded charge and define a function / :
y{S) -+ Rvia / (*) = m(sp(x)), \\x\\ = 1. Then/ is bounded on ^ ( 5 ) .

Applying the Gleason theorem for finite-dimensional subspaces of 5, see [2], there
is a well-defined bounded bilinear form t such that/ (x) = t(x, x) for any x e y(S).
Hence, t may be uniquely extended to a bounded, bilinear form t defined on 5 x 5 .
Therefore, there is a unique Hermitian operator T : S -> S such that (2.2) holds. We
denote by || 7|| the norm of T.

(2) Let € > 0 and K > 0 be given. By the continuity of the function p(t) —
(2 - 2(1 - r2)'/2)i/2 w e c a n find a ̂ ! > 0 such that p(t) < e/2K for any t 6 [0, 5,].

The continuity of the projection Pspw1 : S ~* sp(u)x, allows us to find a 6 e (0, 1)
such that the assumption ||v — iu|| < 8 implies ||Psp(U)j-(w)|| < 8\. Fix a w e S with
|| ui || = 1, and suppose that A is any finite-dimensional subspace orthogonal to v.
Then || PA (w) || = ||Pit^(»H(«')ll < IIAP(^(^)II < «i- Thus, we obtain

||(/ - PA)(«;) / ||(7 - PA)(w)\\ - w\\ = p(\\PA(w)\\) < e/2K.

Putu»' = (7-PA)(u;)/| |(/-PA)(u;)| | . Then we have ||io-u;'|| < e/2K, A Vsp(iu) =
A v sp(m') and w' J_ A. Calculate

|m(A V sp(io)) - m(A) - m(sp(w))\

= \m(A) + m(sp(u/)) — m(A) — m(sp(u;))|

= |m(sp(u;')) - m(sp(io))| = \(Tw', w') - (Tw, w)\

< \(Tw', w') - (Tw', w)\ + \(Tw', w) - (Tw, w)\

ii;-ii;'||<€. •

3. P(S) -boundedness of sign-preserving charges

In the present section we introduce a new kind of charges, sign-preserving charges,
and we show that these are always P(5)-bounded. We recall that, in general, charges
can be unbounded on F(S), as an example below shows. This notion will be applied
in the next section to obtain a new completeness criterion for inner product spaces.

We say that a charge m on F(S) is sign-preserving (or we say also that m
satisfies the sign-preserving property) if, for any sequence of mutually orthogonal
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finite-dimensional subspaces {Af,} of 5 such that if m(Af,) > 0 for any i, we have
m( V, Mi) > 0, or m(Mi) < 0 for any i then m( V, Mt) < 0.

It is easy to verify that if m(M,) > 0 for any i, then

(3.1)

and if w(M,) < 0 for any i, we have the opposite inequalities.
For example, every cr-additive measure m on F(S) or every positive (negative)

charge is sign-preserving. Let H be a separable infinite-dimensional Hilbert space and
let mi and m2 be two different states on L(H) vanishing on all the finite-dimensional
subspaces of H. Then m = ni\ — m2 is a sign-preserving charge on L(H), and m is
neither positive (negative) nor a -additive.

On the other hand, let H be a separable Hilbert space with an ONB {xn}%Lv

Define the state mx(M) = Y.°L\ ^l^nmXn{M), M e L(H), and let m2 be any finitely
additive state on L(H) vanishing on all the finite-dimensional subspaces of H. Then
m =: mt — m2 is a bounded charge on L(H) which is not sign-preserving. Indeed, let
M = V ^ 2

 sP(*n)- T h e n m(sp(xn)) = 1/2" for any n, but m(M) = 1/2 - 1 = -1 /2 .
More general, if m, is a state defined by (1.1) and m2 as above, then m = m\ — m2 is
a bounded charge which is not sign-preserving.

Let now s be a state on L{H) vanishing on all the finite-dimensional subspaces of
H. According to [3], the range of s is the whole interval [0, 1]. Take an arbitrary
discontinuous additive functional <p on R. Then the mapping m on L(H) defined
by m{M) = 4>(s(M)), M e L{H), is a sign-preserving charge vanishing on all the
finite-dimensional subspaces of H which is unbounded on L(H).

We recall that according to [7, Lemma 33.3],

(1) F(S) is an atomic, complete lattice with orthocomplementation satisfying the
exchange axiom (that is, if M is an atom of F(S), N e F(S), M £ N, then M v N
covers N (that is, if N c C C M V N for some C e F(S), then C e{N,N V M})\
(2) if M e F(S) and x e S is a non-zero vector, then M v sp(x) = M + sp(x) e
F(S);
(3) A Mi = Pi, Mi f o r a n v system {M,} from F(5).

LEMMA 3.1. Let S be an inner product space and let N be a subspace of S,
dim TV = n > 1. Then

F(NX) = {A e F(S) : A c NL], £(//-"-) = {A e £(5) : A c N^.

PROOF. If X c 5, then X^1 := [x e N1 : x ± X}. Let dimiV = 1 and suppose
A e F(S) and A c A -̂1. Then A^1-1"1 = (A-1 D /v*J-)-L«1 = (Ax n iV1)-1 (1 A^ =
(AiivW)niV-L = (A + AOnN-1-. SinceArisanatomofF(5)andA £NX,N £ A,
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we have that (A + N) n Nx covers A, while A c. (A + N) C\ N1 £ A + N. Hence,
(A + N) n A^ = A, that is, A e FiN1).

Conversely, if A € FiN1), then A±"LX"J- = (A11 + N)nN1 -A. The exchange
axiom implies ALL = (A11 + N)nN1 = A, that is, A e F(S).

The general case of dim N = n > I can be obtained by n-times repeating the case
dimN = 1.

Let now A e E(S) and A c A71, lix e N1, then* = xA +xA±, where JĈ  6 A and
XAL e A1 so that x - xA = xA± e A1" which gives A + A±N = N1 and A € EiN1).

Conversely, let A 6 EiN1). Then A+A1" = N1 and A+A±K+N = N±+N = S.
If a e A and u e A1", v e N, then (a, u + v) = 0, that is, A1" + J V C A 1 . If now
x € A1, then X = x^ + XA^ + *N which gives xA = 0, that is, AL c A1" + Â . D

Therefore, if dimN = n > I, N c. S, then any charge m on F(5) (E(S)) can be
restrictedbyProposition3.1toachargem^i on F(A7j-)(£(A/J-))bym/Vi(M) = m(M)
ifAf e FC^-1-).

If dim 5 < oo, then it can happen that m is unbounded. In what follows, we show
that if dim 5 = oo, then every sign-preserving charge on F(S) is Pi(5)-bounded as
well as />(5)-bounded. We will follow the basic ideas of Dorofeev-Sherstnev [1]
(see also [2, Theorem 3.2.20]), who proved an analogical result for the frame-type
functions.

Let us recall that if H is a Hilbert space, then by a self-adjoint operator on H we
mean always an operator A defined on a subspace, 5, of H which is dense in H.

Inspiring that, let us denote by SPC(//) the set of all Pi (5)-unbounded sign-
preserving charges defined on F(S), where 5 is an arbitrary dense subspace of H.

Our aim is to show that SPC(//) = 0.

LEMMA 3.2. Let SPC(//) 5̂  0, dim H — oo. There exist a dense subspace SofH
and a charge m € SPC(//) on F(S) such that, for any one-dimensional subspace N
ofS with \m(N)\ > 1, we have mN± i SPC{NL").

PROOF. If dim A7 < oo, then A71 is dense in N1", where L" denotes the orthocom-
plementation in H, and a sign-preserving charge on F(S) is also a sign-preserving
charge on F(ArX).

Suppose that the assertion does not hold. Then, for any dense subspace 5 of H, for
any charge m e SPC(H) on F(5), there exists a one-dimensional subspace Â  of S
with \m(Ni)\ > 1 such that mN± e SPC(A?

1-
L").

Since H is an infinite-dimensional Hilbert space, it is isomorphic with its subspace
Ni". Consequently, any charge from SPC(N^") also does not fulfil the hypothesis.
In particular, for mNl and we can find a one-dimensional subspace Af2 of N1 with
|m(AT2)| > 1 such that m(W,vA,2)± e SPC^A7,

https://doi.org/10.1017/S1446788700008028 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700008028


[7] Boundedness of sign-preserving charges 205

Continuing this process by induction, we find a sequence of mutually orthogonal
subspaces {Nn} of Ssuch that \m(Nn)\ > 1 andm(Af|V...vMi)± $ SPC((W, V- • • vA^)1")
for any n > 1.

There are infinitely many n's such that m(Nn) > 1 or m(Nn) < —1. Without loss
of generality, we can assume that all m(Nn) have the same sign.

Denote by A = \/n Nn. In the first case, for any integer n > 1, we have

m(S) = m{AL)

when we have used the sign preserving property of m, which gives a contradiction.
In a similar way we deal with the second case. •

LEMMA 3.3. Let SPC(//) ^ 0, d im/ / = 00 There exists m e SPC(//) and a
one-dimensional subspace Xo of S, S dense in H, such that

(3.2) max [\m(X0)\, sup{|m(y)| : Y e P,(X^)}} = 1.

PROOF. Take m from Lemma 3.2 and multiplying m by some non-zero constant, if
necessary, we obtain (3.2). •

Since the proofs of the following two lemmas are identical with those in [2,
Lemma 3.2.18] and [2, Lemma 3.2.19], they are omitted.

LEMMA 3.4. Let m e SPC(H), d im/ / = oo, satisfy the condition of Lemma 3.3.
Then there exist orthonormal vectors e\, e2, £3 € S, S being the dense subspace of H,
such that |m(sp(e,))| > I for any i = 1, 2, 3.

LEMMA 3.5. Let H be a real four-dimensional Hilbert space. Let e\, e2, e3, e e

y(H) such that eu e2, £3 are mutually orthogonal, and e g [e^ U {e2}
L U {ei}1, be

given. Then there exist two non-zero vectors x and y in H such that

(1) e = x+y;

(2) ( * , « , ) = ( y , e 2 ) = ( x , y ) = ( y - \ \ y \ \ 2 e , e3) = 0 , y - \ \ y \ \ 2 e £ 0 .

We recall that a closed subset R of a complex or quaternion Hilbert space H which
is a manifold with respect to the real field R is said to be completely real if the inner
product (•, •) from H takes real values on R x R. Equivalently, if and only if there is
an orthonormal set {e,} in R such that R is the closure of the real linear combinations
of the ej.
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PROPOSITION 3.6. Any sign-preserving charge on F(S), dim 5 = oo, is P\(S)-
bounded.

PROOF. Suppose the converse, that is, let SPC(tf) 7̂  0, and let m e SPC(tf)
satisfy (3.2). Let us set / (x) := m(sp(;c)), x e y(S). Select orthonormal vectors
e\, e2, e-i from Lemma 3.4 with | /(e,) | > 1, i = 1,2, 3, and define the constant

C = max {\f (et)\, sup{|/ (JC)| : x

From the unboundedness of / it follows that there is a vector h € S^iS) such that
1/ (h)\ > 3C. It is clear that h £ ULifo}"1 a n d Put x' = (A- «*)/!(*. c<)l, i = 1, 2, 3.
Then (/i,A,ei) is real for i = 1,2,3. Let M be a completely real subspace of
dimension 4 containing h and all A,e,'s.

Applying Lemma 3.5 to vectors X,e,'s and ft, we find two non-zero vectors x and
y in A/ such that

(x, A2e2) = 0 , ^ 3 ) = (x, y) = (z, Aiei) = 0, /i = x + y,

where z = y — \\y\\2h is a non-zero vector. Since sp{z, h] = sp{x, y) = sp{y, h}, we
have/ (h) +f (z/\\z\\) = f (x/\\x\\) +f (y/||v||). From the construction we conclude
thatz 6 {e,}\ so that |/(z/| |z| |) | < C. Similarly, \f (x/\\x\\)\, \f(y/\\y\\)\ < C.
Since \f(h)\ < If (A)+/(z/ | |z | | ) | + | / (z/||z||)|, then

we finally obtain from the last equality

which is a desired contradiction. •

THEOREM 3.7. Any sign-preserving charge on F(S), dim 5 = oo, is P (S)-bounded.
Moreover, there is a unique Hermitian trace operator T on H such that

m{sy{x)) = {Tx,x), x e

PROOF. In view of Proposition 3.6, f (x) := m(sp(x)), x e ^(S), is bounded.
Therefore, by (1) of Lemma 2.1, there is a Hermitian operator T on S such that
f(x) = (Tx,x),xey(S).

We now show that T e Tr(H). If T = 0, the statement is evident. Let now
T i=- 0 and suppose T $ Tr{H). Then there is an ONS [fu . . . , / „ ,} in H such that
E L \(TfkJk)\ > 1. Choose an e > 0 such that £ £ , \(Tfk,fk)\ > 1 + €. It is
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easy to see that for { / i , . . . , / „ , } we can find an ONS [h\,... , hni] in S such that

II A t - / t i l < € / ( 2 n , | | r | | ) , * = l , . . . , n , . Then

\f(hk) - {Tfk,fk)\ < \(T(hk-fk),fk)\ + \{Thk, hk-fk)\

<
so that

t=l k=l i=l

Put H\ = {/it,... , ^n,}1", then 5i = Hi is a dense subspace in //i, so that,
m\F(S\) is a sign-preserving charge on F(Si). Therefore, as in the beginning of
the present proof, there is a Hermitian operator T\ (= PHiTPHi) on H\ such that
/(JC) = (T{x,x) = {Tx,x), x e y(S\). Here 7\ is not any trace operator since
T £Tr(//).

Repeating the same reasonings as above, we find an ONS {/n,+i,... ,/n2} in
ff, such that EL.,+1 Wfk,fk)\ > 1, and we find an ONS {&„,+,,... , hn2} in 5,
w^tn 5ZiLn,+i 1/ C1*)! > 1- Continuing this process, we find a countable family of
orthonormal vectors [hi, h2, • •.} C 5 and a sequence of integers, {n,}~0, n0 = 0,

such that EtU,_,+i 1/ (^t)I > !> f o r a n v ' ^ ^ w h i c h § i v e s J27=i 1/ C1*)! = °°-
Without loss of generality, we can assume that all / (hn) > 0 or / (hn) < 0. Set

A = Vn sp(/tn). In the first case, for any k > 1,

\ / sp(A,) 1 > miA1) + k,
/

which is a contradiction. In a similar way we deal with the second case. Therefore,
T 6 Tr(//), and this proves that m is P(5)-bounded. •

4. Sign-preserving regular charges and completeness criterion

In this section, we present a new completeness criterion showing that S is complete
if and only if F(S) admits at least one non-zero sign-preserving regular charge.
This result extends measure-type completeness criteria given, for example, in [2,
Section 4.3.2].

We say that a charge m on F(S) (E(S)) is regular if, given M e F(S) (M e E(S))
and given e > 0, there is a finite-dimensional subspace N of M such that

\m(M nNx)\ <€.

THEOREM 4.1. An inner product space S is complete if and only if F(S) admits at
least one non-zero sign-preserving regular charge.
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PROOF. The necessity is evident. Suppose, therefore, that S is an infinite-dimen-
sional inner product space, and let m be a non-zero sign-preserving regular charge.
According to Theorem 3.7, m is P(5)-bounded. Let T be a Hermitian operator
from (2.3).

Let B be an arbitrary orthogonally closed subspace of 5 and let {e,} be any MONS
in B and define Bo = {e,}11. Then Bo c B. We claim that Bo = B.

We see that

(•) m{B0) = m(B0) + m(B fl So
x) = m(B0) + 1 - miB^ V Bo) = m{B)

(which is true for any charge m on F(S)).
If we had Bo ^ B, then BQ ^ B, and we can find a unit vector v e B which is

orthogonal to Bo. There exists a unit vector e e S such that m(sp(e)) ^ 0. Indeed,
there exists M 6 F{S) such that, say, m{M) > 0. Given M, we find a sequence
{Mn\ in P(5) of non-decreasing subspaces of M such that m(M) = limn m(Mn).
Without loss of generality we can assume that m(sp(e)) > 0. Applying Lemma 2.1
to € = m(sp(e))/3 > 0 and to v e B, we can find a 8 > 0 such that, for any unit
vector w e B with \\w — v\\ < S and any A _L v, dim A < oo, we have (2.4) for every
P!(S)-bounded charge s on F(S) for which || Ts\\ = || T\\.

Define a unitary operator U : 5 —> S such that Ue = w and C/jf = / for any
/ 1 e,w. Then mp defined via mv{M) = m(U-\M)), M e F(S), is a P,(5)-
bounded, regular charge on F(S) for which || Tmv\\ = \\ T\\.

Hence, for B there exists a sequence [Bn] of finite-dimensional subspaces of B,
Bn ^ Bn+l for n > 1, such that mv{B) = limn mu(Bn).

We assert that mv{B) = limn mu(Bn V sp(u»)).
Calculate,

|Wf/(Bn V sp(u;))-mu(B)\ < \mv{Bn V sp(u;))-mv(Bn)\ + ^viBJ-mviB^.

We now follow the ideas and symbols from the proof of (2) of Lemma 2.1 with
norm || T|| less than a constant K > 0. Let e > 0 be given. Set

w'n = (I-PBn(w))/\\(I-PBAw)\\.

Then ||tu - w'n\\ < e/2K, Bn V sp(io) = Bn v sp(m^), and w'n _L Bn. Hence,

< \(Tmuw'n, w'n) - (Tmuw'n, w)\ + KTmuw'n, w) - (Tmuw, w)\

<l|7-mJ|||u;;i||K-iu|| + ||rmi,||||u;;-u;||||io||<c.

Consequently, my{B) = limnmu(BnVsp(w)),andby (•k),mu(B) — mu(B0Vsp(w)).
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Therefore, given e > 0 there is an integer no such that for any n > «o

mv(Bn V sp(iu)) - e < mu(B0 V sp(w)) < mv(Bn v sp(iy)) + e

and

- e < mu(Bn) < mu(B0) + e.

Using these inequalities and (2.4), we get

mv{Ba) = mu(B0 v sp(tu)) > mv(Bn V spO) ) - e

— 2e > mu(B0) + m(sp(e)) — 3e = mv{B0),

which contradicts the beginning and the end of former inequalities, and this proves
B0 = B.

Due to the arbitrariness of B e F(S), we conclude that F(S) is orthomodular.
The criterion of Amemiya and Araki [2, Theorem 4.1.2], yields that 5 is complete, as
claimed. •

THEOREM 4.2. Any sign-preserving regular charge on F(S) of an inner product
space S, dim 5 = oo, is completely additive, and there is a trace operator T on S
such that m(M) — ir{TPM), M e F(S). In addition, the regular charge is always
bounded.

PROOF. If m is a zero function, the statement is trivially satisfied. Suppose that m
is a non-zero sign-preserving regular charge.

According to Theorem 4.1, S is a Hilbert space, and due to (i) of Lemma 3.2, there
is a Hermitian operator T on S such that (Tx, x) = m(sp(x)) for any unit vector
x e S. Moreover, by Theorem 3.7, T is a trace operator on 5.

Express T = T+ — T~, where T+ and T~ are positive and negative parts of T.
Let S+, S~ and So be the subspaces of S generated {x, : kt > 0}, {JC, : A.,- < 0},
and {Xi : A.,- = 0}, respectively, where T = ^ A.,(-, * ,)*, . Then, for any unit
vector x e S+, m(sp(x)) > 0 and, for any unit vector y e S~, m(sp(j>)) < 0.
Therefore, m(S+) = limnm(Sn), where Sn c 5n+1 are finite-dimensional subspaces
of S+. Hence, m(S+) > ]C,-m(sp(x,-)) f o r a n y 0 N B {̂ i} i n s+ which implies
m(5+) = tr(T+). In a similar way, we have m(S~) = —tr(T~). Since m(S0) = 0,
we have m(S) = tr(T).

If now M is an arbitrary subspace of F(S), then TM is the restriction of PMTPM

onto M, where PM is the orthogonal projector of S onto M, is a trace operator. We
repeat the above reasoning for TM. Hence, m(M) = tr(TM) = \i(TPM), M e F(S).

It is easy to show that the mapping M h-> tr(rPM)» W e F(S), is a completely
additive function on F(S) and bounded. •
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We recall that Theorem 4.1 does not hold for the case of E(S). Indeed, let x b e a
unit vector in 5. The mapping mx (M) = \\xM\\l,M € E(S), where x = xM+*A/J. and
xM 6 M, xM± e M1, is a regular charge on £(5) for any complete or incomplete 5.

We conclude the article with some comments.

(1) We recall that we do not know whether any regular charge on F(S) is sign-
preserving.
(2) If a regular charge is Pi(5)-bounded, then Theorem 4.1 holds for any Pi(5)-

bounded regular charge.
(3) We do not know whether every regular charge on F(S) with dim 5 = oo is
Pi (S)-bounded. This is unknown even if 5 is a Hilbert space.
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