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Spacetime spinors

The notion of spinors arises naturally in the construction of a relativistic first-

order equation for a quantum wave function – the so-called Dirac equation.

Spinors are the most basic objects to which one can apply a Lorentz transfor-

mation. The seminal work in Penrose (1960) has shown that spinors constitute

a powerful tool to analyse the structure of the Einstein field equations and their

solutions. Most applications of spinors in general relativity make use not of the

Dirac spinors but of the so-called 2-spinors. The latter are more elementary

objects, and indeed, the whole theory of the Dirac equation can be reformulated

in terms of 2-spinors. In the sequel, 2-spinors will be very often simply called

spinors.

The purpose of this chapter is to develop the basic formalism of spinors in a

spacetime. Accordingly, one speaks of spacetime spinors, sometimes also called

SL(2,C) spinors; see, for example, Ashtekar (1991). A discussion of spinors in the

presence of a singled-out timelike direction, the so-called space spinor formalism,

is given in Chapter 4. One of the motivations for the use of spinors in general

relativity is that they provide a simple representation of null vectors and of

several tensorial operations. Although spinors will be used systematically in this

book, they are not essential for the analysis. All the key arguments could be

carried out in a tensorial way at the expense of lengthier and less transparent

computations.

The presentation in this chapter differs sligthly in focus and content from

that given in other texts; see, for example, Penrose and Rindler (1984); Stewart

(1991); O’Donnell (2003). For reasons to be discussed in the main text, a

systematic use of the so-called Newman-Penrose formalism will be avoided –

although the basic notational conventions of Penrose and Rindler (1984), the

authoritative work on the subject, are retained.
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3.1 Algebra of 2-spinors 65

3.1 Algebra of 2-spinors

In what follows let (M, g) be a spacetime. The present discussion begins by

analysing spinorial structures at a given point p of the spacetime manifold M.

The concept of a spinor is closely related to the representation theory of the

group SL(2,C). This group has two inequivalent representations in terms of

two-dimensional complex vector spaces which are complex conjugates of each

other; for a discussion of this aspect of the theory, see, for example, Carmeli

(1977); Sexl and Urbantke (2000). Thus, the discussion of this chapter starts

with a brief discussion of complex vector spaces.

3.1.1 Complex vector spaces

By a complex vector space it will be understood a vector space over the field

of the complex numbers, C. In what follows let S denote a complex vector space,

and let S∗ denote its dual, that is, the complex vector space of all linear maps

from S to C. As in the case of real vector spaces, given ς ∈ S and ζ ∈ S∗, the

application of ζ on ς will be denoted by 〈ζ, ς〉. Notice, however, that in this case

〈ζ, ς〉 ∈ C.

Given S, it is natural to define an operation of complex conjugation over S:

given ς ∈ S, its complex conjugate ς̄ is defined via

〈ζ, ς̄〉 ≡ 〈ζ, ς〉, ζ ∈ S∗.

The operation of complex conjugation from S to S∗ can be defined in an

analogous way: given ζ ∈ S∗, its complex conjugate ζ̄ satisfies

〈ζ̄, ς〉 ≡ 〈ζ, ς〉, ς ∈ S.

Given ξ, ζ ∈ S and z ∈ C, the complex conjugate of the linear combination

ξ+zζ is ξ̄+z̄ζ̄. Thus, the operation of complex conjugation is not an isomorphism

between S and itself, but an anti-isomorphism between S and the vector space

S̄, the complex conjugate of S. Similarly, the complex conjugation defines an

anti-isomorphism between S∗ and the space, S∗, the complex conjugate of S∗.

If one considers the complex conjugate of the spaces S and S∗, one recovers

the spaces S and S∗, respectively. Moreover, because of the way the complex

conjugate operation has been defined, one has that S∗ = S̄∗, so that S and S∗

are duals of each other.

The vector spacesS,S∗,S andS∗ will be regarded as the elementary building

blocks in the construction of a spinorial formalism. As in the case of real vector

spaces one can construct higher rank objects by considering arbitrary tensor

products of these vector spaces. This will be discussed later in the chapter once

further structure and an abstract index notation for spinors has been introduced.

3.1.2 Simplectic vector spaces

Key to the notion of spinors is the definition of a symplectic vector space .
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Definition 3.1 (simplectic vector space) A simplectic vector space

consists of an even-dimensional vector space S endowed with a function [[·, ·]] :
S×S → C which is:

(i) antisymmetric (skew); that is, given ξ, η ∈ S

[[ξ,η]] = −[[η, ξ]]

(ii) bilinear; that is,

[[ξ + zζ,η]] = [[ξ,η]] + z[[ζ,η]], [[ξ,η + zζ]] = [[ξ,η]] + z[[ξ, ζ]]

(iii) non-degenerate; that is, if [[ξ,η]] = 0 for all η then ξ = 0.

The antisymmetric product [[·, ·]] defines in a canonical way an isomorphism

between S and S∗: to ξ ∈ S one associates ξ� ≡ [[ξ, ·]] ∈ S∗. A transfor-

mation Q : S → S satisfying [[Qξ,Qη]] = [[ξ,η]] is called a symplectic

transformation .

Remark. The rest of this book will be concerned only with the case where the

dimension of S is 2.

3.1.3 Spin bases

From the definition of a symplectic vector space it follows directly that given

non-zero ξ, η ∈ S such that [[ξ,η]] = 0, there exists z ∈ C, z �= 0 such that

ξ = zη. Alternatively, given ξ, η ∈ S, they are linearly independent if and only

if [[ξ,η]] �= 0. This observation leads to the idea of a spin basis.

Definition 3.2 (spin basis) Given non-zero o, ι ∈ S, the pair {o, ι} is said

to be a spin basis for S if [[o, ι]] = 1.

Now, given ξ ∈ S, the components of ξ with respect to the basis {o, ι} are

defined by the equation

ξ = ξ0o+ ξ1ι,

where

ξ0 ≡ [[ξ, ι]], ξ1 ≡ −[[ξ,o]].

3.1.4 Abstract index notation for spinors

The discussion of spinors in this book makes use of a combination of index-free

and abstract index notations. Following the general discussion on abstract index

notation given in Penrose and Rindler (1984), an element ξ ∈ S will also be

denoted by ξA, where the abstract superindex A provides information about the

vector space to which the object belongs – in this case S. Similarly given η ∈ S∗,
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it will often be written as ηA. This notation of abstract sub- and superindices will

also be extended to the vector spaces themselves; thus, the symbols SA and SA

will be used, respectively, instead of S and S∗. Furthermore, given ξA ∈ SA,

then ξA will denote ξ�, the dual of ξ under the antisymmetric product in S.

Following this notation, the product [[η, ξ]] = 〈η�, ξ〉 will be written as ηAξ
A.

In order to extend the formalism, one introduces an infinite number of copies

(realisations) of the spaces S and S∗: SA, SB , . . . and SA, SB , . . . . The

different realisations are connected to each other by a sameness map such that

ξA and ξB correspond to two different copies of the same object ξ belonging to

different realisations of S, that is, SA and SB . A peculiarity of the abstract

index notation is that although ξA and ξB describe the same object, expressions

like ξA = ξB are not allowed – the indices in an equation must be balanced.

Objects like ξA and ηB are called valence 1 spinors. Following the

terminology used for tensors, ξA is said to be contravariant , while ηA is

said to be covariant . Higher valence spinors can be introduced using the

tensorial product ⊗ of the basic vector spaces S and S∗. The use of the abstract

index notation simplifies the underlying discussion of these tensorial products.

For example, a valence 3 spinor χAB
C is defined through a multilinear map

χ : SA ×SB ×SC → C. As a consequence of the S-linearity of this mapping,

there exists a spinor χAB
C ∈ SAB

C . The space SAB
C is a vector space. This

procedure extends in a natural way to higher valence spinors with arbitrary

combinations of covariant and contravariant indices. The collection of all the

spaces of the form SA···C
D···F is called the spin algebra and is denoted by S•.

The spin algebra ensures that the multiplication of spinors renders a spinor. The

operation of addition in S• is defined only between spinors of the same type, that

is, the same rank and same combination of covariant and contravariant indices.

3.1.5 The spinor εAB

As the antisymmetric 2-form [[·, ·]] is a function from S⊗S to C, it follows that

there exists a valence 2 spinor εAB ∈ SAB such that

[[ξ,η]] = εABξ
AηB .

The spinor εAB is called the ε-spinor . Now, as [[ξ,η]] = −[[η, ξ]], it follows

that εAB = −εBA; that is, εAB is antisymmetric. It has already been shown that

[[ξ,η]] can be written as ξAη
A; thus, it follows that

ξB = εABξ
A = ξAεAB . (3.1)

That is, εAB can be regarded as an index lowering object. In other words, the

spinor εAB provides a convenient way to express the duality between the spaces

S and S∗. This duality is a bijection, so that it follows that there must exist a

further spinor, (ε−1)AB ∈ SAB , by means of which one can raise back the index

https://doi.org/10.1017/9781009291347.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.005


68 Spacetime spinors

of the spinor ξA; that is, ξA = (ε−1)CAξC . In order to simplify the appearance

of the above expressions it is convenient to define a further spinor εAB ∈ SAB

via

εAB ≡ −(ε−1)AB , (3.2)

so that one obtains

ξA = −εCAξC . (3.3)

Combining Equations (3.1) and (3.3) one obtains ξB = −εABε
CAξC , which

together with the requirement that εAB and (ε−1)AB represent inverse opera-

tions, implies

δB
C = −εABε

CA,

with δB
C the two-dimensional Kronecker’s delta . The spinor εAB is also

antisymmetric. This can be seen from

[[ξ,η]] = ξBη
B = ξBδC

BηC = −ξB(εDCε
BD)ηC

= εBDξB(εCDηC) = εBDξBηD.

A similar computation shows that [[η, ξ]] = εDBηDξB . Finally, as [[ξ,η]] =

−[[η, ξ]] one concludes that εAB = −εBA as claimed.

If εAC and εA
C denote the spinors in S• obtained by raising the first and

second index of εAB , respectively, it follows from the above calculations that

εC
A = −εAC = δC

A, εABε
AB = εA

A = 2.

The above formulae lead to the so-called see-saw rule . Given a spinor χP ···QA

one has that

χP ···QA = εABχP ···Q
B = −χP ···Q

Bε
BA = χP ···QBεB

A, (3.4a)

χP ···Q
A = −εABχ

P ···QB = χP ···QBεBA = −χP ···Q
Bε

B
A. (3.4b)

Comparing the above expressions one concludes that

χP ···Q
A
A = −χP ···QA

A.

3.1.6 The Jacobi identity and decompositions

in irreducible components

AsS is a vector space of dimension 2, it follows that any antisymmetrisation over

a set of three or more spinorial indices must vanish. In particular, one obtains

what is known as the Jacobi identity :

εA[BεCD] = εABεCD + εACεDB + εADεBC = 0. (3.5)

A direct consequence of the Jacobi identity is the following lemma:
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Lemma 3.1 (irreducible decomposition of a pair of indices) Consider

the spinor ζ···AB···. Then

ζ···AB··· = ζ···(AB)··· +
1

2
εABζ···C

C
···.

Proof Consider the Jacobi identity rewritten in the form

εA
CεB

D − εB
CεA

D = εABε
CD,

and multiply it by ζ···CD···. One readily obtains

2ζ···[AB]··· = εABζ···C
C
···.

Finally, combining the latter with the identity

ζ···AB··· = ζ···(AB)··· + ζ···[AB]···,

one obtains the required result.

The previous result can be used to interchange the order of two spinorial

indices. In this case Lemma 3.1 directly yields

ζ···BA··· = ζ···AB··· − εABζ···P
P
···. (3.6)

The above lemma leads to the following result:

Proposition 3.1 (irreducible decomposition of spinors) Any spinor ζA···F
can be decomposed as the sum of the spinor ζ(A···F ) and products of ε-spinors with

symmetrised contractions of ζA···F .

Proof Assume ζABC···F to have valence n. In the following argument, the

symbol ∼ between two spinors indicates that their difference is a linear

combination of the outer product of ε-spinors and spinors of lower valence. The

key idea of the decomposition is to show that

ζABC···EF ∼ ζ(ABC···EF ).

To this end, one first notices that

nζ(ABC···EF ) = ζA(BC···EF )+ ζB(AC···EF )+ ζC(AB···EF )+ · · ·+ ζF (AB···E). (3.7)

Now, one looks at the terms in the right-hand side of the above equation and

considers the difference between the first and the second term, the first and the

third term and so on. Using Lemma 3.1, these differences can be rewritten as

ζA(BC···EF ) − ζB(AC···EF ) = −ζX (XC···EF )εAB ,

ζA(BC···EF ) − ζC(AB···EF ) = −ζX (XB···EF )εAC ,

...

ζA(BC···EF ) − ζF (ABC···E) = −ζX (XBC···E)εAF .
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70 Spacetime spinors

The above expressions can be used in Equation (3.7) to eliminate the terms

ζB(AC···EF ), ζB(AC···EF ), · · · ζF (ABC···E).

One obtains

ζ(ABC···EF ) = ζA(BC···EF ) +
1

n
ζX (XC···EF )εAB + · · ·+ 1

n
ζX (XBC···E)εAF .

That is,

ζ(ABC···EF ) ∼ ζA(BC···EF ).

The procedure described above can be repeated for each of the terms

ζX (XC···EF ), · · · ζX (XB···E),

to obtain

ζ(ABC···EF ) ∼ ζA(BC···EF ) ∼ ζAB(C···EF ) ∼ · · · ∼ ζABC···(EF ) ∼ ζABC···EF .

Remark. If one has a spinor with a set of contravariant indices, these can be

lowered so that Proposition 3.1 applies.

The type of decompositions of spinors provided by Proposition 3.1 will be used

systematically in the rest of the book. A particularly useful example is given by

χABCD = χ(ABCD) +
1

2
χ(AB)P

P εCD +
1

2
χP

P
(CD)εAB +

1

4
χP

P
Q
QεABεCD

+
1

2
εA(CχD)B +

1

2
εB(CχD)A − 1

3
εA(CεD)Bχ, (3.8)

with

χAB ≡ χQ(AB)
Q, χ ≡ χPQ

PQ.

A decomposition like the one given in Equation (3.8) will be called a decom-

position in irreducible components. The spinors χ(ABCD), χ(AB)P
P , . . . , χ

are independent in the sense that χABCD = 0 if and only if

χ(ABCD) = 0, χ(AB)P
P = 0, · · · χ = 0.

The latter fact will be used repeatedly in the following. Finally, it is observed

that the number of independent components an arbitrary symmetric spinor can

have is given by the following proposition; see Penrose and Rindler (1984).

Proposition 3.2 (number of independent components) If ζA···C = ζ(A···C)

is of valence p, then it has (p+ 1) independent components.

In conjunction with Proposition 3.1 the latter result can be used to count the

total number of independent components of an arbitrary spinor.
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3.1.7 Components with respect to a basis

As in the case of tensors, it is often convenient to discuss spinors in terms of

a specific basis. To express this idea, it is convenient to introduce bold indices

A, B, . . . ranging over 0 and 1. Thus, ξA and ηA represent the components of

ξA and ηB with respect to a specific basis. This idea extends in a natural way

to higher valence spinors.

Given a spin basis {o, ι}, one often requires a notation to describe the basis

in a more systematic manner. This will be done by means of the symbol εA
A

where

ε0
A ≡ oA, ε1

A ≡ ιA. (3.9)

Similarly, the dual cobasis of εA
A will be denoted collectively by εAA. By

definition one has that

εA
AεBA = δA

B.

It follows from Equation (3.9) and the previous condition that

ε0A = −ιA, ε1A = oA.

Using this notation and given two spinors ξA and ηB , one can write

ξA = ξAεA
A, ηB = ηBεBB ,

where

ξA ≡ ξAεAA, ηB ≡ ηBεB
B .

Hence

[[η, ξ]] = ηAξ
A =

(
ηP εPA

) (
ξQεQ

A
)
= ηP ξP .

The components εAB of the antisymmetric spinor εAB with respect to the

basis εA
A are given by

(εAB) ≡
(
εABεA

AεB
B
)
=

(
oAo

A oAι
A

ιAo
A ιAι

A

)
=

(
0 1

−1 0

)
. (3.10)

Now, a direct computation shows that(
0 1

−1 0

)−1

=

(
0 −1

1 0

)
.

Hence, consistent with Equation (3.2) one has that

(εAB) ≡
(
εABεAAε

B
B

)
=

(
0 1

−1 0

)
.

An alternative way of rewriting the previous discussion is

δA
B = εA

AεA
B , εAB = εABεA

AεB
B, εAB = εABεA

AεB
B .
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From the latter it follows that

δA
B = oAι

B − ιAo
B , (3.11a)

εAB = oAιB − ιAoB , (3.11b)

εAB = oAιB − ιAoB . (3.11c)

3.1.8 Complex conjugation of spinors

In order to relate spinors with tensors one has to consider the operation of

complex conjugation discussed in Section 3.1.1. The convention to denote the

operation of complex conjugation in the abstract index notation is to add a bar

to the kernel symbol and a prime to each of the indices. For example, one has that

ζA = ζ̄A
′ ∈ SA′

.

The operation of complex conjugation is idempotent – given ζ ∈ S, then ¯̄ζ = ζ.

Using abstract index notation one writes the latter as ζ̄A′ = ζA.

A spinor ξA···CS′···U ′
D···EW ′···Y ′ with, say, p unprimed contravariant indices,

r primed contravariant indices, q unprimed covariant indices and s primed

covariant indices describes the most general type of spinors. It is obtained from

the S-linear map

ξ : SA × · · · ×SC︸ ︷︷ ︸
p times

×SS′ × · · · ×SU ′︸ ︷︷ ︸
r times

×SD × · · · ×SE︸ ︷︷ ︸
q times

×SW ′ × · · · ×SY ′︸ ︷︷ ︸
s times

→ C.

The algebra S• is then extended to accommodate this more general type of

spinors with unprimed and primed indices.

An important consequence of the fact that the spaces S and S̄ are not

isomorphic is that it is not possible to single out 2-spinors which are intrinsically

real or imaginary unless one assumes further structure on S•. From a notational

point of view, as S and S̄ are not isomorphic, the relative position of primed and

unprimed indices is irrelevant. Thus, one can write expressions like ζAA′ = ζA′A.

Notice, in contrast, that the reordering of groups of primed indices or groups of

unprimed indices is not allowed unless the spinor possesses special symmetries.

The rules for the raising and lowering of indices of valence 1 spinors are

extended to higher valence spinors in a natural way. Primed indices are raised and

lowered using the spinors εA
′B′ ∈ SA′B′

and εA′B′ ∈ SA′B′ which are related,

respectively, to εAB and εAB by complex conjugation. That is,

ε̄A′B′ ≡ εAB , ε̄A
′B′ ≡ εAB .

It is conventional to write εA′B′ , εA
′B′

instead of ε̄A′B′ and ε̄A
′B′

.

Finally, note that the discussion of Section 3.1.6 concerning the decompo-

sition of spinors in irreducible components, and in particular Lemma 3.1 and

Proposition 3.1, can be directly extended to the case of spinors containing primed
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indices or combinations of primed or unprimed indices. In particular, one has the

following decomposition of a spinor with two unprimed and two primed indices:

ηAA′BB′ = η(AB)(A′B′) +
1

2
ηP

P
(A′B′)εAB +

1

2
η(AB)Q′Q

′
εA′B′

+
1

4
εABεA′B′ηQ

Q
Q′Q

′
. (3.12)

A particular case of the above decomposition is when ζAA′BB′ is the spinorial

counterpart of an antisymmetric rank-2 tensor ζab = −ζba. In this case one has

that

ζAA′BB′ = ζABεA′B′ + ζ̄A′B′εAB , (3.13)

where ζAB ≡ 1
2ζAP ′B

P ′
, and one has that ζAB = ζ(AB).

3.1.9 The relation between spinors and tensors

Spinors provide a simple representation of several tensorial operations. Although

every four-dimensional tensor (world tensor) can be represented in terms of

spinors, the converse is not true. There are spinors which admit no discussion in

terms of tensors. This observation is based on the fact that 2-spinors are related

to representations of the group of (2×2) complex matrices with unit determinant,

SL(2,C), while tensors are related to the Lorentz group. These groups are not

isomorphic to each other. The group SL(2,C) covers the Lorentz group in a

2 : 1 way; see, for example, Carmeli (1977); Sexl and Urbantke (2000) for further

discussions on this issue.

Hermitian spinors

The key property to relate 2-spinors to world tensors is hermicity. A spinor

ξ ∈ S• is said to be Hermitian if and only if ξ = ξ̄, that is, if the spinor is

equal to its complex conjugate. For this to be the case, ξ needs to have the same

number of unprimed and primed indices. By raising and lowering the indices as

necessary one can, without loss of generality, assume that the spinor has the same

number of unprimed and primed contravariant indices and the same number of

unprimed and primed covariant indices, for example, ξAA′···DD′EE′···HH′
. In this

case the hermicity condition reads

ξAA′···DD′EE′···HH′
= ξ̄AA′···DD′EE′···HH′

,

where on the right-hand side it has been used that the position of primed and

unprimed indices can be interchanged.

Consider now ξAA′ ∈ SAA′
. If {o, ι} and {ō, ῑ} are, respectively, spin bases of

S and S̄, one can write

ξAA′
= aoAōA

′
+ bιAῑA

′
+ coAῑA

′
+ dιAōA

′
, (3.14)

https://doi.org/10.1017/9781009291347.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.005


74 Spacetime spinors

for some a, b, c, d ∈ C. In other words, a pair AA′
of indices is associated to

four complex components. If one assumes, in addition, ξAA′
to be Hermitian,

then it follows that a, b ∈ R and c = d̄. Thus, the hermicity condition reduces

the number of independent components to four real ones. Consequently, one can

think of the Hermitian spinor ξAA′ ∈ SAA′
as describing a four-dimensional

vector (world-vector) ξa.

The argument described in the previous paragraph can be extended in a

natural fashion to higher valence Hermitian spinors, ξAA′···DD′EE′···HH′
, so that

one can regard each pair of unprimed-primed indices (i.e. AA′ , EE′
, · · · ) as

associated to a tensorial index (i.e. a,
e, · · · ).

In what follows let

gAA′BB′ ≡ εABεA′B′ . (3.15)

A computation then shows that ḡAA′BB′ = gAA′BB′ and, in addition, that

gAA′BB′
= εABεA

′B′
,

gAA′BB′gBB′CC′
= gAA′CC′ ≡ δA

CδA′C
′
,

gAA′BB′gAA′BB′
= 4,

gAA′BB′ = gBB′AA′ .

Furthermore, given vAA′ ∈ SAA′ it can be readily verified that

vAA′gAA′BB′
= vBB′

, vAA′
gAA′BB′ = vBB′ .

Hence, the spinor gAA′BB′ has all the properties of a spinorial counterpart of the

metric tensor. These ideas will now be put in more precise terms.

The Infeld-van der Waerden symbols

In order to describe explicitly the correspondence between spinors and tensors at

a point p ∈ M, consider a basis {ea} ⊂ T |p(M) and let gab ≡ g(ea, eb) denote

the components of the metric g with respect to this basis. Let also {ωa} ⊂
T ∗|p(M) denote the dual basis to {ea} so that 〈ωb, ea〉 = δa

b. It is conventional

to assume that the basis is g-orthogonal ; that is, gab = ηab. Finally, let {εA} ⊂ S

denote a spin basis, and let εAB denote the components of the spinor εAB with

respect to the latter basis. The scalars gab and εAB can be put in correspondence

with each other via an equation of the form

εABεA′B′ = σa
AA′σb

BB′ηab, (3.16)

where σa
AA′ are the so-called Infeld-van der Waerden symbols. These can

be regarded as the entries of four (2 × 2) matrices (σa
AA′), a = 0, . . . ,3.

Unprimed indices denote the rows and the primed indices the columns of the

matrix. Given σa
AA′ , one defines the inverse symbol σb

BB′
via the relations

σa
AA′

σb
AA′ = δa

b, σa
AA′

σa
BB′ = δB

AδB′A
′
. (3.17)
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From these expressions it follows that the correspondence (3.16) can be inverted

to yield

ηab = σa
AA′

σb
BB′

εABεA′B′ . (3.18)

Using Equation (3.18) and observing that ηab = ηab, it follows that

σa
AA′

= σa
AA′

. (3.19)

Hence, (σa
AA′

) and (σa
AA′) describe Hermitian matrices. An explicit compu-

tation shows that the matrices

(σ0
AA′

) ≡ 1√
2

(
1 0

0 1

)
, (σ1

AA′
) ≡ 1√

2

(
0 1

1 0

)
,

(σ2
AA′

) ≡ 1√
2

(
0 i

−i 0

)
, (σ3

AA′
) ≡ 1√

2

(
1 0

0 −1

)
,

and

(σ0
AA′) ≡ 1√

2

(
1 0

0 1

)
, (σ1

AA′) ≡ 1√
2

(
0 1

1 0

)
,

(σ2
AA′) ≡ 1√

2

(
0 −i

i 1

)
, (σ3

AA′) ≡ 1√
2

(
1 0

0 −1

)
,

satisfy the relations (3.16), (3.17), (3.18) and (3.19). The above matrices

correspond, up to a normalisation factor, to the so-called Pauli matrices .

Now, consider arbitrary v ∈ T |p(M) and α ∈ T ∗|p(M). In terms of the bases

{ea} and {ωa}, v and α can be written as

v = vaea, va ≡ 〈ωa,v〉,
α = αaω

a, αa ≡ 〈α, ea〉.

The components va and αa can be put in correspondence with Hermitian spinors

using the Infeld-van der Waerden symbols via the rules

va �→ vAA′
= vaσa

AA′
, (3.20a)

αa �→ αAA′ = αaσ
a
AA′ . (3.20b)

In terms of arrays of explicit components and matrices one has

(v0, v1, v2, v3) �→ 1√
2

(
v0 + v3 v1 + iv2

v1 − iv2 v0 − v3

)
,

(α0, α1, α2, α3) �→
1√
2

(
α0 + α3 α1 − iα2

α1 + iα2 α0 − α3

)
.

A quick computation shows that

〈α,v〉 = vaαa = vAA′
αAA′

= v00
′
α00′ + v01

′
α01′ + v10

′
α10′ + v11

′
α11′

= v0α0 − v1α1 − v2α2 − v3α3.
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Thus, one has that the assignments defined in (3.20a) and (3.20b) are consistent

with the inner product defined on T |p(M) by the metric g.

The assignment given by (3.20a) and (3.20b) can be extended to tensors of

arbitrary rank. For example, given the tensor Tab
c, denote its components with

respect to {ea} and {ωb} by Tab
c. One then has the assignment

Tab
c �→ TAA′BB′CC′ ≡ σa

AA′σb
BB′σc

CC′
Tab

c.

The object TAA′BB′CC′
will be called the spinorial counterpart of the tensor

components Tab
c.

3.1.10 The spinorial representation of null vectors

As already mentioned in the introduction to this chapter, one of the key

advantages of the use of spinors is the convenient representation of null vectors

they provide. More precisely, one has the following result:

Proposition 3.3 (spinorial counterpart of null vectors) The spinorial

counterpart of a non-vanishing real null vector ka can be written as

kAA′
= ±κAκ̄A′

, (3.21)

for some valence 1 spinor κA.

Proof A direct computation shows that kAA′
as given by Equation (3.21) is

indeed the spinorial counterpart of a null vector. Conversely, a computation

yields

g(k,k) = εABεA′B′kAA′
kBB′

= 2(k00
′
k11

′ − k01
′
k10

′
) = det(kAA′

).

Thus, the requirement g(k,k) = 0 implies that kAA′
, regarded as a (2×2) matrix,

has rows/columns which are linearly dependent. Accordingly, there exist valence

1 spinors κA and λB such that kAA′
= κAλ̄A′

. As, k is non-zero, it follows that

κA, λB �= 0. From the reality of k, it follows that its spinor counterpart kAA′

must be Hermitian; that is, kAA′
= k̄AA′

. Hence, κAλ̄A′
= κ̄A′

λA. Contracting

the latter with κA one has that κAλ
A = 0, so that κA and λA must be

proportional to each other. The proportionality factor can be absorbed into κA

by means of a redefinition of the spinor. The sign in Equation (3.21) is that of

the proportionality constant.

Remark. A null vector constructed using the positive sign in Equation (3.21)

will be said to be future pointing , while one using the negative sign will be

called past pointing .

From Proposition 3.3 it follows that every valence 1 spinor κA defines a null

vector k. However, this is not a one-to-one correspondence. More precisely, a
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spinor differing from κA by a complex phase, that is, eiϑκA, with ϑ ∈ R will give

rise to the same null vector. The phase change is said to be right-handed if

ϑ > 0. This phase does not affect the construction of the vector k. Nevertheless,

it contains some geometric information. To see this, consider a further spinor

μA such that κAμ
A = 1 so that {κA, μA} constitute a spin basis. Now, one can

readily verify that

sAA′ ≡ 1√
2
(κAμ̄A′

+ μAκ̄A′
), tAA′

=
i√
2
(κAμ̄A′ − μAκ̄A′

),

are the spinorial counterparts of two unit spacelike vectors s and t and that they

are both orthogonal to k. At each point p ∈ M, s and t span a subspace of

T |p(M) which is orthogonal to k. This subspace is called the flag of the spinor

κA; the pole of the flag is the vector k.

Now, suppose κA is subject to a phase change such that

κA �→ eiϑκA. (3.22)

In order to retain the normalisation κAμ
A = 1, the transformation (3.22) implies

the transformation μA �→ e−iϑμA. Furthermore, one has that

s �→ cos 2ϑs+ sin 2ϑt, t �→ − sin 2ϑs+ cos 2ϑt,

so that a phase change of ϑ in κA implies a change of 2ϑ in its flag; the flagpole,

however, remains unchanged.

3.1.11 Null tetrads

Inspection of Equation (3.14) shows that every spin basis {o, ι} gives rise to

an associated vector basis consisting of null vectors. This null tetrad has

the peculiarity of consisting of two real null vectors and two complex null

vectors which are the complex conjugates of each other. In order to analyse

this further, let

lAA′ ≡ oAōA
′
, nAA′ ≡ ιAῑA

′
, mAA′ ≡ oAῑA

′
, m̄AA′ ≡ ιAōA

′
.

Furthermore, let la, na, ma and m̄a (or l, n, m, m̄) denote the tensorial

counterparts of the above spinors. Using the above definitions one can verify

that

lan
a = −mam̄

a = 1, (3.23)

while all the other remaining contractions vanish. Using relations (3.11a)–(3.11c)

it can be readily shown that

gab = 2l(anb) − 2m(am̄b), gab = 2l(anb) − 2m(am̄b).
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An orthonormal tetrad {ea} can be readily obtained from the null tetrad

{l, n, m, m̄}. Namely, let

e0 =
1√
2
(l+ n), (3.24a)

e1 =
1√
2
(m+ m̄), (3.24b)

e2 =
i√
2
(m− m̄), (3.24c)

e3 =
1√
2
(l− n). (3.24d)

Using the relations in (3.23) it can be verified that the latter vectors indeed

constitute an orthonormal tetrad. Furthermore, it can be readily checked that

e0 is timelike while e1, e2 and e3 are spacelike. The vector e0 is said to be

future pointing as both l and n are future pointing in the sense of Section 3.1.10.

Moreover, a right-handed phase change (i.e. ϑ > 0) in the spin basis of the form

oA �→ eiϑoA, ιA �→ e−iϑιA leads to the right-handed rotations

e1 �→ cos 2ϑe1 + sin 2ϑe2, e2 �→ − sin 2ϑe1 + cos 2ϑe2,

while at the same time leaving e0 and e3 unchanged. Accordingly, the triad

of spacelike vectors {e1, e2, e3} defined by (3.24b)–(3.24d) is said to be right-

handed. The inverse relations to (3.24a)–(3.24d) are given by

l =
1√
2
(e0 + e3), n =

1√
2
(e0 − e3),

m =
1√
2
(e1 − ie2), m̄ =

1√
2
(e1 + ie2).

The spinorial counterpart of the volume form

The spinorial counterpart of the volume 4-form εabcd is given by

εAA′BB′CC′DD′ = i(εABεCDεA′C′εB′D′ − εACεBDεA′B′εC′D′). (3.25)

Using the Jacobi identity (3.5) it can be verified that the above expression is

indeed totally antisymmetric under interchange of the pairs AA′ , BB′ , CC′ and

DD′ . Moreover, one has

εAA′BB′CC′DD′εAA′BB′CC′DD′
= 24,

and

σ0
AA′

σ1
BB′

σ2
CC′

σ3
DD′

εAA′BB′CC′DD′ = 1;

compare Section 2.5.3. The expression (3.25) can be deduced applying a

decomposition in irreducible components to εAA′BB′CC′DD′ and exploiting its

antisymmetry properties.
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3.1.12 Changes of basis and SL(2,C) transformations

Let {εAA} and {ε̃AA} denote two spin bases for S. The spinors of one basis can

be expressed as linear combinations of the spinors of the other basis. This can

be conveniently be written as

ε̃A
A = ΛA

P εP
A, (3.26)

where (ΛA
P ) denotes an invertible (2×2) matrix. The associated spinor cobases

{εAA} and {ε̃AA} are related in a similar way:

ε̃AA = ΛA
P εPA, (3.27)

where (ΛA
P ) is another invertible (2× 2) matrix. Now, one has that

δA
B = ε̃A

P ε̃BP =
(
ΛA

P εP
Q
) (

ΛB
QεQQ

)
=
(
ΛA

PΛB
Q

)
εP

QεQQ

= ΛA
PΛB

QδP
Q = ΛA

PΛB
P .

Hence, the matrices (ΛA
P ) and (ΛA

P ) are inverses of each other.

Now, given a contravariant valence 1 spinor κA, one can expand it in terms of

the bases {εAA} and {ε̃AA} as

κA = κAεA
A = κ̃Aε̃A

A.

As a consequence of the change of basis (3.26), the coefficients κA and κ̃A are

related to each other via

κ̃A = ΛA
P κP .

Similarly, from the transformation rule (3.27), the components μA and μ̃A of a

valence 1 covariant spinor μA with respect to the spin cobasis {εAA} and {ε̃AA}
can be found to be related via

μ̃A = ΛA
PμP .

The transformation rules given in the previous paragraph can be extended

in a natural way to higher valence spinors and to spinors with primed indices.

For example, if vAA′
and ṽAA′

denote the components of the spinor vAA′
with

respect to the two different sets of bases, one has that

ṽAA′
= ΛA

P Λ̄A′
P ′vPP ′

.

A case of special importance is that of the antisymmetric spinor εAB for which

the transformation rule between bases is given by

ε̃AB = ΛA
PΛB

QεPQ. (3.28)

Earlier in the chapter, the notion of simplectic transformations was intro-

duced. The properties of these transformations can be investigated from

Equation (3.28). As a consequence of the discussion of Section 3.1.7 the matrices
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(εAB) and (ε̃AB) both have the form given by Equation (3.10). It follows from

Equation (3.28) that

det (ε̃AB) =
(
det
(
ΛA

B
))2

det(εAB).

Furthermore as det (ε̃AB) = det(εAB) = 1, one concludes that det
(
ΛA

B
)
= ±1.

Hence, if one restricts attention to the transformations with positive determinant,

one finds that the set of transformations that preserve the antisymmetric product

[[·, ·]] is given by the group SL(2,C).

Relation to the Lorentz transformations

Following the discussion of the previous paragraphs, the components gAA′BB′ of

the spinorial counterpart of the metric transform under a change of spin basis as

g̃AA′BB′ ≡ ε̃AB ε̃A′B′ = ΛA
P Λ̄A′P

′
ΛB

QΛ̄B′Q
′
εPQεP ′Q′ .

Using the Infeld-van der Waerden symbols, the latter can be rewritten as

η̃ab = Λa
cΛb

dηcd,

with

Λa
c ≡ σa

AA′
σc

PP ′ΛA
P Λ̄A′P

′
.

The above expression provides the relation between SL(2,C) and Lorentz

transformations; see, for example, Sexl and Urbantke (2000) for more details.

3.1.13 Soldering forms

The connection between spinors and world tensors has been implemented in

terms of the components with respect to some vector and spin bases. There is a

different perspective of this translation in terms of so-called soldering forms.

The metric tensor g can be written in terms of the orthonormal cobasis {ωa} as

g = ηabω
a ⊗ ωb.

This last expression can be rewritten, using the correspondence (3.18), as

g = εABεA′B′σa
AA′

σb
BB′

ωa ⊗ ωb = εABεA′B′ωAA′ ⊗ ωBB′
, (3.29)

where ωAA′ ≡ σa
AA′

ωa. The four covectors {ωAA′} are called the soldering

forms . In terms of abstract index notation one writes the soldering form as

ωAA′
a. A similar discussion can be made with the contravariant metric g�. From

g� = ηabea ⊗ eb, together with (3.16), one can write

g� = εABεA
′B′

eAA′ ⊗ eBB′ , (3.30)
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where eAA′ ≡ σa
AA′ea. In abstract index notation one would write eAA′a

instead of eAA′ . In view of the above, given a vector v ∈ T |p(M) and a covector

α ∈ T ∗|p(M), one can write

v = vAA′
eAA′ , α = αAA′ωAA′

.

As a final remark concerning the connection between spinors and world tensors,

it is observed that ea = δa
beb. Thus, δa

b can be interpreted as the components

ea
b of the frame vector ea with respect to the frame {ea}. Contracting ea

b with

σb
BB′

one finds

ea
BB′ ≡ ea

bσb
BB′

= σa
BB′

.

3.2 Calculus of spacetime spinors

The discussion of the previous section has been restricted to spinors at a given

point of the spacetime manifold M. It is now assumed that a spinorial structure

can be constructed in a consistent way on the whole of M – the conditions

ensuring this are discussed in Section 3.3, and essentially amount to requiring

the spacetime to be orientable. The spinorial structure over M (also called a

spin bundle) will be denoted by S(M). Consistent with this notation, the

spinorial structure at a point p ∈ M will be denoted by S|p(M).

As is the case with tensors, the idea of relating spinors defined at different

points of the spacetime manifold requires the use of the notion of a connection

and its associated covariant derivative. Thus, it is necessary to extend the

notion of a connection in such a way that it applies to spinor fields. In what

follows, by a spinor field it is understood a smooth assignment of a spinor,

say, ξA···CD′···F ′G···LP ′···N ′
, to each point of the spacetime manifold. The sets

of spinorial fields over M will be denoted in a similar manner to the sets of

spinors at a point, that is, S•(M), SA(M), SA(M), SAA′B(M), and so on.

3.2.1 The spinorial covariant derivative

A spinor covariant derivative ∇AA′ is a map

∇AA′ : SB···C′
D···E′(M) → SB···C′

AD···A′E′(M).

Given an arbitrary spinor ζB···C′
D···E′ , its spinorial covariant derivative will be

denoted by∇AA′ζB···C′
D···E′ . The mapping defined by∇AA′ is required to satisfy

the following properties:

(i) Linearity. Given ζB···C′
D···E′ , ηB···C′

D···E′ ∈ SB···C′
D···E′(M),

∇AA′(ζB···C′
D···E′ + ηB···C′

D···E′) = ∇AA′ζB···C′
D···E′ +∇AA′ηB···C′

D···E′ .
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(ii) Leibnitz rule. Given fields ζB···C′
D···E′ ∈ SB···C′

D···E′(M) and

ξF ···G′
H···I′ ∈ SF ···G′

H···I′(M),

∇AA′(ζB···C′
D···E′ξF ···G′

H···I′) = ξF ···G′
H···I′∇AA′ζB···C′

D···E′

+ ζB···C′
D···E′∇AA′ξF ···G′

H···I′ .

(iii) Hermicity. Given ζB···C′
D···E′ ∈ SB···C′

D···E′(M),

∇AA′ζB···C′
D···E′ = ∇AA′ ζ̄B

′···C
D′···E .

(iv) Action on scalars. Given a scalar φ, then ∇AA′φ is the spinorial

counterpart of ∇aφ.

(v) Representation of derivations. Given a derivation D on spinor fields,

there exists a spinor ξAA′
such that

DζB···C′
D···E′ = ξAA′∇AA′ζB···C′

D···E′ ,

for all ζB···C′
D···E′ ∈ S•(M).

Remark. The above list of properties is more general than the ones given in, say,

Penrose and Rindler (1984) and Stewart (1991), as the present discussion does

not assume that the spinor covariant derivative is compatible with the ε-spinor;

that is, ∇AA′εBC = 0.

For completeness, the following result proved in Penrose and Rindler (1984)

is recalled:

Theorem 3.1 (existence of the spinorial covariant derivative) Every

covariant derivative ∇ over M has a spinorial counterpart ∇AA′ .

3.2.2 Spin connection coefficients

In specific computations, given a spin basis {εAA}, it is convenient to introduce

the notion of the spin connection coefficients associated to a certain

connection. The direct spinorial counterparts of the connection coefficients Γa
c
b

are given after suitable contraction with the Infeld-van der Waerden symbols by

the spinor components

ΓAA′BB′
CC′ ≡ ωBB′

BB′∇AA′eCC′BB′
, (3.31)

where ∇AA′ ≡ eAA′AA′∇AA′ denotes the directional covariant derivative

in the direction of eAA′ . Now, using that

ωBB′
BB′ = εBB ε̄

B′
B′ , eCC′CC′

= εC
C ε̄C′C

′
,

it follows that

ΓAA′BB′
CC′ = εBB ε̄

B′
B′ ε̄C′B

′∇AA′εC
B + εBB ε̄

B′
B′εC

B∇AA′ ε̄C′B
′

= εBBδC′B
′∇AA′εC

B + ε̄B
′
B′δC

B∇AA′ ε̄C′B
′
.
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Hence, defining the spin connection coefficients

ΓAA′BC ≡ εBB∇AA′εC
B , (3.32)

one obtains

ΓAA′BB′
CC′ = ΓAA′BCδC′B

′
+ Γ̄AA′B

′
C′δC

B. (3.33)

Using δC
B = εC

QεBQ, the definition of ΓAA′BC and requiring that

∇AA′δC
B = 0

one also has that

ΓAA′BC = −εC
Q∇AA′εBQ.

The spin connection coefficients provide a way of computing the covariant

derivative of spinors without a tensorial counterpart. Given κA = κAεA
A ∈

SA(M) one has that

∇AA′κB ≡ εB
Q∇AA′κQ

= εB
Q∇AA′(κP εPQ)

= εB
Q
(
eAA′(κP )εPQ + κP∇AA′εPQ

)
= eAA′(κB)− ΓAA′PBκP .

Similar computations show, for example, that

∇AA′ζB = eAA′(ζB) + ΓAA′BP ζP ,

∇AA′ξB′CC′
= eAA′(ξB′CC′

)− Γ̄AA′Q
′
B′ξQ′CC′

+ΓAA′CQξB′QC′
+ Γ̄AA′C

′
Q′ξB′CQ′

.

The generalisation to spinors of arbitrary valence and number of primed indices

can be readily obtained from the above examples.

Metric and Levi-Civita spin connection coefficients

So far, the discussion of the spin connection coefficients has been completely

general. In the present section it is assumed that the connection is metric.

The spinorial counterpart of the metric compatibility condition ∇agbc = 0 is

given by

∇AA′(εBCεB′C′) = εB′C′∇AA′εBC + εBC∇AA′εB′C′ = 0.

Regarding the second equality as a (partial) decomposition in irreducible terms,

one has that

∇AA′εBC = 0, ∇AA′εB′C′ = 0.
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In order to investigate the implications of a metric connection on its associated

spin connection coefficients, it is convenient to compute

∇AA′εBC = eAA′(εBC)− ΓAA′QBεQC − ΓAA′QCεBQ

= − ΓA′A′CB + ΓAA′BC = 0

as eAA′(εBC) = 0; again, the components εBC are constants. Hence, one

concludes that

ΓAA′BC = ΓAA′(BC).

3.2.3 Spinorial curvature

The spinorial counterpart of the curvature tensors can be introduced in a natural

way by looking at the commutator of spinorial covariant derivatives. More

precisely, one can write

�∇AA′ ,∇BB′�ξCC′
= RCC′

PP ′AA′BB′ξPP ′
(3.34)

with

�∇AA′ ,∇BB′� ≡ ∇AA′∇BB′ −∇BB′∇AA′ − ΣAA′PP ′
BB′∇PP ′ ,

consistent with the notation of Section 2.4.3 and with ΣAA′CC′
BB′ represent-

ing the spinorial counterpart of the torsion tensor of ∇. The spinor

RCC′
DD′AA′BB′ is the spinorial counterpart of the Riemann curvature

tensor Rc
dab. In the following discussion it is assumed that the connection ∇

is completely general – in particular, it could have torsion and be non-metric,

so that ∇AA′εBC �= 0. As a consequence, the curvature spinor has only the

symmetry

RCC′
DD′AA′BB′ = −RCC′

DD′BB′AA′ .

The curvature spinor in terms of the spin connection coefficients

In order to obtain a simpler representation of the curvature spinor it is convenient

to look first at its expression in terms of spin connection coefficients. To this

end, one can consider the frame expression (2.31) for the Riemann tensor, and

contract it with the Infeld-van der Waerden symbols. One readily obtains

RCC′
DD′AA′BB′ = eAA′(ΓBB′CC′

DD′)− eBB′(ΓAA′CC′
DD′)

+ΓFF ′CC′
DD′ΓBB′FF ′

AA′ − ΓFF ′CC′
DD′ΓAA′FF ′

BB′

+ΓBB′FF ′
DD′ΓAA′CC′

FF ′ − ΓAA′FF ′
DD′ΓBB′CC′

FF ′

−ΣAA′FF ′
BB′ΓFF ′CC′

DD′ .

https://doi.org/10.1017/9781009291347.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.005


3.2 Calculus of spacetime spinors 85

Now, making use of the decomposition (3.32) for the spin connection coefficients,

one obtains after a lengthy, but straightforward calculation that

RCC′
DD′AA′BB′ = RC

DAA′BB′δD′C
′
+ R̄C′

D′AA′BB′δD
C , (3.35)

where

RC
DAA′BB′ ≡ eAA′(ΓBB′CD)− eBB′(ΓAA′CD)

−ΓFB′CDΓAA′FB − ΓBF ′CDΓ̄AA′F
′
B′ + ΓFA′CDΓBB′FA

+ΓAF ′CDΓ̄BB′F
′
A′ + ΓAA′CFΓBB′FD − ΓBB′CFΓAA′FD

−ΣAA′FF ′
BB′ΓFF ′CD.

This last expression can be regarded as the spinorial counterpart of the first

Cartan structure equation; see Equation (2.31).

The commutator of covariant derivatives on arbitrary spinors

The commutator expression (3.34) applies only to spinors arising from a tensorial

counterpart. In this section this commutator expression is applied to arbitrary

valence spinors. In order to do this, observe that Equation (3.35) also holds if

expressed in terms of abstract spinorial indices. More precisely, one has that

RCC′
DD′AA′BB′ = RC

DAA′BB′δD′C
′
+ R̄C′

D′AA′BB′δD
C , (3.36)

where, in general RCDAA′BB′ �= R(CD)AA′BB′ .

Applying the commutator (3.34) to the particular case when ξCC′
= εD

CεD′C
′

one obtains, after taking into account the split (3.36), that

εD′C
′
�∇AA′ ,∇BB′�εD

C + εD
C�∇AA′ ,∇BB′�εD′C

′

= εD′C
′
RC

DAA′BB′εD
D + εD

CR̄C′
D′AA′BB′εD′D

′
.

From the latter one can conclude that

�∇AA′ ,∇BB′�εD
C = RC

QAA′BB′εD
Q,

�∇AA′ ,∇BB′�εD′C
′
= R̄C′

Q′AA′BB′εD′Q
′
.

Now, using that εP
CεQC = δP

Q, and that �∇AA′ ,∇BB′�δP
Q = 0, one finds that

εP
C�∇AA′ ,∇BB′�εQC = −εQC�∇AA′ ,∇BB′�εP

C (3.37a)

= −εQCR
C
DAA′BB′εP

D. (3.37b)

Multiplying the previous expression by εPD and using that εPDεP
C = δD

C one

obtains

δD
C�∇AA′ ,∇BB′�εQC = −εQCR

C
QAA′BB′δD

Q.
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Finally, using that �∇AA′ ,∇BB′�δD
C = 0, one concludes that

�∇AA′ ,∇BB′�εQD = −RC
DAA′BB′εQC . (3.38)

A similar argument applied to primed basis spinors yields

�∇AA′ ,∇BB′�εQ
′
D′ = −R̄C′

D′AA′BB′εQ
′
C′ . (3.39)

Now, using that �∇AA′ ,∇BB′� applied to a scalar is zero, one has that

Equations (3.37a), (3.37b), (3.38) and (3.39) render the following formulae for

arbitrary valence 1 spinors:

�∇AA′ ,∇BB′�μC = RC
QAA′BB′μQ, (3.40a)

�∇AA′ ,∇BB′�λ̄C′
= R̄C′

Q′AA′BB′ λ̄Q′
, (3.40b)

�∇AA′ ,∇BB′�κC = −RQ
CAA′BB′κQ, (3.40c)

�∇AA′ ,∇BB′�ν̄C′ = −R̄Q′
C′AA′BB′ ν̄Q′ . (3.40d)

The extension to higher valence spinors follows from the Leibnitz rule. For

example, one has that

�∇AA′ ,∇BB′�ξCD
E′

= −RQ
CAA′BB′ξQD

E′ −RQ
DAA′BB′ξCQ

E′

+R̄E′
Q′AA′BB′ξCD

Q′
.

3.2.4 Decomposition of a general curvature spinor

Expression (3.36) is a convenient starting point to analyse the decomposition of

the curvature spinor in terms of irreducible components. Lowering the index pair

CC′ using the ε-spinor one obtains:

RCC′DD′AA′BB′ = RCDAA′BB′εD′C′ + R̄C′D′AA′BB′εDC

= −RCDAA′BB′εC′D′ − R̄C′D′AA′BB′εCD. (3.41)

For the curvature spinor of a general connection one has that RCDAA′BB′ �=
R(CD)AA′BB′ . However, one still has that

RCDAA′BB′ = −RCDBB′AA′ .

This antisymmetry can be exploited using the split (3.13) in such a way that the

indices CD are not touched. Accordingly, one obtains

RCDAA′BB′ = XCDABεA′B′ + YCDA′B′εAB , (3.42)

where

XCDAB = XCD(AB) ≡
1

2
RCDAQ′B

Q′
,

YCDA′B′ = YCD(A′B′) ≡
1

2
RCDA′QB′Q.
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To complete the decomposition of the curvature spinor in irreducible components

one can apply the decomposition formulae (3.8) and (3.12) for valence 4 spinors

toXCDAB and YCDA′B′ . This idea will not be pursued any further here. However,

it will be convenient to single out certain components of the decomposition in

irreducible terms of XCDAB . It is conventional to set

ΨABCD ≡ X(ABCD), Λ ≡ 1

6
XPQ

PQ.

Let CCC′DD′AA′BB′ denote the spinor obtained from the split (3.41) of the

curvature spinor by setting XABCD = X(ABCD) and YCDA′B′ = 0. One has that

CCC′DD′AA′BB′ = −ΨABCDεA′B′εC′D′ − Ψ̄A′B′C′D′εABεCD. (3.43)

As a consequence of the total symmetry of ΨABCD it can be readily verified that

CCC′DD′AA′BB′ is the spinorial counterpart of a trace-free tensor. Following the

discussion in Section 2.5.2, it must be the spinorial counterpart of the Weyl

tensor Ccdab.

Decomposition of the curvature spinor of a torsion-free connection

The decomposition of the curvature spinor is now particularised to the case

of a torsion-free connection. In this case, the Riemann curvature tensor has

the cyclic symmetry of the Bianchi identity. The latter is best exploited using

the alternative expression of the identity given by Equation (2.23) involving the

right-dual of the Riemann tensor. Using the spinorial counterpart of the volume

form given by Equation (3.25) one has that

R∗
AA′BB′CC′DD′ =

i

2
(δC

EδD
F δC′F

′
δD′E

′ − δC
F δD

EδC′E
′
δD′F

′
)RAA′BB′EE′FF ′

= iRAA′BB′CD′DC′ ,

so that the spinorial counterpart of Equation (2.23) is given by

RCC′QQ′A
Q′Q

A′ = 0.

A direct evaluation of the above condition using the splits (3.41) and (3.42)

shows that

XCQA
QεC′A′ − X̄C′Q′A′Q

′
εCA + YCAC′A′ − ȲC′A′AC = 0,

so that

XPQ
PQ = X̄PQ

PQ, ȲC′A′AC = YCAC′A′ .

Hence, one has that XPQ
PQ (i.e. Λ) is a real scalar, while YABA′B′ is a Hermitian

tensor, and, thus, it is the spinorial counterpart of a rank 2 tensor.
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Decomposition on the curvature spinor of a metric connection

As already seen, a connection which is compatible with a metric g satisfies

∇AA′εCD = 0. It follows then that �∇AA′ ,∇BB′�εCD = 0. However, one also

has that

�∇AA′ ,∇BB′�εCD = −RQ
CAA′BB′εQD +RQ

DAA′BB′εCQ,

from which one concludes that

RCDAA′BB′ = R(CD)AA′BB′ .

The latter can be reexpressed in terms of the following symmetries of the spinors

XABCD and YABA′B′ :

XABCD = X(AB)CD, YABA′B′ = Y(AB)A′B′ .

Decomposition of the curvature spinor of a Levi-Civita connection

Finally, one can collect the results of the previous subsections to obtain the well-

known irreducible decomposition of the spinorial counterpart of the Riemann

tensor of a Levi-Civita connection. As the Levi-Civita connection associated to

the metric g is both torsion-free and metric, it follows then that

XABCD = X(AB)(CD), XCQA
Q = 0.

It follows from (3.8) that XABCD = XCDAB and that

XABCD = X(ABCD) −
1

3
εA(CεD)BXPQ

PQ

= ΨABCD + Λ(εDBεCA + εCBεDA).

Similarly, for YABA′B′ one has that

YABA′B′ = Y(AB)(A′B′),

so that according to the general split (3.12) YABA′B′ corresponds to a trace-free

rank 2 tensor.

To conclude the analysis, it is convenient to compute the Ricci tensor and

scalar in terms of the spinors XABCD and YABA′B′ . From Equations (3.41) and

(3.42) it follows directly that

RAA′BB′ = −XQA
Q
BεA′B′ − X̄Q′A′Q

′
B′εAB + 2YABA′B′

R = −4XPQ
PQ,

where RAA′BB′ denotes the spinorial counterpart of the Ricci tensor Rab

and it has been used that for a Levi-Civita connection YABA′B′ = ȲA′B′AB and

XPQ
PQ = X̄P ′Q′P

′Q′
. In particular, one has that

R = −24Λ.
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As YABA′B′ is trace-free, it has to be related to Φab, the symmetric trace-free

part of the Ricci tensor. Indeed, a calculation for its spinorial counterpart shows

that

2ΦABA′B′ ≡ RAA′BB′ − 1

4
RεABεA′B′

= 2YABA′B′ .

It can be verified that ΦABA′B′ satisfies the symmetries

ΦABA′B′ = ΦBAA′B′ = ΦABB′A′ = ΦBAB′A′ . (3.44)

Putting together the discussion of this section, one finds that the spinor

counterpart of the Riemann curvature tensor of a Levi-Civita connection can

be decomposed as

RAA′BB′CC′DD′ = −εA′B′εC′D′(ΨABCD + 2ΛεA(CεD)B)

−εABεCD(Ψ̄A′B′C′D′ + 2ΛεA′(C′εD′)B′)

+εA′B′εCDΦABC′D′ + εABεC′D′ΦCDA′B′ .

Working back from this expression one can recover the decomposition of

the Riemann tensor in terms of the Weyl and Schouten tensor given in

Equations (2.21a) and (2.21b).

3.2.5 The �AB-operator

In some applications it is convenient to have a more explicit expression for the

commutator of spinorial covariant derivatives. In the remainder of this section it

is assumed that ∇AA′ is the spinorial counterpart of a Levi-Civita connection.

Exploiting the antisymmetry of Equation (3.40a) with respect to the pairs AA′

and BB′ one can rewrite it as(
εA′B′�AB + εAB�A′B′)μC = RC

QAA′BB′μQ, (3.45)

where

�AB ≡ ∇Q′(A∇B)
Q′
, �A′B′ ≡ ∇Q(A′∇Q

B′).

It can be verified that both �AB and �A′B′ are linear and satisfy the Leibnitz

rule – one has, for example, that

�AB(μCλ
D) = (�ABμC)λ

D + μC(�ABλ
D).

Defining the D’Alembertian operator as � ≡ ∇PP ′∇PP ′
, one obtains the

decomposition

∇AQ′∇B
Q′

=
1

2
εAB�+�AB .
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Now, contracting indices suitably in Equation (3.45) one readily obtains

�ABμ
C = XC

QABμ
Q, �A′B′μC = Y C

QA′B′μQ.

Using the explicit expressions for the curvature spinors XABCD and YABA′B′ for

a Levi-Civita connection, as given in Section 3.2.4 one concludes that

�ABμC = ΨABCDμD − 2Λμ(AεB)C , �A′B′μC = ΦCDA′B′μD. (3.46)

The above expressions can be extended to higher order valence spinors by means

of the Leibnitz rule.

The expressions in (3.46) can be extended to the case of connections with

torsion; see Penrose (1983) for the general theory and Gaspeŕın and Valiente

Kroon (2015) for explicit expressions and applications.

3.3 Global considerations

The discussion on null vectors and their flagpoles in Section 3.1.10 makes a

natural connection with the notion of orientability and the assumptions needed

to ensure the existence of spinorial structures on a region of spacetime.

As seen in Proposition 3.3, every non-vanishing null vector is either future

pointing or past pointing, in accordance with the choice of sign made in

Equation (3.21). Thus, the existence of spinors on a region of spacetime provides

a way to define a time orientation. In a similar way, the idea of a right-handed

phase change of a triad of orthonormal vectors {e1, e2, e3}, as discussed in

Section 3.1.10, can be used to define a notion of space orientation. Thus, at least

at an intuitive level, the existence of a spinorial structure over a spacetime seems

to imply that the spacetime is time orientable and space orientable. It turns out

that the converse is also true: time and space orientability ensure the existence

of a spinorial structure. More precisely, one has the following result proved in

Geroch (1968):

Theorem 3.2 (orientability and the existence of a spinor structure) A

non-compact spacetime (M, g) has a spinor structure if and only if there exists

on M a global system of orthonormal tetrads.

Part IV of this book will be concerned with the construction of spacetimes from

suitably posed initial value problems. Thus, it is convenient to have a criterion

to encode the existence of a spinorial structure in an initial value problem.

An example of this is the following result in Geroch (1970c):

Proposition 3.4 (global hyperbolicity and the existence of a spinor

structure) Every globally hyperbolic spacetime has a spinor structure.

The notion of global hyperbolicity is discussed in Section 14.1.
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An orientable spacetime may have several spinorial structures. One can ensure

uniqueness of the spinorial structure if one restricts further the topology of the

spacetime. More precisely, one has that (see Geroch (1968)):

Proposition 3.5 (uniqueness of the spinorial structure) The spinorial

structure of a spacetime is unique if and only if M is simply connected.

3.4 Further reading

Further details on the various topics covered in the present chapter can be

found in Penrose and Rindler (1984), Stewart (1991) and O’Donnell (2003). The

discussion in these references leads, in a natural way, to the Newman-Penrose

formalism and applications like the Petrov algebraic classification of the Weyl

tensor. Some discussion on the use of spinors in the construction and analysis

of exact solutions to the Einstein field equations can be found in Stephani et al.

(2003) and Griffiths and Podolský (2009). The relation between Dirac spinors

and 2-spinors is presented in Penrose and Rindler (1984) and Stewart (1991).

A pure mathematics perspective can be found, for example, in Petersen (1991);

see also Choquet-Bruhat et al. (1982).

A more general perspective of the discussion of the present chapter can be

obtained by making use of the notion of fibre bundles ; see, for example, Ashtekar

et al. (1982). In terms of this language, the spinorial structure arises as a principal

fibre bundle over the spacetime manifold M with structure group SL(2,C).

This point of view is convenient for computer algebra implementations; see,

for example, Mart́ın-Garćıa (2014). The fibre bundles are useful in analyses that

require the blowing up of particular points of spacetime – as in the analysis

of caustics in Friedrich and Stewart (1983) or the so-called problem of spatial

infinity of Friedrich (1998c).

Appendix: the Newman-Penrose formalism

The idea of a spinor-based null tetrad formalism was introduced in the seminal

article by Newman and Penrose (1962); see also Newman and Penrose (1963).

This so-called Newman-Penrose (NP) formalism was first used as a way

of analysing the asymptotics of gravitational radiation. The potential of the

formalism to obtain exact solutions to the Einstein field equations, in particular,

ones having an algebraically special Weyl tensor, was quickly realised; see,

for example, Stephani et al. (2003) for an entry point to the literature of

exact solutions. Refinements of the formalism which are adapted to specific

configurations or types of problems are available in the literature, most noticeably

Geroch et al. (1973); see also Machado and Vickers (1995, 1996).

The key aspects of a generic spinor-based null tetrad formalism have already

been covered in this book. One of the peculiarities of the formalism, as introduced

in Newman and Penrose (1962), is the use of specific symbols to denote
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directional derivatives and the spin coefficients. This notation will not be used

in this book as the Newman-Penrose (NP) formalism assumes, from the onset, a

Levi-Civita connection. However, the discussion in this book will very often use

more general connections. Hence, one has more independent spin coefficients.

Moreover, the labelling of spin coefficients through indices lends itself better

for a systematic analysis of the properties of the relevant equations. Additional

difficulties with the NP formalism arise with the space spinor formalism; see the

next chapter.

The purpose of this appendix is to provide a guide to the translation, whenever

possible, between NP objects and the ones used in this book.

The directional derivatives

Let {o, ι} denote, as usual, a spin basis. Also, let {l,n,m, m̄} denote the null

tetrad constructed from the spin basis, as described in Section 3.1.9. The NP

convention for the directional derivatives along the directions given by the null

tetrad is

D ≡ la∇a = oAōA
′∇AA′ = ∇00′ ,

Δ ≡ na∇a = ιAῑA
′∇AA′ = ∇11′ ,

δ ≡ ma∇a = oAῑA
′∇AA′ = ∇01′ ,

δ̄ ≡ m̄a∇a = ιAōA
′∇AA′ = ∇10′ .

The spin coefficients

In what follows, it is assumed that the connection ∇ is Levi-Civita so that

∇AA′εBC = 0. The NP convention for the spin coefficients of ∇ is given by:

ε = Γ00′00 = −Γ00′11 = Γ00′10,

α = Γ10′00 = −Γ10′11 = Γ10′10,

β = Γ01′00 = −Γ01′11 = Γ01′10,

γ = Γ11′00 = −Γ11′11 = Γ11′10,

π = Γ00′01 = Γ00′11, κ = −Γ00′10 = Γ00′00,

λ = Γ10′01 = Γ10′11, ρ = −Γ10′10 = Γ10′00,

μ = Γ01′01 = Γ01′11, σ = −Γ01′10 = Γ01′00,

ν = Γ11′01 = Γ11′11, τ = −Γ11′10 = Γ11′00.

The above spin coefficients can be expressed entirely in terms of the directional

derivativesD, Δ, δ, δ̄ applied to the null frame vectors or, alternatively, applied to

the spin basis {o, ι}. See O’Donnell (2003) and Stewart (1991) for details on this.

Explicit expressions of the spin coefficients in terms of curls (antisymmetrised

derivatives) have been worked out in Cocke (1989).
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The Ricci and Weyl tensors

The NP conventions to denote the components of the Weyl spinor ΨABCD with

respect to {o, ι} are:

Ψ0 ≡ ΨABCDoAoBoCoD, Ψ1 ≡ ΨABCDoAoBoCιD, Ψ2 ≡ ΨABCDoAoBιCιD,

Ψ3 ≡ ΨABCDoAιBιCιD, Ψ4 ≡ ΨABCDιAιBιCιD.

The conventions for the components of the trace-free Ricci spinor ΦAA′BB′ are:

Φ00 ≡ ΦAA′BB′oAoB ōA
′
ōB

′
, Φ01 ≡ ΦAA′BB′oAoB ōA

′
ῑB

′
,

Φ02 ≡ ΦAA′BB′oAoB ῑA
′
ῑB

′
, Φ10 ≡ ΦAA′BB′oAιB ōA

′
ōB

′
,

Φ11 ≡ ΦAA′BB′oAιB ōA
′
ῑB

′
, Φ12 ≡ ΦAA′BB′oAιB ῑA

′
ῑB

′
,

Φ20 ≡ ΦAA′BB′ιAιB ōA
′
ōB

′
, Φ21 ≡ ΦAA′BB′ιAιB ōA

′
ῑB

′
,

Φ22 ≡ ΦAA′BB′ιAιB ῑA
′
ῑB

′
.

Notice that in both lists of definitions the value of the index denotes the number

of contractions with the spinor ι.

The NP formalism makes use of the symbol Λ to denote a multiple of the trace

of the Ricci tensor. The relation to the Ricci scalar is

R = −24Λ.

The Newman-Penrose field equations

Newman and Penrose (1962) provided explicit expressions of the Ricci and the

Bianchi identities in terms of their notation for the spin connection coefficients

and the components of ΨABCD and ΦAA′BB′ . These equations are collectively

called the Newman-Penrose field equations. Explicit expressions are available

in O’Donnell (2003), Penrose and Rindler (1986) and Stewart (1991). Besides

the NP field equations, the formalism consists also of explicit expressions for the

commutators of the directional derivatives D, Δ, δ, δ̄. Expressions for the source-

free Maxwell equations are available in the literature as well; see, for example,

the appendix in Stewart (1991).
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