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ON WEIGHTED SOBOLEV SPACES 

SENG-KEE CHUA 

ABSTRACT. We study density and extension problems for weighted Sobolev spaces 
on bounded (e, 8) domains (D when a doubling weight w satisfies the weighted Poincare 
inequality on cubes near the boundary of (D and when it is in the Muckenhoupt Ap class 
locally in <D. Moreover, when the weights W/(JC) are of the form dist(*, M/)a', a, G IR, 
Mi C (D that are doubling, we are able to obtain some extension theorems on (e, oo) 
domains. 

1. Introduction. Recently there has been quite a number of works related to 
weighted Sobolev spaces. For example, Kufher [23] studied various properties of 
weighted Sobolev spaces on certain domains *D for weights arising from dist(-,M) 
with M c a f t Also, Brown and Hinton [2], [3], [4] and Gutierrez and Wheeden [20] 
obtained weighted Sobolev interpolation inequalities. Meanwhile, the author [9], [11], 
[13] has studied the extension and restriction problems on weighted Sobolev spaces. In 
this paper, we would like to improve some results in [9]. Namely, we will study density 
problems and extension problems on weighted Sobolev spaces. Note that some of our 
results overlap some of those in [23] and [17]. 

By a weight w, we mean a non-negative locally integrable function on Rn. By abusing 
notation, we will also write w for the measure induced by w. Sometimes we write dw 
to denote wdx. We always assume w is doubling, by which we mean w(2Q) < Cw(Q) 
for every cube Q, where 2Q denotes the cube with the same center as Q and twice its 
edgelength. All cubes in this paper are assumed to be closed and with edges parallel to 
the axes. By w E Ap, we mean w satisfies the Muckenhoupt^ condition, i.e., 

TJ-(J wdxYP(J w-l'(p~l)dx\lP <C when \<p<oo, and 

1 r 
7—T / w(x)dx < Cessinf w(x) whenp = 1, 
|fi| k ~ xeQ 

for all cubes Q in W. Note that w is doubling when it is in Ap. Moreover, when (D is an 
open set, we will write w G AX™CD) if for any cube Q$ C (D, there exists CQ0 > 0 such 
that 

ipMQnQO^/PU^Q0
 w^l(x)dx) P < cQo w h e n 1 < P < oo, and 
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r—i < Cnn essinf w(x) when/? = 1, 
\Q\ " ^xEQDQo W F 

for all cubes Q in IT.1 

Let (D be an open set in Rn. If a is a multi-index, a = (a\, a 2 , . . . , an) G Z+, we will 
denote £"=1 ay by |a| and Da = ( ^ ) a i • • • ( ^ ) a « . By a > /3, we mean a, > # for all 
1 <j<n. Moreover we write a > f3 if a > /? and a ^ /3. We denote by V the vector 
(a!"' alT' * * •' a!") an(^ ^Y ̂ m ^ e v e c t o r of aH possible m//j order derivatives for m G N. 
A locally integrable function/ on © (we will write/ G 1^(2))) has a weak derivative 
of order a if there is a locally integrable function (denoted by Daf) such that 

jj(Da^)dx = ( - l )H /^(Z>7)¥><& 

for all C°° functions </> with compact support in 2) (we will write <p G CQ°(2))). 

If 1 < p < oo, /?' is always equal to p/(p—I) and/?7 = oo when/? = l.Q will always 
be a cube and / ( 0 will be its edgelength. Following [22], we say that two cubes touch 
if a face of one cube is contained in a face of the other. For 1 < p < oo, k G N, and any 
weight w,Lp

wkCD) and Ep
wk((D) are the spaces of functions having weak derivatives of 

all orders a, \a\ <k, and satisfying 

0<|cr|<* 0<|a|<*V ^ 7 

and 

\n*km=T,\\irAiua)<oo 
\a\=k 

respectively. Moreover, in the case when w = 1, we will denote Lp
wk((D) and £^ (2 ) ) 

by Lp
kCD) and #£(£>) respectively. Also, let BPW^D) be the factor space &^{<B)l<£k_x 

where % is the subspace of polynomials of degree not greater than /. B y / G Z£ t loc(2)), 
we mean/ G Z£, ^AT0) for all compact sets K in 2). 

Let 2) be an open connected set. It is easy to see that Lp
w k((D) is a Banach space when 

W~1/P G tf^CD) [17]. Moreover, the author [9] prove that Ep
wk((D) is a Banach space 

when w G Ap. Note that it is just a weighted version of Theorem 1.1.13.1 in [26]. We 
will show that indeed the following is true. 

THEOREM 1.1. Let 1 < p < oo and let w be a doubling weight. Ifw~xlp G L^tfD) 
f/ze« f̂  ^(2)) w a Banach space for any connected open set 2). 

DEFINITION 1.2. An open set 2) is an (e,<5) domain if for all x,y G 2), |JC — y\ < 8, 
there exists a rectifiable curve 7 connecting x,y such that 7 lies in 2) and 

(1.1) /(7) < ^ ^ i 

Note that w G ^ o c(^)) =» w G A* for all compact sets Kc<Din the notation of Wolff [35]. 
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(1.2) d^V)>AX~A{y;A VzG7. 
\x-y\ 

Here 1(1) is the length of 7 and d(z, d *D) is the distance between z and the boundary 
of 2). Moreover, we will write d(Q,S) = mfxEQiyes\x — y\, d(Q) = d(Q,d*D) and 
d(z) = d({z},d<D). 

In 1981, P. Jones [22] extended a famous extension theorem on Lipschitz domains to 
(e,8) domains. 

THEOREM 1.3. IfD is a connected (e,8) domain and 1 < p < oo, then C°°(IRn) n 
Lp

kCD) is dense in LPCD) and Lp
kCD) has a bounded extension operator. Moreover the 

norm of the extension operator depends only on e, 5, k, p, rad(2)), and the dimension n. 

Furthermore he proved that 

THEOREM 1.4. If*D is an (e, oo) domain in W1, then L7[CD) has a bounded extension 
operator, i.e., there exists A:iSjf(2)) —» E[(^P) such that A/1© = / ae- and ||A|| is 
bounded. 

Recently, the author extended Theorems 1.3 and 1.4 to weighted Sobolev spaces when 
the weight is in Ap [9]. In this paper, we will extend these results further by relaxing the 
Ap assumption on the weight w to the following conditions on a bounded (e, 6) domain 
2): 

w is doubling on R", w G Al^((D) 
w satisfies a local Poincare inequality on 2). 

Indeed, we prove that 

THEOREM 1.5. Let (D be a bounded (s,8) domain. Let 1 < p < oo and let w be a 
doubling weight such that w G A1™ ((D). Suppose further that 

(1.3) W-IQAL^Q) < C(A)l(Q)\\W\yw{Q) V/ G Lp
wlM(<D) 

for all cubes Q C 2) near d <D such that Ad(Q) < l(Q) < d(Q)/A, A > 0 where 
/Q,™ = S()fdw/w(Q). Then given anyf G I?w k(*D) (resp. Ep

w k((D)) and 77 > 0, there exists 
ft! G C°°(Rn) such that 

Wf-fA^m < i (™P- \\^k(f-fri)\km < i). 

Moreover, with the help of [ 11, Theorems 1.1 and 1.2] and the previous theorem, we 
show that: 

THEOREM 1.6. Let <Dbea bounded (e, 6) domain. Let 1 < p < oo and w a doubling 
weight. Ifw G A^CD), w~llp G L^JtW1) and (3.3) holds, then there exists an extension 
operator A on Lp

w k(*D) such that 
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Moreover, if in addition that (D is a bounded'(e, oo) domain, then there exists an extension 
operator A' on Ep

w k((D) such that 

I I V ' A ' / I I ^ < C\\Vkf\\LPwm. 

REMARK 1.7. (a) Let M c d 2) and 1 < p < oo. It is easy to see that if w(x) = 
dist(jc, M)a, a G R, then it follows from the non-weighted Poincare inequality that 

(1.4) r-/elk(0 < ci(0l|v/||C(e) v/Gi£liloc(0) 
for all cubes Q with / ( 0 comparable to d{Q). Moreover, it is clear that w G A^^D). 
Hence it follows from Theorem 1.5 that C°°(Wl)r\Lp

wk(
(D) is dense in Z/^(£>) when 

w(x) = dist(x, M)a is doubling (note that (1.4) implies (1.3)). Thus when w is doubling 
and (D is a bounded (e, 5) domain, we obtain those density theorems in [23]. 

(b) Furthermore, if w{x) = s(dist(x, M)) where s is a positive and continuous function 
on positive real numbers that satisfies certain properties described in Kufher [23] or [17], 
similar conclusion can be obtained by Theorem 1.5 if we know that w is doubling. 

(c) We do not know exactly when will the weights w defined as above will be 
doubling. However, in the case that M is just a finite subset of d (D, it is easy to see that 
dist(jc, M)a is doubling if and only if a > —n. For more details, refer to [15]. 

REMARK 1.8. (a) Let w be as in Remark 1.7. If in addition that w~xlp G L^JW1), 
then we can apply Theorem 1.6 to get extension operator for Lp

wk((D) or Ep
wk((D). This 

overlaps some results in [17]. 
(b) The assumption that w~xlp G L^W1) in Theorem 1.6 is somewhat too strong. 

Indeed, we need only to assume that w~xlp G LP ((D). For the details, see [10]. Note that 
when (D is a bounded (e, oo) domain, w G ^((D) and (3.3) holds, it follows from [14, 
Corollary 1.5] that/ G Ep

wk(
tD) if and only if/ G 1^(2)). 

Finally, when the weights are of the form as in Remark 1.7(a), we are able to obtain 
extension theorems similar to Theorems 1.4 and 1.5 in [9]; see Remark 4.3. 

ACKNOWLEDGEMENT. The author is grateful to the reviewer for his suggestions to 
improve the presentation of the paper and the proof of Lemma 2.5. 

2. Preliminaries. In what follows, C denotes various positive constants, they may 
differ even in a same string of estimates. Moreover, sometimes, we will use C(a, /?,...) 
instead of C to emphasize that the constant is depending on a, / 3 , . . . . Following [22], 
we say that two cubes touch if a face of one cube is contained in a face of the other. In 
particular, the union of two touching cubes of equal size is a rectangle. 

First, let us state a theorem on polynomials. 

THEOREM 2.1 ([9, LEMMA 2.3]). LetF, Q be cubes such thatF c Q and \F\ > l\Q\. 
Ifw is a doubling weight, 1 < q < oo, andp is a polynomial of degree m, then 

(w(E)\l/q 

\\p\\iUE)<cV'mW\^) WPWLKF) 

for all measurable sets E C Q. 
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Next, the following lemma is indeed a special case of a result in [12]. 

LEMMA 2.2 ([12, THEOREM 2.1]). Letf be a measurable function on W and let w 
be a doubling weight. Also, let 1 < p < oo, k G N and L > 0. For each cube Q 
in W1, let a(f, Q) be a polynomial of degree k associated to f on Qfor each cube Q. 
Suppose that {£?/}/=o *s a sequence of cubes such that Qt Pi Qi+\ contains a cube Q with 
\0\ > Zmax{|G|, \Qm\}Meach i = 0 , 1 , . . . , / - 1. Then 

(2.1) \\f-a<fM\iUQ,) ^ CE\\f-*(f,Qi)\k(Qi) 
i 

where C depends only on L, I, w, k, p and the dimension n. 

PROOF OF THEOREM 1.1. We will modify the proof of [26, Theorem 1.1.13.1 ] and 
[9, Theorem 4.9]. 

Let Qo be a Whitney cube in (D and let {Q/} be a sequence of open connected sets 
which are the interiors of finite unions of touching Whitney cubes of *D (when (D = Rn, 
just take {Q/} be a sequence of nested cubes) such that Qo C Q/, Q,- C Q,+i, |J/ ^ / = ®-

Given any Cauchy sequence {UJ} C EFW ̂ (2>), and any cube Q in £>, let P(Q, Uj) be the 
unique polynomial of degree < k such that JQD^(UJ — P(Q, uj)) dx = 0 for all |/?| < k. 
Since 

pf>(uj - «, - P(Q, uj - «,)) | | i l ( 0 = y(uj - «, - (P(Q, uj) - P(Q,«/))) | i l ( 0 

<C1(0H/3| | |V*(M , -K,) | | i l ( e ) 

for all cubes Q in (D by the unweighted Poincare inequality, we have if /y = P(Qo, Uj), 

\\rf(uj - II, - (Pj - P/))| i I (Q() < c(Q,)||V*(ti/ - « , ) | | m ) 

< C(Q,)||V*(My - m)\\Iu0l)\\»r1/p\\i/l0l) 

<QQi)||V*(«y-«/)lliC(ft), 

by the previous lemma, the Holder inequality and the assumption on w. Hence if v7 = 
Uj — Pj, then {D^Vj} is a Cauchy sequence in Ll(Qi) for any i and |/?| < k. Thus 
it follows that for each / and (3 with \0\ < k, there exists h^p G /^(Q;) such that 
\\D^Vj - hifi\\Li(ni) —> 0 asy —> oo. (When |/?| = A:, clearly there exists hp G LPW((D) such 
that \\D&Vj — hp\\L^^ —> 0 as IfJ^D) is complete.) Using subsequences, it is clear that 
hi+\,p = /*/,/? a.e. on Q,-. If we define /^ on (D by setting ///? = h^p on Q„ it follows that for 
each compact set K C <D we have hp G Z,1^) and D^vj —> /^ in I 1 (AT) for all |/3| < A: 
(for |/?| = A:, just use the Holder inequality and the fact that w~xlp G 1^.(0)). Thus if 
<p G Q°(2)), then (let us write hp as /* when /3 = 0) 

fhDPtpdx=1im [vjD^dx=\im(-lf\ Ulfvj)<pdx = (-\p fh^dx. 
J fJj j—>oo J V j—>oo J V J V 

Hence D$ h = hp exists. Moreover Dah = \imDaUj when |cr| = k since LFUJ = DaVj. This 
completes the proof of the theorem. 
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COROLLARY 2.3. Let *D be an open connected set, let {uj} be a Cauchy sequence in 
Ep

w k((D) and let u be a function in Ep
w k{(D) such that 

\\Wk{uj-u)\\K(q))^0. 

Then there exists a sequence of polynomials {Pj} of degree < k with uj — Pj —> u in 
Ll (K)for all compact sets K in *D. 

PROOF. By the previous proof, we know v7 = Uj — Pj —> h in Ll(K) for each 
compact set K in £>, and Vkuj -> Vkh in Z&(0). Since also VkUj —> Vku in /£(©), 
we see that Vk(u — h) = 0, so u — h = P for some polynomial P of degree < k. Thus 
Uj-Pj + P->h+P=umLl(K). 

Now we will state a well-known lemma; see for example, Theorem III.2 in [31]. 

LEMMA 2.4. Let k(x) be nonnegative and integrable on Rn and suppose k(x) depends 
only on \x\ and decreases as \x\ increases. Then for all non-negative measurable functions 

f> 
sup\f^kt(x)\<C\\k\\vmMf(x) 

with C independent ofxj and k. Here kt(y) = t~nk(y/t) andMf is the Hardy-Littlewood 
maximal function off 

Similar to Ap weights [27], [18], we have the following results. 

LEMMA 2.5. Let I <p < oo, andw e AX™{(D). Then 

(2.2) WWxdWmn < cK\\f\\im 

for all compact sets K in *D. 

PROOF. We will only prove it for the case when w is doubling.2 It suffices to show 
that (2.2) holds for K = Q0 for all cubes Q0 in (D such that 3Q0 C CD. 

Let /i = xiQoi v = XiQow a n d w = XQow-Note thati^f'~X = XiQowl~p'- LetM^/*(x) = 
sup Jfh(y) d[ij [i(F) where the supremum is taken over all cubes F containing x. Let Q 
be any cube. We will now show that v, w and M^ satisfies the Sp condition [29]. Let 
x £ Qo H Q, we now consider two cases: 

CASE (i) g C 3g0 . Then there exists a cube F C Q and x e F such that 
M ^ x ^ y ^ V ) < CSFwl-P'dy/\F\. Thus 

( 1 \X~P' 
M,{X^Qy-P'){x) < C ^ fFwdy] since w G 4° c(©) 

(2-3) = C ^ — j j V ' w r f y J <C{Mw{X^Ql>w-x){x))P~\ 

2 The idea of this proof was provided by the referee. 
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Hence 

i[Mlt{XQniQo^~P'mr dMx) = [\Mll(x^Q0^-p')(x)fw(x)dx 

< C[ [MW{X^Q^-X){x)fw(x)dx 

< [ (w-lf'w(x)dx 

(2-4) = JXQ(^)P'-\(x)dx 

since w is doubling3 on Rn; see for example [21]. 

CASE (ii). Q is not contained in 3Qo. Since there is nothing to prove when QHQo = 0, 
we may assume 3n\Q D 3Qo\ > \3Qo\> Thus 

[nW,(x^Qo^~p,)(x)fdw(x) < [n[M,(X3Qy-p,)(x)rHx)dx 

< C [ wx-p\x)dx < f wx~p\x)dx 

since w G AX™((D). Hence by Theorem A of [29], we have 

\\M(XQJ)\\LUQO) = \\MH(XQJ)\\LUQO) = \\M^(XQJ)\\LI{R") 

< WxQof\yvm = c\\f\\LPwiQo) 

and hence (2.2) holds for K = go-

LEMMA 2.6. Let 1 < p < oo, w e AX™((D) and let i e C^ be a non-negative 
decreasing radial function with support in {x £ W1 : |JC| < 1} and J £(JC) dx = 1. Then 
forf e Ifw{fD), f*it~^fin Ifw{K) as t —• Ofor all compact sets K in (D. Moreover, if 
f £ Lp

wkCD) thenf * £, ->f in Lp
wk(K)for all compact sets K in <D. 

PROOF. When 1 < p < oo, it follows from Lemmas 2.4 and 2.5 and the Lebesgue 
dominated convergence theorem. Now if p = 1, given any compact set K C CD, let us 
first choose a continuous function g such that 

(2-5) ¥-8\\LUP)<ri 

where Ks - {x + y : \y\ < s,x G K}, and s is chosen so that Ks c "D. Next since g is 
continuous, there exists L > 0 such that \g(x) — g(y)\ < r) for x, y € K* and |x — y\ <L. 
Next if sB = { x £ R " : \x\ < s} and 0 < t < s, 

- LLB ^ _ > , ) ~ ^ -yM,(y)dyw(x)dx 

+ L L ^X) -f(*M>(y)dyw(x)dx 

= 1 + 11 + 111. 
3 However, the theorem can be proved without assuming w is doubling i.e., assuming only w € A™((D). 
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However, II < w(K)r\ when 0 <t < s <L and 

III = JK\g(x)-f(x)\w(x)dx<r1 

by (2.5). Finally, note that 

i< fJKs\f(y)-g(y)\U*-y)dywQc)dx 

- L L UX ~ yW.x)dx\f(y) - g(y)\ dy 

< CJKS M{wXK)W(y) - g(y)\ dy 

<c\\f-g\\LUlP)<c(K)n. 

Lemma 2.6 now follows from the fact that Da(f * £,) = (Daf) * £,.4 

THEOREM 2.7. Let 1 < p < oo and w e A^°CD). Then for all compact sets K in rD, 

(2-6) \\f - a(f, Q)\\LPw(Q) < C(K)KQ)\\W\\L>JQ) 

for allf e Lp
wUoc(<D) and cube QcK where a(f, Q) = SQfdx/\Q\ or SQfdw/w(Q). 

PROOF. Let K be any compact set in (D. First, note that it suffices to show that (2.6) 
holds with a(f, Q) =fe = Sefdx/\Q\. However, 

W) ~h\ < î | lQ W) -M\ dy < cjQ J ^ L dy 

for x e Q,f e C°°(Rn) (see [33, Proposition 4.2]). Hence iff e C°°(Rn) it suffices to 
show that 

(2.7) LT^^A ^C^Q)M^Q) 
11^(0 

for all cubes Q C K. However, in the case 1 < p < oo, (2.7) is just a consequence of 
Lemma 2.5. Moreover, the case/? = 1 follows immediately from the fact that w G A1™((D). 
Finally, with the help of Lemma 2.6, by similar argument as the proof of Theorem 4.3 in 
[9], our assertion follows. 

Next we will state a theorem which is similar to [26, Theorem 1.1.2.1] and [9, Theo­
rem 4.2]. Since it can be proved by very similar method as the proof of [9, Theorem 4.2] 
with the help of Lemma 2.6 and Theorem 2.7, we will omit the proof. 

THEOREM 2.8. Let (D be any open set in W1 and let 1 < p < oo, w G Al*((D). If 
fEEp

wk(<D),then 

J \DY\P dw < oo for all compact sets K C £>, VO < |7| < *. 

For the case/? = 1, indeed we just modify the proof of Lemma 8 in [28]. 
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3. Density theorems. Let 2) be an (e,<5) domain, we will decompose 2) = U©a 

into connected components and define 

r = rad(2>) = inf inf sup \x — y\. 

We will assume r > 0 in most cases. Then for any x G 2), there is a pointy in the same 
component with \x — y\ > j . Note that we always have r > 0 when (D is an (e, oo) 
domain since © is then connected. 

Let us recall that two cubes touch if a face of one cube is contained in a face of 
the other. In particular, the union of two touching cubes of equal size is a rectangle. A 
collection of cubes {S/}™0 is called a chain if 5/ touches Si+\ for all /. 

Next let us recall some properties of the cubes in the Whitney decomposition of an 
open set © [31]. Since these properties are well-known, we will often make use of them 
without explicitly mentioning them. 

l(Q) = 2~k for some k G Z, 

l / 4 < § ^ < 4 i f e , n f i 2 ^ 0 , 
Ks2i) 

The purpose of this section is to prove the density theorem. 

PROOF OF THEOREM 1.5. Our proof is similar to that of [22] and [9]. Let g = 2~m
? m G 

Z+. Let W\ be the Whitney decomposition of T>. Define 
3?' = {dyadic cubes R with edgelength £, R C (D} and 
?R = {R G Sft' : R C Sfor some5 G FFi,/(S) > 32n3g/e}. 

Moreover, for each R G 3t let /?, R be cubes concentric with R with sides parallel to the 
axes and l(R) = m\n4g/e2 and l(k) = 2562n4g/e2. For s > 0, let ©, = {JC G © : 
^(*) > -s}. First, let us make the following two observations. 

(I) 2) C U/?eft ^ provided rad(2)) > 0 and g is small enough. 
(II) Let (D be an (e,8) domain with rad(£>) > 0 and let s = 3203n5g/£3 < 8. 

Then for all R0, Rj G U with k0 H ^/ ^ 0 and /f0 n (© \ ©25) ^ 0, there exists a chain 
Go,/ = {Ro = Si, 52 , . . . , Sm = Rj} in 3?' connecting 7?0, ^/ with m < C that depends only 
on £,£ and n, and UG0l/ C © \ ©35, d(UG0j) > 20n2p. 

(I) is first stated in [22] without proof. Nevertheless, the reader can refer to the 
proof of Theorem 6.1 in [9]. A similar conclusion as (II) can indeed be found in [22, 
Lemma 4.1] or [9]. However, since (II) is slightly stronger than the conclusion in [22] 
or [9], we will prove it. 

First note that since d(Ro,Rj) < ^(256\n4p/e2) < 8, there exists 7 connecting 
Ro,Rj which satisfies (1.1) and (1.2). Next if z G 7, we will show that d(z, 2^5) > y/np. 

https://doi.org/10.4153/CJM-1996-027-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-027-5


536 SENG-KEE CHUA 

First, we have 

d(z,Ro) < /(7) < d(Ro,Rj)/e < 256\n5p/e\ 

d(R0,(
rD2s)c) < y/7i(640n4p/£2) < 640n5p/e2 

as R0 H (T^sY f 0. Moreover, 

> 3203n5p/£3 - 640n5p/e2 - yfkp 

> 2562n5p/e\ 

Next, without loss of generality, we may assume that d(z, Ro) < d(z, Rj). We now consider 
two cases: 

CASE (i). d(z,R0) < 42n2g/e. Then d(z) > 32n3g/e - 42n2gje > 22n2g/s. (Note 
that we may restrict ourself to the case n > 2.) 

CASE (ii). d(z,R0) > 42n2g/e. Then by (1.2), 

d(Ro,Rj) 

Finally let us note that an appropriate subcollection of {R £ 5R; : RC\1 ̂  0} will provide 
us the required chain. Moreover, m < C as /(7) < d(Ro, ^ / ) / £ -

Now, given/ E Lp
wk{(D\ we will let Pj = P(Rj) be the unique polynomial of degree 

k — 1 such that 
J Da(f-P(Rj))dw = 0, 0<\a\ <k-\. 

Next leti?o? Rj £ 3?, ̂ o, Rj be as in (II). Suppose that Goj is the chain connecting^, Rj 
guaranteed by (II). If Po = P(Ro) and Pj - P{Rj), similar to the proof of [9, Lemma 6.3], 
by the triangle inequality, (1.3), Lemma 2.2 and the fact that e3d(R)/10000«5 < l(R) < 
20n2d(R) for all R e UG0j/, we can show that 

(3.1) \\D«(P0 - Pj)\\LPw(Ro) < Cgk-^\\Vkf\\LPw{UGoj) V0 < \a\ < k 

where C is independent of/, Ro, Rj and g. 

Next given 77 > 0, let us choose s > 0 such that \\f\\Lp (0\©j5) < 1- We then choose 

xj) £ C°° such that x ^ < ^ < X^ and \Dai;\ < C(a)s^a\. 
Recall that by Lemma 2.6, there exists £ G CQ° such that J£ dx = 1 and 

l l / - / * a ^ m ) - 0 a s / ^ O f o r / G L ^ C D ) , where £,(*) = ' " ^ ( y ) -

Thus we can choose 0 < t < s/2 such that 

(3.2) \\Da(f-f* 6)ILc(W = Wf-(P*f) * 6 l k m ) < ^ ~ H , 0 < |<*| < *. 
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For each Rj £ 5£, let us choose (fj E C°° with 0 < ty < Xfc such that E / ^ Vj = 1 

on U*,e»Rj> 0 < £*,<=» </>, < 1 and |D«V;| < Q " H . 
Fixing r and s, let go = E*,G» Pj<Pj> gi = goO - VO a n d g2 = (/" * &W>- T h e n clearly 

go,g\,g2 E C°°(RW). We now show that 11/- (gi +g2)|L* m < Cfy First, we will show 
that \\f — (gi + g2)||^ (0^) < Ci]. Let us note that since g\ = 0 on 2 ^ and g2 = / * & on 
2)^, for |a| < A: we have 

K(f-fe.+g2)) |L , ( % ) = ||Z>a0r-/*G)lk(%)<CJ? by (3.2). 

Next write 

Da(f-(gi +g2)) = 0° ( lW- /*&))+0 B ( ( l -W-&)) 

= £ CaSD
a-^lf(f - /*&) + E Ca^DP-\\-^(f-&) 

/Ka 0<cr 

Since |D a"^^| < CH a-f l , 0 < /3 < a and t/; EE 0 on (£>,)c, we have I M H ^ y ^ < CT] 
by (3.2). 

To complete the proof, we need only to prove that H^lli^ya^) <• C|| v/IL^DX©,,)-

To this end, first note that if £ 0 n ( 2 ) \ Ihs) f 0, %)P\kj f 0 then by the triangle inequality 

and (3.1), 

E |K((F0 -PM)\\LP(Ro) < c E E W^' l l^-Vo - ^ I L w 

0.3) < c E ^-|/JliivyiiiauG,y). 
*bnftŷ  

Also, note that 

(3.4) | ^ -go) | = k ( / - E ^ y ) | < l ^ - ^ o ) | + k E ^ O - P / M ! 

We now consider two cases: 

CASE (i). p<a. Then DP-0{\ - $) = 0 on <D \ <DS and hence 

<Cs-^**> E E^llWllW' 
R0eU,R0rX'Ds\'lhs)?® 

+Cs-la-0\p E E [^-i/'i||vyiiiauGo^F 
R0eUJ(<>rm\1>h)?b ktr&jtf 

by(3.4)and(3.3)since©A2%. C Uy?o6ae^o.Nextnotethat|| I W E j ^ M XueJU- ^ 

C where C is independent of g. Moreover by (II), if R0 n CDS \ 1^) f 0, £/ n h f 0, 
then UG0l/ C D \ % , and in particular R0CD\ 1hs. Hence if a > /? (then |/?| < k), 

\\nr-\\ - i>)^{f-go)\\L^\^) < cs- |a-VH/3|l|v*/||ow < cv. 
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CASE (ii). /3 = a. First observe that for each R0 e^t,R0n(rD\ Ths) ^ 0, similar to 
(3.3) we have 

£ \\Da{(Po-PM)\\LP(ko) <C £ eH«l | |Vy | k ( U G o j ) 

by Lemma 2.1. Thus 

II " ^ ( ^ 0 ) " "Lw\K0) 

< CWlTPoWun + C E 0Ha|l|V*/lk(uG„,) 

<cipa/iio«o)+^- |a|iivyn0„0) 
+ Ce*-w E IIVVIIOUGO,)-

Note that again by (II), ifR0n('D\'D2s)?® and £0 nkjffb then UG0l/ C 0 \ ©*, 
and in particular R0 C *D\ 2^5. Hence by the previous estimate, 

+ E qp" £ *to 
R0eU,R0rX'D\fD2s)^ 

\\P 

RieK «4Wo) 

since || £ * 0 ^ E ; ^ * XuG0Jk~ < C Thus | | D ^ - <gi + » ) ) | I & ( ^ ^ ) < <Y 

Finally, if/ G Ep
wk((D), let us note that by Theorem 2.8, we have/ e Lp

wk((Ds). We 
can then construct gi +g2 as before since (3.2) still hold. One can just check through the 
proof and see that g\ + g2 satisfies our assertion. 

4. Extension theorems. First, let us state an extension theorem from [11]. 

THEOREM 4.1 ([11, THEOREMS 1.1 AND 1.2]). Let (D be an (£,8) domain. Let 1 < 
p < 00 and let w be a doubling weight such that 

(4.1) l l / - / e , - l k ( 0 < Co/(0| |V/1| t , ( e ) V/ G LiP l 0 C(r) 

/? r 0// cubes Q in (D where/QIW = JQJ dw/w(Q). Then there exists an extension operator 
Aon (D (i.e., hf -f on *D a.e.) such that 

for allf G Lipf-^R") (= {f : Daf G Liploc(R
w)/or all \a\ < k}) where C depends only 

on e, 6, rad(2)), p, w, k, Co and n. Moreover, if(D is an (e, 00) domain, then there exists 
another extension operator A' on <D such that 

IIV*A'/lk(Rn) < C\\Vkf\\Km 

for allf € Lipf^^R") where C depends only on e, p, w, k, CQ and n. 
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REMARK 4.2. Checking through the proof of Theorem 1.1 in [11], let us note that 
indeed we need only to assume (4.1) holds for all cubes Q near d 2) such that l(Q) is 
comparable to d(Q) for the first part. However, for the second part, we need to assume 
in addition that (D is bounded. 

With the help of the preceding theorem and the density theorem in the previous 
section, we can now prove our extension theorem. 

PROOF OF THEOREM 1.6. First given/ e K,k(^ by T h e o r e m 1-5, there exists 
a sequence {/}} C C°°(Rn) such that f -+ f in Lp

wkCD). Next since Lp
wk(R

n) is a 
Banach space, the first part of the theorem now follows from the preceding theorem (see 
Remark 4.2). Now let/ G Ep

wk(<D). By Theorem 1.5 there exists {/•} C C°°(Rn) such that 
\\^kfj — V*/||/£(0) —> 0. Then {A7/} is a Cauchy sequence in Ep

wk(R
n) by the preceding 

theorem. Since i?^(IRw) is complete by Theorem 1.1, there exists g £ E^^R") such 
that VkA'fj -> Vkg in Ifw(Rn). Since A'f =j£ on £>, we obtain \\Vkg - Vkf\\LPwm = 0. 
Hence there exists a polynomial P of degree < k such that g = f + P a.e. on 2). 
Define A'/ = g — P. Then A7/ = / a.e. on rD. Also, VkAff = Vkg and consequently 
VkAffj —-> VkA'f in Z^(IR"). The proof of the theorem is now complete by passing to the 
limit. 

REMARK 4.3. (a) Let © be a bounded (e, oo) domain with r = rad(2>) and let Q 
be a bounded open set containing rD. Let W-i be the collection of cubes in the Whitney 
decomposition of (IF)0 and define 

ffr3 = { f i G J r 2 : / ( 0 < ^ } , I = 2 - " \ m e Z + , 

where L is chosen so that D. C (Uge^ 0 U ®- Finally, when the weights are of the form 
as in Remark 1.7(a), we have better extension theorems. 

THEOREM 4.4. Let 1 < px< oo, W( — dist(x, A//)a', <Xj G R, Aft (Z d CD such that wz- is 
doubling for i = 0 , 1 , . . . , N. Let Q be a bounded open set containing an (e, oo) domain 
*D and let L and r be defined as above. Suppose that kt = Ofor 0 < / < N\, ktr = k > 0 

for N2 < i < N and 0 < kx < k otherwise. Then there exist extension operators A and 
A' on <D such that 

WW^m <CiWfWqm Mo<i<N, 

l|V*A/l|^(n) <QW^n^m M^ <i<N 

II V*A'/I|^(Q) < GilVVII^ /or 0 < / < N2 

l|VAA'/||^(Rn) < Q\\Vkf\\L%m forN2 <i<N 

for allf E Lipf^^lR"). Here Ct depends only on e, pit w;, kj, n, L and max2-£/. (Unfor­
tunately L usually depends on r, but there are cases where L is independent ofr and 
consequently Ct is independent ofr.) 
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THEOREM 4.5. Let 1 <pt< oo, wt = dist(x, M ) % a, G U M / C a S such that wt is 
doubling for i = Q,\,...1N.If(Disan unbounded (e, oo) domain, then there exists an 
extension operator on *D such that 

IIV**A/IL»(R») < Q\\ vknL%m 

for all i andf £ Lipf^R"). Here Q depends only on e, wif pif ktn and max, k\. 

PROOF OF THEOREMS 4.4 AND 4.5. If w(x) = dist(x? M)a for M c £>, a e R, let us 
make the following two observations: 

(4.2) ll/-/dk(0 < Q^)/(0I|V/|L,(0 

(4-3) j i | riL.(0 < C^M^-^ll/lliKfi) 

for all cubes g in £> such that Al(Q) < d(Q) < l(Q)/A for A > 0. We can now check 
through the proof of Theorems 1.4 and 1.5 in [9] using (4.2) and (4.3) as the substitute 
of the condition that w E Ap to obtain Theorems 4.4 and 4.5. 

(b) In Theorem 4.4, if we assume in addition that W~XIP G I^.(R"), we can indeed 
replace Lipf-^R") by n££/A(27) as C°°(RW) n ( f l ^ ( 2 > ) ) is dense in n£^yA(2>). For 
the details, check through the proof of Theorem 6.1 in [9]. 
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