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ON CHARACTERS IN THE PRINCIPAL 2-BLOCK
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Abstract

Let k be a complex number and let u be an element of a finite group G. Suppose that u does
not belong to O(G), the maximal normal subgroup of G of odd order. It is shown that G satisfies
X(l) - X(u) = fc for every complex nonprincipal irreducible character X in the principal 2-block
of G if and only if G/O(G) is isomorphic either to C2, a cyclic group of order 2, or to P5L(2,2"),

Let G be a finite group. It was shown by Kwok (1975) that if « G G*
satisfies

(1) X( l ) -X( M )=fc

for every complex nonprincipal irreducible character X of G, then a Sylow
2-subgroup of G is elementary abelian. Moreover, if G is simple, then
G = PSL(2,2"). A complex characterization of such groups is given in
Herzog (1976). A more general equality is analyzed in Herzog (to appear).

The aim of this paper is to classify groups satisfying (1) for every complex
nonprincipal irreducible character in the principal 2-block of G. We prove:

THEOREM. Let G be a finite group, u an element of G and k a complex
number. Suppose that (1) is satisfied by every complex nonprincipal irreducible
character of G belonging to B, the principal 2-block of G.

Then one of the following statements holds:
(a) uEO(G),
(b) \G/O(G)\ = 2, u£O(G), or

(c) G/O(G) = PSL(2,2"), n^2, u£O(G) butu2<EO(G).
Conversely, if G and u satisfy (a), (b) or (c), then (1) holds.

PROOF. It is well known for the principal block that

O{G)= n{ke rX |XGB*}

where B* denotes B\1G. Thus (1) holds with k = 0 if and only if u G O(G).
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It is easy to check that if G and u satisfy (b) or (c), then (1) holds.
Consequently, it suffices to show that if

(i) O(G) = 1, u^ 1 (hence fc^ 0) and (1) holds, then either (b) or (c) is
satisfied.

From now on we denote by 2 or 2* the summation over all X G B or
X £ B ' , respectively.

By (0 8 ~ IG | is even. If z is an involution in G, then, by the
orthogonality relations in blocks (O.R.B.), £X(l)X(z) = 0. Since X(z) =
X(l) (mod2), l c ( l ) lG(z)= 1, and X(1)2 = X(1) (mod2), it follows that

(ii) 2*X(1) is odd.
As 2*X(M) is a rational integer, (1) implies that k is both rational and an

algebraic integer, therefore,
(iii) k is a positive integer.
Suppose that y €E G lies outside the 2-sections of 1 and u. Then by the

O.R.B. we get, in view of (1);

hence

(2) S*X(y) = 0.

Let w be a 2-element of G of maximal order and let z be the involution in
(w). Let & be a prime ideal lying over 2 in 0, the integers in CKVT). Since
each of X(w), X(z), and X(l) is a sum of X(l) 2-power roots of unity, we
have

X[w) = X(z) = X(l)(mod 9>),

hence by (ii)

^ 1 (mod 3>).

Thus, by (2) w and z belong to the 2-section of u. Consequently, if S denotes
a Sylow 2-subgroup of G, then:

(iv) S is elementary abelian,
(v) G has one class of involutions, and
(vi) \u\ = 2d, d odd.
Choose H, a minimal normal subgroup in G. Then, by (iv) and (v),

\G:H\ is odd and H is characteristically simple. Suppose that H =
H, x • •• x H,, where H, is nonabelian simple and t > 1. Let x G Hi, y £ H 2 b e
involutions. By the Krull-Schmidt Theorem the components of H are unique,
so that, by conjugation, G acts to permute the components Hf. Hence x and
xy are nonconjugate involutions in G, contradicting (v). Thus we have proven
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that H is either an elementary abelian 2-group or a nonabelian simple group
with an elementary abelian Sylow 2-subgroup S. By Walter (1969), in the
latter case H is isomorphic to one of the following groups: PSL(2, q), q > 3,
q =0, 3 or 5 (mod 8), / (Janko's smallest group) or Re(q) ( group of Ree
type).

If G = H, then it is easy to check that either (b) or (c) holds. Thus
assume, from now on, that

(vii) G/H is a nontrivial solvable group of odd order.
Let Y be a nonprincipal linear character of G/H and suppose that

y e B . Then as Y(l) = 1, by (1) and (iii) Y(u) = - 1, in contradiction to (vii).
Thus:

(viii) no nonprincipal linear character of G/H belongs to B.
By the Frattini argument G = N(S)H, hence CG(S)H<G. Suppose that

G D CO(S)H; then by the solvability of G/CO(S)H, G'Ca(S)HcG. Let M
be a maximal (hence normal of prime index) subgroup of G containing
G'CG(S)H and let Y be a nonprincipal linear character of G/M. By (viii)

B, hence by Brauer's criterion for block membership for some x E G

where c = \G: CG(x)\ and VP is a prime ideal over 2 in G, the integers of
Q(VI). We conclude that c is odd and xg ker Y = M. Thus G = (x)M and
x ECG (S,) for some Sylow 2-subgroup S, of G. As M D CG (Si), G = M, a
contradiction. We have shown that

(ix) G = CG(S)H.
If H is a 2-group, then by Lemma 1.2.3 of Hall and Higman

CG(S)CS = H= G

contradicting (vii). So assume, from now on, that
(x) H is a nonabelian simple group.
Suppose that x G CG(H); then x is of odd order, hence CG(H)Q

O(G)=l. Thus

(xi) G/HCOut(H).
As Out(J)=l (Janko, 1966), by (vii) H^J. If H = PSL (2,2"), n i= 2,

then G is generated by H and odd order field automorphisms of H (Carter
(1972), p. 211). Therefore these field automorphisms may be chosen to
normalize and act faithfully on S, in contradiction to (ix). Since PSL (2,4) =
PSL (2, 5), it remains to deal with the cases: H = PSL(2,q), q >5, q = 3 or
5 (mod 8) and H = Re(q).

First we prove, denoting by 1TT(G/H) the set of the irreducible characters
of G/H, that
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(xii) If y G Irr(G/H) n B, then Y = 1G.
Suppose that Y^ 1G. Since G = G/H is of odd order g, Y does not

belong to the principal 2-block of G and there exists x G CG(S) such that,
denoting xH by x, and using Brauer's criterion for block membership,

where c = \G: CG(Jc)| and 9* is a prime ideal over 2 in 6, the integers of
O(VT). As Y(l) and c are odd integers and Y(x)= Y(x), it follows that

hence

where c is the odd integer \G: Co(x)\. Thus Y£B, a contradiction.
Suppose that H = Re(q). Simple groups of Ree type were described in

Ward (1966), where their character table is given on pp. 87-88. We shall use
his notation for H. Since \G:H\ is odd, it is easily seen from the character
table of Re(^) that each of the 8 irreducible characters £, i = l , - - , 8
belonging to B0(H) (the principal 2-block of H), is stable in G. Thus if X G B,
then X\H = exYx, where Yx E B0(H) and ex is a positive integer. Conse-
quently, if h and / denote elements of H of even and odd order, respectively,
we get by the O.R.B.:

(3) 0 = 2X(fc)X(/) = ZelYx(h)Yx(f)= J n&(h)£,(/).

Clearly tii g 1 for i = 1, • • -,8 and since by (xii) l o is the only element of B
with H in its kernel, nx = 1. Again in the notation of Ward, choose
h = //? V / and / = V, so that by (3) 0 = «i - n3, hence n3 = «i = 1. Subse-
quent choices of h = JR" ^ J, JR° ^ J, JT\ JT1 and f=Y,X, V, W, respec-
tively^ield n2 = 1 , n4 = 1, n5 = n7 = 1 and n6

= ns= 1, respectively, since 1,
im V3/2 are rationally independent. It follows that B consists of 8 characters
Xi, i = 1, • • •, 8 such that X, |H = £, i = 1, • • •, 8. Thus, by the O.R.B. and (1)

0 = S X ( U ) X ( Y V ) = 1 - X 3 ( M ) + X 6 ( M ) + X 8 ( M )

= 1 - X3(l) +k+ X6(l) + X8(l) - 2k,

hence

k =\-q3+(q-l)m(q + l

a contradiction.
Finally, suppose that H = PSL(2,q), q>5, q=3 or 5 (mod8). The

character table of H is given in Ward (1966), p. 65. Since \G:H\ is odd, it is
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easy to see from his character table that each of the 4 irreducible characters ft,
i = 1, • • •, 4 belonging to B0(H) is stable in G. Thus we get a formula similar to
(3) and by choosing h = Stf~')/4, S(

0
q~')/4 and f = R, T, respectively, we get

1 = Hi = n4 and n2 = n3 = 1 since (q - e)/4 is odd and 1, Veq are rationally
independent. Hence B consists of 4 characters Xh / = l , - - , 4 , such that
Xi\H = ft, i = 1, • • -,4. Thus, by the O.R.B.,

0 = SX(i?")X(u) = 1 - eX4(u)

hence X4(u)=e and by (1) k = q — e. As q>5, a contradiction is then
reached by considering the equality SX(1)X(M) = 0, completing the proof of
the theorem.
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