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1. Introduction. In the last decades many mathematicians investigated the
topological and differentiable structures of submanifolds of spheres and Euclidean
spaces. In this sense, in 1973, Lawson and Simons [19], by means of nonexistence
for stable currents on compact submanifolds of a sphere, obtained a criterion for the
vanishing of the homology groups of compact submanifolds of spheres. Leung [20] and
Xin [24] were able to extend the results obtained by Lawson and Simons for compact
submanifolds of Euclidean spaces, whereas Asperti and Costa [1] obtained an estimate
for the Ricci curvature of submanifolds of a space form that improves Leung’s estimates.
As a consequence, Asperti and Costa obtained a new criterion for the vanishing of
the homology groups of compact submanifolds of spheres and Euclidean spaces. In
2009, Xu and Zhao [25] investigated the topological and differentiable structures of
submanifolds by imposing certain conditions on the second fundamental form.

From all that follows, we recall that a compact (without boundary) n-dimensional
Riemannian manifold (Mn, g) is said to be δ-pinched if the sectional curvature K
satisfies

1 ≥ K ≥ δ. (1)

If the strict inequality holds, we say that Mn is strictly δ-pinched.
In 1997, Xia [12] proved that an n-dimensional (n ≥ 4) compact simply connected

submanifold Mn, isometrically immersed in a δ-pinched (δ > 1
4 ) Riemannian manifold

such that its second fundamental form α satisfies

‖α(v, v)‖2 <
4
9

(
δ − 1

4

)
,

for all unit tangent vectors v on Mn, must be homeomorphic to a sphere. Although
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Xu and Zhao [25] have proved that an n-dimensional oriented compact submanifold
in an (n + m)-dimensional δ(> 1

4 )-pinched Riemannian manifold satisfying

‖α(v, v)‖2 <
4
9

(
δ − 1

4

)
, for any unit v ∈ TpM,

must be diffeomorphic to a spherical space form. At same time, Gu and Xu
[13] showed that a three-dimensional compact, simply connected submanifold M3

in an n-dimensional Riemannian manifold M
n

satisfying a suitable condition
involving the mean curvature and scalar curvature, must be diffeomorphic to a
sphere �3. Thus, investigating curvature conditions, which guarantee that a compact
Riemannian manifold is diffeomorphic to a sphere is definitely an important
issue.

Recently, Ribeiro and Costa [10] used the notion of biorthogonal (sectional)
curvature to obtain some interesting sphere theorems. In particular, they were able
to improve the pinching constants obtained in some previous works. In order to
proceed let us recall the concept of biorthogonal (sectional) curvature. For each plane
P ⊂ TxM at a point x ∈ M4, the biorthogonal (sectional) curvature of P is given by the
following average of the sectional curvatures:

K⊥(P) = K(P) + K(P⊥)
2

, (2)

where P⊥ is the orthogonal plane to P. In particular, for each point x ∈ M4, we take
the minimum of biorthogonal curvature to obtain the following function:

K⊥
min(x) = min{K⊥(P); P is a 2- plane in TxM}. (3)

As it was pointed out in [9] the sum of two sectional curvatures on two orthogonal
planes appeared in works of Noronha [18] and Seaman [22]. We remark that the
positivity of the biorthogonal curvature is an intermediate condition between positive
sectional curvature and positive scalar curvature. There is considerable literature on
the topic, for a comprehensive references on such a subject, we indicate, for instance
[2, 9–11, 18, 21] and [22].

A famous result by Tachibana [23] asserts that a compact Einstein manifold (Mn, g)
with positive curvature operator has constant sectional curvature. Furthermore, he also
proved that if (Mn, g) has nonnegative curvature operator, then it is locally symmetric.
We now recall that a Riemannian manifold Nn, n ≥ 4, has positive isotropic curvature,
if

R1313 + R1414 + R2323 + R2424 − 2R1234 > 0.

The notion of isotropic curvature was introduced by Micallef and Moore [17], where
it is proved that a compact Riemannian manifold with positive isotropic curvature is
homeomorphic to a sphere. Micallef and Wang [16] extended Tachibana’s result for
n = 4 showing that a four-dimensional Einstein manifold with nonnegative isotropic
curvature is locally symmetric. Recently, these results have been extended in two
remarkable ways. First, by means of a deep convergence analysis for the Ricci flow,
Böhm and Wilking [8] proved for n ≥ 4 that manifolds with positive curvature operator
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are space forms. Second Brendle [4] proved that if (Mn, g) is an Einstein manifold, n ≥ 4,
with nonnegative isotropic curvature then it is locally symmetric. Moreover, from
Costa and Ribeiro Jr. [9], �4 and ��2 are the only compact simply connected four-
dimensional manifolds with positive biorthogonal curvature that can have (weakly)
1/4-pinched biorthogonal curvature, or nonnegative isotropic curvature, or satisfy
K⊥ ≥ s

24 > 0.

We proceed to state our results. Indeed, motivated by the ideas developed by
Ribeiro and Costa [9, 10], Gu and Xu [13] as well as Xu and Zhao [25], we shall
investigate sphere theorems for submanifolds under certain conditions involving the
biorthogonal (sectional) curvature. After these preliminary remarks, we may announce
our first result as follows.

THEOREM 1. Let M4 be a four-dimensional compact, simply connected submanifold,
isometrically immersed in a δ-pinched Riemannian manifold. Then, M4 is diffeomorphic
to a sphere �4, provided that one of the following conditions holds:

1. ‖α(v, v)‖2 < K⊥
min − 1

3 (1 − δ), for any unit v ∈ TpM4; or
2. ‖α‖2 < 4K⊥

min + 4δ + 8H2 − s
3 , where H and s stand for the mean curvature and

scalar curvature of M4, respectively.

As an immediate consequence of Theorem 1, we get the following corollary:

COROLLARY 1. Let M4 be a four-dimensional compact, simply connected Riemannian
submanifold, isometrically immersed in to a standard sphere �n. Suppose that

‖α(v, v)‖2 < K⊥
min,

for any unit tangent vector v on M4. Then M4 is diffeomorphic to sphere �4.

In Theorem 13 of [13], it was showed that a three-dimensional compact
submanifold in an n-dimensional Riemannian manifold M

n
satisfying

‖α‖2 < 2Kmin + 9
2

H2,

must be diffeomorphic to a spherical space form. Motivated by this result, we shall
consider a compact simply connected hypersurface M3 of a compact four-dimensional
manifold N4 to establish the following theorem.

THEOREM 2. Let M3 be a compact simply connected hypersurface of a compact
four-dimensional manifold N4. Suppose that

‖α‖2 < 4K⊥
min − 2Kmax + 9

2
H2,

where Kmax is the maximum value of the sectional curvature of M4. Then, M3 is
diffeomorphic to a sphere �3.

In [18], Noronha obtained some classification results for four-dimensional
compact manifolds with nonnegative sectional curvature. For instance, she showed
that if ‖W−‖2 ≥ −ω−

1
s
2 and the self-dual part of the Weitzenböck operator E+ has

a negative eigenvalue at some point of M4, then W− = 0. In this case, the scalar
curvature s cannot be constant; for more details see [18]. We shall combine Noronha’s
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theorem with Brendle [5], Brendle and Schoen [6] to deduce the following classification
result.

THEOREM 3. Let M4 be a four-dimensional compact submanifold in an n-dimensional
Riemannian manifold M

n
satisfying

‖α‖2 ≤ 2
(

Kmin + K⊥
min

)
+ 16

3
H2 − s

6
. (4)

Then we have:

1. If M4 is oriented, �W = 0 (cf. [18] for details on this condition) and ‖W−‖2 ≥
−(ω−

1 ) s
2 , then one of the following assertions holds:

(a) M4 is conformally equivalent to S4, or it is covered by either �4 or �3 × �

with their standard metrics.
(b) M4 is covered by �2 × �2, where �2 has constant curvature.
(c) M4 is isometric to ��2.

(d) M4 is anti-self-dual and negative definite.
(e) M4 is self-dual and the scalar curvature is not constant.

2. If M4 is locally irreducible, then one the following assertions holds:
(a) M4 is diffeomorphic to a spherical space form.
(b) The universal cover of M4 is a Kähler manifold biholomorphic to ��2.
(c) The universal cover of M4 is isometric to a compact symmetric space.

3. If inequality (4) is strict, then M4 is diffeomorphic to a spherical space form. In
addition, if M4 is simply connected, then M4 is diffeomorphic to �4.

2. Preliminaries. In this section, we present a couple of formulae and notations
that are essential for our purpose. It is well-known that four-dimensional manifolds are
fairly special. For instance, the bundle of two-forms on a four-dimensional oriented
Riemannian manifold can be invariantly decomposed as a direct sum

�2 = �2
+ ⊕ �2

−, (5)

where �± is the (±1)-eigenspace of Hodge star operator ∗. The decomposition (5)
is conformally invariant. Moreover, it allows us to conclude that the Weyl tensor
W is an endomorphism of �2 = �+ ⊕ �− such that W = W+ ⊕ W−. A manifold
is conformally flat if W = 0, it is said to be half conformally flat if either W+ = 0
or W− = 0. In particular, an oriented four-dimensional manifold M4 is self-dual if
W− = 0. We note that on a half-conformally flat manifold, self-duality is a property
that depends on the orientation.

We fix a point and diagonalize W± such that w±
i , 1 ≤ i ≤ 3, are their respective

eigenvalues. So, we point out that the eigenvalues of W± satisfy

w±
1 ≤ w±

2 ≤ w±
3 and w±

1 + w±
2 + w±

3 = 0. (6)

In particular, (6) tells us that

|W±|2 ≤ 6(w±
1 )2. (7)
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From this, as it was detailed in [9], equation (3) provides us the following key identity:

K⊥
min = w+

1 + w−
1

2
+ s

12
. (8)

In an analogous way, we have

K⊥
max = w+

3 + w−
3

2
+ s

12
, (9)

where K⊥
max(p) = max{K⊥(P); P ⊂ TpM}. More details can be found in [9, 21] and

references therein.
In the sequel, let Mn be a submanifold in a Riemannian manifold M

N
. So, we shall

adopt the following convention on the range of indices:

1 ≤ i, j, k, l ≤ n, 1 ≤ A, B, C, D ≤ N, n + 1 ≤ β ≤ N.

For any arbitrary point x ∈ M, we choose an orthonormal frame {ei, eβ} of the M
such that {ei} are tangent to M. Denote by {ei} the dual frame field of {ei}. Let

Rm =
∑
i,j,k,l

Rijklei ⊗ ej ⊗ ek ⊗ el,

Rm =
∑

A,B,C,D

RABCDeA ⊗ eB ⊗ eC ⊗ eD;

be the Riemannian curvature tensor of M and M, respectively. We consider α and
−→
H

the second fundamental form and the mean curvature vector of M. We set

α =
∑
β,i,j

hβ

ij ei ⊗ ej ⊗ eβ ,
−→
H = 1

n

∑
β,i

hβ
ii eβ.

The squared norm of the second fundamental form ‖α‖2 and the mean curvature H
of M are given by

‖α‖2 :=
∑
β,i,j

(hβ

ij )2,

and

H := 1
n

√∑
β

(
∑

i

hβ
ii )2.

Therefore, from the Gauss equation we have

Rijkl = Rijkl + 〈α(ei, ek), α(ej, el)〉 − 〈α(ei, el), α(ej, ek)〉,
which can be succinctly written as

Rijkl = Rijkl +
∑

β

hβ

ikhβ

jl −
∑

β

hβ

il h
β

jk.
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3. Proof of the main results.

3.1. Proof of Theorem 1.

Proof. To begin with, we notice that

R1313 + R1414 + R2323 + R2424 − 2R1234 = K13 + K14 + K23 + K24 − 2R1234,

where Kij = K(ei, ej). Therefore, by setting K⊥
ij = K⊥(ei, ej) we may use (2) and (3) to

obtain

R1313 + R1414 + R2323 + R2424 − 2R1234 = 2K⊥
13 + 2K⊥

14 − 2R1234

≥ 4K⊥
min − 2R1234. (10)

On the other hand, from the Gauss equation we deduce

−2R1234 = −2
[
R1234 + 〈α(e1, e3), α(e2, e4)〉 − 〈α(e2, e3), α(e1, e4)〉]. (11)

Now, we invoke Berger’s inequality [3] to infer

|Rijkl| ≤ 2
3

(1 − δ).

From here it follows that

4K⊥
min − 2R1234 ≥ 4K⊥

min − 4
3

(1 − δ) − 2〈α(e1, e3), α(e2, e4)〉
+2〈α(e2, e3), α(e1, e4)〉. (12)

In order to proceed, let {e1, e2, e3, e4} be an orthonormal frame in M4. Then, as
consequence of the Cauchy–Schwarz inequality, we get the following expressions:

〈α(ei, ej), α(ek, el)〉 ≥ −1
2
{| α(ei, ej) |2 + | α(ek, el) |2}, (13)

and

−〈α(ei, ej), α(ek, el)〉 ≥ −1
2
{| α(ei, ej) |2 + | α(ek, el) |2}. (14)

In particular, according to [12], we also have

| α(ei, ej) |2≤ 1
2

{
| α(

ei + ej√
2

,
ei + ej√

2
) |2 + | α(

ei − ej√
2

,
ei − ej√

2
) |2

}
. (15)

Therefore, we may use the above information into (12) to arrive at

4K⊥
min − 2R1234 ≥ 4K⊥

min − 4
3

(1 − δ) − { | α(e1, e3) |2 + | α(e2, e4) |2 }
−{ | α(e2, e3) |2 + | α(e1, e4) |2 }

. (16)

From this, we use our first assumption together with (15) to deduce that M4 has
positive isotropic curvature. Whence, it suffices to invoke a theorem of Hamilton [14]
to conclude that M4 is diffeomorphic to a sphere �4.
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Proceeding, we treat our second assumption. For sake of simplicity, we now
consider

A = K13 + K14 + K23 + K24 − 2R1234.

Then, from the Gauss equation and insofar as N is δ−pinched, we have

A = K13 + K14 + K23 + K24 − 2R1234 +
∑

β

[
hβ

11hβ

33 + hβ

22hβ

33 +

+hβ

22hβ

44 + hβ

11hβ

44 − (hβ

13)2 − (hβ

23)2 − (hβ

24)2 − (hβ

14)2
]

≥ 4δ − 2R1234 +
∑

β

[
hβ

11hβ

33 + hβ

22hβ

33 + +hβ

22hβ

44 + hβ

11hβ

44

−(hβ

13)2 − (hβ

23)2 − (hβ

24)2 − (hβ

14)2
]
. (17)

On the other hand, using that (a + b)2 ≤ 2a2 + 2b2, we immediately get

16H2 =
∑

β

(hβ

11 + hβ

22 + hβ

33 + hβ

44)2

=
∑

β

[(hβ

11 + hβ

22)2 + (hβ

33 + hβ

44)2 + 2(hβ

11 + hβ

22)(hβ

33 + hβ

44)]

≤
∑

β

{2[(hβ

11)2 + (hβ

22)2] + 2[(hβ

33)2 + (hβ

44)2] + 2(hβ

11hβ

33 + hβ

11hβ

44 + hβ

22hβ

33 + hβ

22hβ

44)},

which can be rewritten as∑
β

[hβ

11hβ

33 + hβ

11hβ

44 + hβ

22hβ

33 + hβ

22hβ

44] ≥ 8H2 −
∑
β,i

(hβ
ii )

2. (18)

From (18) and (17) we infer

A ≥ 4δ + 8H2 − 2R1234 −
∑
β,i

(hβ
ii )

2 −
∑

β

[
(hβ

13)2 + (hβ

23)2 + (hβ

24)2 + (hβ

14)2
]

≥ 4δ + 8H2 − 2R1234 − ‖α‖2. (19)

Now, from Seaman’s inequality [22] (see also [3]) we see that

| R1234 |≤ 2
3

(K⊥
max − K⊥

min). (20)

In particular, as a consequence of (9), it is easy to see that K⊥
max ≤ s

4 − 2K⊥
min, which

combined with (20) gives

| R1234 |≤ 2
3

( s
4

− 3K⊥
min

)
. (21)

Now, by (19) and (21) we have

A ≥ 4δ + 8H2 + 4K⊥
min − s

3
− ‖α‖2.
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So, it suffices to use our second assumption to conclude that M4 has positive isotropic
curvature. Finally, we invoke once more Hamilton’s theorem [14] to finish the proof of
the theorem. �

3.2. Proof of Theorem 2.

Proof. First of all, let v = e3 be a unit tangent vector in TpM3 such that {e1, e2, e3}
is an orthonormal basis of TpM3 and {e1, e2, e3, e4} an orthonormal basis of TpM4.

We then use Gauss equation to infer

Ric(v) = K13 + K23

= K13 + K23 + h11h33 − (h13)2 + h22h33 − (h23)2

= (K13 + K24) + (K23 + K14) − K24 − K14 + h11h33 + h22h33 − (h13)2 − (h23)2.

(22)

Notice that

H = 1
3

√
(h11 + h22 + h33)2.

This immediately gives

9H2 = (h11 + h22 + h33)2

= ((h11 + h22)2 + 2(h11 + h22)h33 + (h33)2

≤ 2[(h11)2 + (h22)2] + 2h11h33 + 2h22h33 + 2(h33)2,

which can be written succinctly as

h11h33 + h22h33 ≥ 9
2

H2 − [(h11)2 + (h22)2 + (h33)2]. (23)

Next, from (22) and (23) we get

Ric(v) ≥ 2K
⊥
13 + 2K

⊥
14 + 9

2
H2 − 2Kmax − ‖α‖2

≥ 4K⊥
min + 9

2
H2 − 2Kmax − ‖α‖2 > 0, (24)

where we have used our assumption. Therefore, it suffices to apply Hamilton’s theorem
[15] to conclude the proof of the theorem. �

3.3. Proof of Theorem 3.

Proof. To start with, we treat the first statement. To do so, let {e1, e2, e3, e4} an
orthonormal frame in M4 and let λ, μ ∈ [−1, 1]. Moreover, we set

B = K13 + λ2K14 + μ2K23 + λ2μ2K24 − 2λμR1234.

From the Gauss equation, we infer

B = K13 +
∑

β

[hβ

11hβ

33 − (hβ

13)2] + λ2{K14 +
∑

β

[hβ

11hβ

44 − (hβ

14)2]} − 2λμR1234

+μ2{K23 +
∑

β

[hβ

22hβ

33 − (hβ

23)2]} + λ2μ2{K24 +
∑

β

[hβ

22hβ

44 − (hβ

24)2]}. (25)
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We now claim that

1 + λ2 + μ2 + λ2μ2 ≥ 4λμ. (26)

Indeed, we invoke Cauchy’s inequality to deduce λ2 + μ2 ≥ 2λμ. Moreover, it is not
difficult to check that (λμ)2 − 2λμ + 1 ≥ 0, for all λ,μ, which settles our claim (26).

Proceeding, from inequalities (25), (21) and (26) we obtain

B ≥ (1 + λ2 + μ2 + λ2μ2)Kmin − 4λμ
1
3

( s
4

− 3K⊥
min

)
+

∑
β

{hβ

11hβ

33 − (hβ

13)2 + λ2μ2[hβ

22hβ

44 − (hβ

24)2]

+ μ2[hβ

22hβ

33 − (hβ

23)2] + λ2[hβ

11hβ

44 − (hβ

14)2]}
≥ (1 + λ2 + μ2 + λ2μ2)[Kmin − 1

3
(

s
4

− 3K⊥
min)]

+
∑

β

{hβ

11hβ

33 + λ2μ2hβ

22hβ

44 + μ2hβ

22hβ

33 + λ2hβ

11hβ

44}

−
∑

β

{
(hβ

13)2 + λ2(hβ

14)2 + μ2(hβ

23)2 + λ2μ2(hβ

24)2}.
Now, from [13] (cf. Equation 4.8 in [13]) we already know that, for all m �= l, we have

hβ
mmhβ

ll ≥
∑
i<j

(hβ

ij )2 + 1
6

( 4∑
i=1

hβ
ii

)2 − 1
2

∑
i,j

(
hβ

ij

)2
. (27)

Furthermore, it is well known that

‖α‖2 =
∑
β,i,j

(hβ

ij )2 and H2 = 1
16

∑
β

(∑
i

hβ
ii

)2
. (28)

From which it follows that

∑
β

hβ
mmhβ

ll ≥
∑
β,i<j

(hβ

ij )2 + 8
3

H2 − ‖α‖2

2
. (29)

Therefore, a straightforward computation gives

B ≥ (1 + λ2 + μ2 + λ2μ2)[Kmin − 1
3

(
s
4

− 3K⊥
min)]

+ (1 + λ2 + μ2 + λ2μ2)(
∑
β,i<j

(hβ

ij )2 + 8
3

H2 − ‖α‖2

2
)

−
∑

β

[(hβ

13)2 + λ2μ2(hβ

24)2 + μ2(hβ

23)2 + μ2hβ

14)2]
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≥ (1 + λ2 + μ2 + λ2μ2)
2

[2Kmin − (
s
6

− 2K⊥
min) + 16

3
H2 − ‖α‖2]

+ (1 + λ2 + μ2 + λ2μ2){
∑
β,i<j

(hβ

ij )2 −
∑

β

[(hβ

13)2 + (hβ

24)2 + (hβ

23)2 + (hβ

14)2]}

= (1 + λ2 + μ2 + λ2μ2)
2

[2Kmin − (
s
6

− 2K⊥
min) + 16

3
H2 − ‖α‖2]

+(1 + λ2 + μ2 + λ2μ2)[
∑

β

(hβ

12)2 + (hβ

34)2]

≥ (1 + λ2 + μ2 + λ2μ2)
2

[2Kmin − (
s
6

− 2K⊥
min) + 16

3
H2 − ‖α‖2].

Whence our assumption assures that ‖α‖2 ≤ 2Kmin − ( s
6 − 2K⊥

min) + 16
3 H2 and then

we immediately have B ≥ 0. But, according to a theorem due to Brendle and Schoen,
B ≥ 0 implies that M × �2 has nonnegative isotropic curvature; for more details see
Theorems 4.4–4.6 in [7] (see also the discussion on p. 70). From this, we deduce that
M4 has nonnegative sectional curvature (cf. [7], Section 4, p. 71–72). We now invoke
Theorem 4 in [18] to obtain the first assertion.

Next, we treat the second case. In this case, we may use the first part of the proof
to arrive at

‖α‖2 ≤ 2Kmin − (
s
6

− 2K⊥
min) + 16

3
H2,

which implies that M × �2 has nonnegative isotropic curvature, for more details see
Section 4 in [7]. Since M4 is locally irreducible, we can invoke the Brendle–Schoen
theorem [6] to conclude the proof of this case.

Finally, we shall prove the third assertion. To do so, we consider

C = K13 + λ2K14 + K23 + λ2K24 − 2λR1234.

Notice that from the Gauss equation, we infer

C = K13 +
∑

β

[hβ

11hβ

33 − (hβ

13)2] + λ2{K14 +
∑

β

[hβ

11hβ

44 − (hβ

14)2]} − 2λR1234

+ {K23 +
∑

β

[hβ

22hβ

33 − (hβ

23)2]} + λ2{K24 +
∑

β

[hβ

22hβ

44 − (hβ

24)2]}

≥ (2 + 2λ2)Kmin +
∑

β

[hβ

11hβ

33 − (hβ

13)2] + λ2[
∑

β

[hβ

11hβ

44 − (hβ

14)2]

+
∑

β

[hβ

22hβ

33 − (hβ

23)2] + λ2
∑

β

[hβ

22hβ

44 − (hβ

24)2] − 2λR1234. (30)

Taking into account that |R1234| ≤ 2
3 ( s

4 − 3K⊥
min), we can use (29) to get

C ≥ (2 + 2λ2)
[
Kmin +

∑
β,i<j

(hβ

ij )2 + 8
3

H2 − ‖α‖2

2

]
− 4λ

1
3

(
s
4

− 3K⊥
min)

− (hβ

13)2 − (hβ

23)2 − λ2(hβ

14)2 − λ2(hβ

24)2. (31)
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But, since 2 + 2λ2 ≥ 4λ, for all λ ∈ �, we deduce

C ≥ (2 + 2λ2)
[
Kmin + 8

3
H2 − ‖α‖2

2
− 1

3
(

s
4

− 3K⊥
min)

]
+ (2 + 2λ2)[

∑
β

(
∑
i<j

(hβ

ij )2 − (hβ

13)2 − (hβ

23)2 − (hβ

14)2 − (hβ

24)2)]

≥ (2 + 2λ2)
2

[
2Kmin + 16

3
H2 − (

s
6

− 2K⊥
min) − ‖α‖2

]
. (32)

By using our assumption we arrive at

K13 + λ2K14 + K23 + λ2K24 − 2λR1234 > 0, for all λ ∈ �.

Finally, it suffices to invoke Brendle’s theorem [5] to deduce that the normalized Ricci
Flow with initial metric g0

∂

∂t
g(t) = −2Ricg(t) + 2

n
rg(t)

exists for all time and converges to a constant curvature metric as t → ∞. Here, rg(t)

stands for the mean value of the scalar curvature of g(t). This tells us that M4 is
diffeomorphic to a spherical space form. In particular, if M4 is simply connected, then
M4 is diffeomorphic to a sphere �4. So, the proof is completed. �
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