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STRONG MEASURE ZERO SETS ON 2κ FOR κ INACCESSIBLE

NICK STEVEN CHAPMAN AND JOHANNES PHILIPP SCHÜRZ

Abstract. We investigate the notion of strong measure zero sets in the context of the higher Cantor
space 2κ for κ at least inaccessible. Using an iteration of perfect tree forcings, we give two proofs of the
relative consistency of

|2κ| = κ++ + ∀X ⊆ 2κ : X is strong measure zero if and only if |X | ≤ κ+
.

Furthermore, we also investigate the stronger notion of stationary strong measure zero and show that the
equivalence of the two notions is undecidable in ZFC.

§1. Introduction. In searching for a useful notion related to being a Lebesgue
measure zero set, Borel [3] introduced strong measure zero sets.

Definition 1.1. A subset X of the real line is strong measure zero iff for any
sequence (εn)n∈� of positive real numbers there exists a sequence of intervals (In)n∈�
with �(In) ≤ εn and X ⊆

⋃
n∈� In.

Clearly, strong measure zero sets are measure zero and every countable set is
strong measure zero. Moreover, it is also easy to see that perfect sets cannot be
strong measure zero. It was conjectured by Borel that countability is perhaps the
only constraint on strong measure zero sets, giving rise to the Borel Conjecture
(BC): “A set X is strong measure zero if and only if X is countable.”

In 1928, Sierpiński [24] showed that CH implies the existence of uncountable
strong measure zero sets (specifically, he showed that any Luzin set is strong measure
zero). It was not until after the advent of Cohen’s revolutionary technique of forcing
that Laver [18] established the relative consistency (and thus independence from
ZFC) of BC.

Over the years, investigations into matters related to strong measure zero sets
(such as the interplay between BC and the size of the continuum [14], the dual
notion of strongly meager sets [9] and others) became testament to the fact that
Borel’s notion was indeed worthy of interest.

For our purposes the most interesting of these is Corazza’s proof of the consistency
of “a set is strong measure zero iff it has size less than continuum” (see [4]) in which
he employs an �2-length iteration of strongly proper forcings (a notion stronger
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2 NICK STEVEN CHAPMAN AND JOHANNES PHILIPP SCHÜRZ

than “proper +��-bounding” that includes well-known forcings such as Sacks and
Silver), together with a previous result of Miller [20] to construct a model with

“Every set of reals of size continuum can be mapped uniformly
continuously onto [0, 1]”.

We are interested in a version of Borel’s Conjecture on higher cardinals κ.
The higher Cantor space 2κ and the higher Baire space κκ come equipped with
the standard <κ-box topology (see [7] for basic properties of these spaces).
Their elements are called κ-reals, or simply reals. Note that near universally, the
assumption κ<κ = κ is made in discussions on the higher Baire space, without
which the space exhibits some undesirable topological properties (see [6, Section
2.1.]). Especially in recent years, renewed interest has sparked among set theorists
in studying these spaces; a compendium of open questions can be found in [17].

The following definition is due to Halko [10]:

Definition 1.2. Let X ⊆ 2κ. We call X strong measure zero iff

∀f ∈ κκ ∃(�i)i<κ :
(
∀i < κ : �i ∈ 2f(i) )

∧ X ⊆
⋃
i<κ

[�i ].

This is a straightforward combinatorial reformulation (here [�] is a basic clopen
set as defined in the next section) of Borel’s definition that is agnostic towards the
existence of a measure on 2κ. Let SN be the collection of all strong measure zero
sets; it is easy to see that SN is a proper, ≤κ-complete ideal (see also Lemma 8.2)
on 2κ containing all singletons.

The Borel Conjecture on κ (BC(κ)) is the statement “a subset of 2κ is strong
measure zero iff it has cardinality ≤κ”. Strong measure zero sets for κ regular
uncountable have been studied in [11], where the authors have proven that BC(κ) is
false for successor κ satisfying κ<κ = κ.

Throughout this paper we shall restrict our attention toκ at least inaccessible, thus
in particular κ<κ = κ. The question of the consistency of BC(κ) on such κ is still
open [17]. An argument similar to the one in the proof of Theorem 5.1—forgoing
the notion of κκ-bounding and focusing instead directly on encoding coverings
within the κ-Cohen real—tells us that a κ++-c.c. forcing iteration of length κ++ in
which κ-Cohen reals are added cofinally will necessarily yield large strong measure
zero sets—in fact, the set of ground model κ-reals will become strong measure zero.
Unfortunately, by the results in [16], every Laver-like tree forcing on κκ necessarily
adds a κ-Cohen real. Any treatment of the consistency of BC(κ) thus cannot be
merely a straightforward adaptation of Laver’s results; potentially, a wholly new
approach is needed here.

We shall give two proofs establishing the relative consistency of

ZFC + |2κ| = κ++ + SN = [2κ]≤κ
+
,

the first of which is an adaptation of an iteration found in [8] and requires κ to be
strongly unfoldable (a large cardinal property between weakly compact and Ramsey
that is consistent with V = L). The second, somewhat better, proof only requires κ
to be inaccessible and employs the same iteration by establishing minimality of the
respective forcing extension, following the approach of Corazza [4].
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STRONG MEASURE ZERO SETS ON 2κ FOR κ INACCESSIBLE 3

§2. Notation and basic definitions. Let us make some preliminary remarks.
The higher Cantor space 2κ is equipped with the standard <κ-box topology,

whose base consists of the basic clopen sets

[�] := {b ∈ 2κ : � � b}
for � ∈ 2<κ; for the higher Baire space κκ the topology is defined analogously. The
relation � � � denotes the extension relation for sequences, i.e., � = ��i for some
i ≤ dom(�). The relation �⊥� denotes incompatibility, i.e., � � � and � � �.

A (κ-) tree is a subset of κ<κ closed under initial segments.
Let T ⊆ κ<κ be a tree and � ∈ T . Then we define the following notions:

• A b ∈ κκ is a branch of T iff b�i ∈ T for all i < κ. Let [T ] denote the set of all
branches of T.

• Denote by succT (�) the set of immediate successors of � in T. Call � a splitting
node of T iff | succT (�)| > 1. Denote the set of all splitting nodes of T as
split(T ). We will only consider trees in which every node has a successor.

• T is perfect iff for every � ∈ T there is a � such that � � � and � ∈ split(T ).
Note that for κ 	= � this is not equivalent to [T ] containing a homeomorphic
copy of 2κ, even if every node of the tree lies on a branch (of length κ).

• The splitting height hts
T (�) of a node � is the order type of the set {� �� � : � ∈

split(T )}. Additionally, for i < κ, define

spliti (T ) := {� ∈ split(T ) : hts
T (�) = i}.

• As usual, the set of branches of a tree is a closed set and every closed set Y can
be represented as the set of branches of the tree T = {b�i : i < κ ∧ b ∈ Y}.
However, it may be the case that this tree T necessarily contains dying branches,
i.e., T might contain an increasing sequence (�i )i<� with � < κ whose limit⋃
i<� �i is not an element of T1. This phenomenon is unique to the κ-case

and has no �-equivalent.We say T (or [T ]) is superclosed iff this does not
happen, meaning that whenever � < κ is a limit ordinal and � ∈ κ�, then
� ∈ T ⇔ ∀i < � : ��i ∈ T .

We shall attempt to, wherever feasible, adhere to certain self-imposed notational
conventions. In this vein, the letters i, j, k, �,m will generally refer to ordinals <κ;
	, � to limit ordinals ≤κ and α, �, �,  to ordinals ≤κ++. The letters p, q, r, s, t
denote conditions while �, �, � are elements of κ<κ. The pair F, i will always fulfil
F ∈ [α]<κ, i < κ, where α ≤ κ++ is either explicitly given or clear from context.

§3. Perfect tree forcing. We are interested in a particular forcing consisting of
<κ-splitting perfect trees whose splitting is bounded by an f ∈ κκ with f(i) ≥ 2
for all i < κ.

Definition 3.1 Let p ∈ PTf iff:

(S1) p ⊆ κ<κ is a nonempty tree.
(S2) p is perfect.
(S3) ∀� ∈ p ∀i ∈ dom(�) : �(i) < f(i).

1Consider for example the closed set 2κ\[�], where � ∈ 2� .
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4 NICK STEVEN CHAPMAN AND JOHANNES PHILIPP SCHÜRZ

(S4) p has full splitting: ∀� ∈ p : | succp(�)| = 1 ∨ succp(�) = {��j : j <
f(dom �)}.

(S5) p is superclosed.
(S6) splitting is continuous: If � < κ is a limit, then

∀� ∈ κ� ∩ p : {� �� � : � ∈ split(p)} is unbounded in � ⇒ � ∈ split(p).

The significance of (S4) and (S6) lies in ensuring <κ-closure of the forcing (see
Lemma 3.6). The axioms (S4) and (S5) guarantee that for all � ∈ p we have

[�] ∩ [p] 	= ∅,

i.e., there is a branch of p going through �. Under the other axioms, (S2) + (S6) is
equivalent to the following statement: whenever b ∈ [p] is a branch of p, then

{i < κ : b�i ∈ split(p)}

is a club subset of κ.
For f ≡ 2 we have a κ-version of Sacks forcing, first studied by Kanamori [15].

An overview of variants of familiar forcing notions on higher cardinals can be found
in [7].

The rest of this section is devoted to proving some regularity properties for PTf ,
generalized straightforwardly from the classical treatment of similar tree forcings on
�� .

Set q ≤PTf p iff q ⊆ p. For a PTf-generic filter G define the generic real sG to be
the unique real contained in

⋂
p∈G [p].

Fact 3.2. For a condition p ∈ PTf the set spliti(p) is a front in p, i.e., it is an
antichain in (p,�) with

∀b ∈ [p] : |b ∩ spliti(p)| = 1.

Call it the ith splitting front of p.

Lemma 3.3. Let i < κ and p ∈ PTf be a condition. Then | spliti(p)| < κ.

Proof. We proceed by induction on i:

• i = 0: Trivial.
• i → i + 1: The map � �→ min{� � � : hts

p(�) = i + 1} is bijection between
spliti+1(p) and

⋃
�∈spliti (p) succp(�). By the inductive hypothesis and the fact

that p is <κ-splitting, the latter set has size < κ.
• � is a limit: Since every � ∈ split�(p) is the limit of a sequence (�j)j<� with �j ∈

splitj(p), we have | split�(p)| ≤ |
∏
j<� splitj(p)| < κ by the inaccessibility

of κ. �

Definition 3.4. Let (P ,≤P) be a forcing notion and (≤i)i<κ be a sequence of
reflexive and transitive binary relations on P such that

∀j < i < κ : (≤i) ⊆ (≤j) ⊆ (≤P).

Then:

1. (pj)j<	 is a fusion sequence of length 	 ≤ κ iff ∀j < k < 	 : pk ≤j pj .
2. P has Property B iff:
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STRONG MEASURE ZERO SETS ON 2κ FOR κ INACCESSIBLE 5

• (P ,≤P) is <κ-closed.
• Whenever (pj)j<	, 	 ≤ κ is a fusion sequence in P , then there exists a fusion

limit q with ∀j < 	 : q ≤j pj .
• If A is a maximal antichain, p ∈ P and i < κ, then there exists a q ≤i p such

that A�q := {r ∈ A : r ‖ q} has size <κ, where ‖ means compatible.

Equivalently, we can demand the third condition to hold for all antichains A, by
enlarging them to maximal antichains if necessary. Note that by weakening the third
requirement to |A�q| ≤ κ, we get a κ-version of Baumgartner’s Axiom A. Property
B is thus a variant of Axiom A combined with the notion of being κκ-bounding [1,
Definition 7.2.C]; it is well-known from the countable context that many standard
tree forcings, such as Sacks and Silver forcing, have this property.

Lemma 3.5. Property B implies κκ-bounding.

Proof. Assume p � ġ ∈ κκ and ġ(i) is decided by an antichain Ai+1 for every
i < κ. Construct a fusion sequence (qi)i<κ below p by setting q0 := p and finding
a qi+1 ≤i qi with |Ai+1�qi+1| < κ in successor steps. In limit steps �, set q� to be a
fusion limit of (qi)i<�. The fusion limit qκ of the whole sequence will force qκ � ġ ≤ ȟ
for some h ∈ κκ in the ground model. �

Lemma 3.6. PTf is <κ-closed.

Proof. If (pi)i<	 with 	 < κ is a decreasing sequence, set q :=
⋂
i<	 pi . We check

that q is a condition; only (S2) is nontrivial, so we assume that all other axioms
hold.

Let thus � ∈ q. For some b ∈ [q] with � � b (recall that by (S4) + (S5) such a b
exists) consider the sets

Ci := {j < κ : b�j ∈ split(pi)}.
By (S2) and (S6), Ci is a club subset of κ. Thus

⋂
i<	 Ci is a club and yields a � with

� � � and � ∈ split(q). �
Remark 3.7. Clearly, the intersection

⋂
i<	 pi in the previous lemma is simulta-

neously also the greatest lower bound of the decreasing sequence (pi)i<	 , 	 < κ.

Definition 3.8. For p, q ∈ PTf , define q ≤i p iff q ≤PTf p and spliti(p) =
spliti(q).

Fact 3.9. The following are equivalent:
1. q ≤i p.
2. q ≤PTf p and ∀j ≤ i : splitj(p) = splitj(q).
3. q ≤PTf p and ∀� ∈ p : hts

p(�) ≤ i ⇒ succp(�) ⊆ q.
4. q ≤PTf p and spliti+1(p) ⊆ q.
It remains to prove that equipped with these relations, PTf has Property B.

Lemma 3.10. For every fusion sequence (pj)j<	 of length 	 ≤ κ inPTf there exists
a q with ∀j < 	 : q ≤j pj .

Proof. If 	 < κ, the intersection q from Lemma 3.6 can be seen to also be a
fusion limit.
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6 NICK STEVEN CHAPMAN AND JOHANNES PHILIPP SCHÜRZ

Otherwise once again set q =
⋂
j<κ pj and follow the proof of Lemma 3.6; along

a branch b ∈ [q] again define the sets

Cj := {� < κ : b�� ∈ split(pj)}.
By using the fact that (pj)j<κ is a fusion sequence, one can arrive at

(Δj<κCj) ∩ {� < κ : � limit} ⊆
⋂
j<κ

Cj,

which is enough to conclude that
⋂
j<κ Cj is also a club by the closure of the club

filter under diagonal intersections. It can easily be seen that q is a fusion limit. �
Before concluding the proof, we first give two definitions which will come in handy

later in the iteration context.

Definition 3.11. For a condition p ∈ PTf and � ∈ p, define p[�] := {� ∈ p :
� � � ∨ � � �}. One can see easily that p[�] is a stronger condition than p and that
for any i < κ we have p =

⋃
�∈spliti (p) p

[�].

Definition 3.12. Let p ∈ PTf be a condition and i < κ. We say that a condition
s ∈ PTf is (p, i)-determined iff s ≤ p and

|s ∩ spliti(p)| = 1.

Lemma 3.13. The set of (p, i)-determined conditions is dense below p for all i.

Proof. For any r ≤ p we may extend the stem of r in the following way: take any
branch b ∈ [r] ⊆ [p]; since we then know |b ∩ spliti(p)| = 1, we see that there is a
unique � with � ∈ b ∩ r ∩ spliti(p). Then r[�] is (p, i)-determined. �

Theorem 3.14. PTf has Property B.

Proof. It remains to show the antichain condition. To this end, let A be a
maximal antichain,p ∈ PTf and i < κ. Enumerate spliti+1(p) as (�j)j<	 with 	 < κ.
We will decompose p into |	| many parts, each of which will be thinned out above
the (i + 1)th splitting front.

Proceed by finding for each j < 	 a condition sj ≤ p[�j ] such that |A�sj | = 1. Set

q :=
⋃
j<	

sj .

Then q ∈ PTf is a condition with spliti+1(p) ⊆ q and thus q ≤i p. To prove |A�q| <
κ, let r ∈ A be compatible with q. By the previous lemma we may pick a tr that
is (p, i + 1)-determined with tr ≤ r, q and hence tr ∩ spliti+1(p) = {�jr} for some
jr < 	. But since tr ≤ q, we can conclude tr ≤ sjr and thus r ‖ sjr . We have thus
found a function fromA�q to 	, mapping r �→ jr , which is injective (since |A�sj | = 1
for all j < 	). The desired conclusion |A�q| < κ follows. �

§4. The iteration. The backbone of our forcing construction will consist of an
iteration of PTf forcings. Let therefore 〈Pα, Q̇� : α ≤ κ++, � < κ++〉 be a ≤κ-
supported forcing iteration with

�Pα Q̇α = PTfα ,
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where the sequence (fα)α<κ++ is in the ground model and fα(i) ≥ 2 for all i < κ.
Set P := Pκ++ .

As a matter of notation, let Ġα for α ≤ κ++ denote the canonical Pα-name for a
Pα-generic filter; we also write Ġ for Ġκ++. Finally, let ṡα be the canonical name for
the αth generic real.

This section is dedicated to verifying some regularity properties of such iterations.
We will observe that:

1. P is <κ-closed,
2. P does not collapse κ+,
3. if V |= |2κ| = κ+, then P has the κ++-c.c.,

thus in aggregate no cardinals are collapsed when forcing with P.

Fact 4.1. P is <κ-closed.

In the countable case, the favoured tool one would look towards in the endeavour
of preserving �1 is the notion of properness. Finding a satisfactory analogue for
higher cardinals is a long-standing open problem (see, e.g., [22] and [5]). A relatively
straightforward generalization that still enjoys many desirable qualities of properness
is the following:

Definition 4.2. A forcing P is called κ-proper iff for every sufficiently large
� (e.g., � > |2P |) and every elementary submodel M � H (�) such that P ∈M ,
|M | = κ and <κM ⊆M , and every p ∈ P ∩M , there exists q ≤P p such that for
every dense D ∈M , D ∩M is predense below q.

Fact 4.3. Forcing notions that are <κ+-closed or have the κ+-c.c. are κ-proper.
Furthermore, κ-proper forcing notions do not collapse κ+.

Further details on κ-properness can be found in [7].
Unfortunately, in stark contrast to the classical setting, there is no preservation

theorem for κ-properness in iterations (see [21] for an iteration of κ+-c.c. forcings
whose �-limit collapses κ+). Our strategy for ensuring κ-properness is to verify an
iteration version of Property B. Similar to fusion with countable support, in such
cases the correct tool is the following notion:

Definition 4.4. For  ≤ κ++ let 〈Pα, Q̇� : α ≤ , � < 〉 be a ≤κ-support
iteration with

∀α <  : �α “Q̇α has Property B ”.

Let F ∈ []<κ and i < κ. We define q ≤F,i p iff

q ≤P p and ∀� ∈ F : q�� �� q(�) ≤Q̇�
i p(�).

Then:
1. A sequence 〈pi , Fi : i < 	〉 of length 	 ≤ κ is called a fusion sequence iff:

• ∀j < k < 	 : pk ≤Fj ,j pj.
• The Fj are increasing and, if 	 = κ, then

⋃
j<	 supp(pj) ⊆

⋃
j<	 Fj .

2. We say that P has Property B* iff:
• For every fusion sequence 〈pi , Fi : i < 	〉, 	 ≤ κ there exists a fusion limit q

with ∀j < 	 : q ≤Fj ,j pj .
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8 NICK STEVEN CHAPMAN AND JOHANNES PHILIPP SCHÜRZ

• For every maximal antichain A, every p ∈ P , F ∈ []<κ and i < κ there
exists a q ≤F,i p such that |A�q| < κ.

Hence for iterations we consider fusion sequences pointwise, with the added
caveat of being able to delay fusion arbitrarily long in each coordinate. In practice,
the auxiliary sets Fj will almost always be defined by a bookkeeping argument
relative to the pj .

Fact 4.5. Property B* implies κ-properness and κκ-bounding.

In the definition of Property B*, only the antichain condition is nontrivial. In
fact, for such iterations of Property B forcings, fusion limits always exist.

Lemma 4.6. With the notation from the previous definition, every fusion sequence
〈pi , Fi : i < 	〉, 	 ≤ κ in P has a fusion limit q.

Proof. We construct q inductively such that Pα � q�α is a fusion limit of
〈pi�α, Fi ∩ α : i < 	〉 for each α ≤  .

Assume q�α has been defined for α <  . To define q(α), distinguish three cases:

• α ∈
⋃
j<	 supp(pj) ∧ α ∈

⋃
j<	 Fj : Find j∗(α) minimal such thatα ∈ Fj∗(α).

Now q�α � “(pj(α))j≥j∗(α) is a fusion sequence”, so let q(α) be a fusion limit
of that sequence.

• α ∈
⋃
j<	 supp(pj) ∧ α /∈

⋃
j<	 Fj : Note that this case may only occur for

	 < κ, thus we may use <κ-closure of Q̇α to construct q(α) from (pj(α))j<	 .
• α /∈

⋃
j<	 supp(pj): Set q(α) := 1Q̇α .

To see that q�� ∈ P� for limit �, merely note supp(q��) ⊆
⋃
i<	 supp(pi��). �

Remark 4.7. Note that the forcings Q̇α = PTfα fulfil <κ-closure and the
existence of fusion limits in a particularly strong way: in either case, a canonical
weakest lower bound/fusion limit exists. Thus by following the above proof and
choosing these canonical conditions, we can see that an iteration of PTf forcings
also fulfils a stronger fusion condition: for every fusion sequence there exists a
canonical, weakest fusion limit.

Some work remains to prove the antichain condition for P , which we do in a
rather ad hoc manner by induction on  . On the way we will introduce some notation
that will also come in handy later.

First off, let us define the iteration version of Definition 3.12 and the
corresponding density lemma.

Definition 4.8. Let  ≤ κ++, p ∈ P , F ∈ []<κ and i < κ. We say a condition
s ∈ P is (p, F, i)-determined following g ∈

∏
�∈F κ

<κ iff s ≤P
p and

∀� ∈ F ∃�� ∈ κ<κ :

s�� � s(�) ∩ spliti(p(�)) = ˇ{��} ∧ succs(�)(��) = ˇ{g(�)}.
We say a condition s is (p, F, i)-determined iff it is (p, F, i)-determined following

some (unique) g.

The function g prescribes the choices s makes at the ith splitting front of p; it is
completely determined by s.
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STRONG MEASURE ZERO SETS ON 2κ FOR κ INACCESSIBLE 9

Lemma 4.9. The set of (p, F, i)-determined conditions is dense below p ∈ P for all
p, F, i and the set of (p, F, i)-determined conditions following g is open for all p, F, i, g.

Proof. Enumerate F as an increasing sequence (�j)j<	 with 	 < κ and set �	 :=
 . For an r ≤ p we will inductively construct a decreasing sequence (sj)j≤	 below r
and a ⊆-increasing sequence (gj)j≤	 with gj ∈

∏
�∈F∩�j κ

<κ such that sj is (p, F ∩
�j, i)-determined following gj .

• j = 0: Set s0 := r.
• j → j + 1: Since sj��j � sj(�j) ≤Q̇�j

p(�j), we may use Lemma 3.13 to find

P�j -names ṫ, �̇�j , �̇�j with

sj��j � ṫ ∈ Q�j ∧ ṫ ≤Q̇�j
sj(�j)

and

sj��j � ṫ ∩ spliti (p) = {�̇�j} ∧ succṫ(�̇�j ) = {�̇�j}.

Find a stronger condition s̃j ≤ sj��j that decides the names �̇�j , �̇�j as ��j , ��j .
Define sj+1 := s̃�j ṫ

�(sj�[�j + 1, )) and gj+1 := gj ∪ {(�j, ��j )}.
• � ≤ 	 is a limit: By <κ-closure we can find a lower bound s� of the sequence

(s�)�<�. Define g� :=
⋃
�<� g� . Clearly, s� is (p, F ∩ ��, i)-determined following

g�.

Now s	 ≤ r is (p, F, i)-determined following g	 . Lastly, if s is (p, F, i)-determined
following g, then clearly any s ′ ≤ s is as well. �

Fact 4.10. If p′ ≤F,i p and s ≤ p′, then s is (p, F, i)-determined iff it is (p′, F, i)-
determined.

Suppose now that s ≤PTf p. The extension of p to s may be undertaken in two
steps by interpolating on the ≤i relation. In the first step, we thin out as much as is
necessary from p, but only in its ‘upper regions’—say, above the (i + 1)th splitting
front—yielding an interpolating condition p(s) with p(s) ≤i p (above nodes not
present in s, p may be left untouched in the extension to p(s)). In the second step,
nodes are removed from p(s), but only near the base of the tree, such that whenever
� ∈ p(s)\s , then there is already some initial segment � � � with � ∈ p(s)\s and
hts
p(s) (�) ≤ i + 1. We thus have

s ≤ p(s) ≤i p.

This motivates the next lemma.

Lemma 4.11 (Interpolation). Let p ∈ P and s be (p, F, i)-determined following
g ∈

∏
�∈F κ

<κ for some F ∈ []<κ, i < κ. Then there exists a condition p(s) ≤F,i p
with:

• s ≤P
p(s) ≤F,i p and

• for all (p, F, i)-determined conditions s ′ following g, whenever s ′ ≤P
p(s), then

already s ′ ≤P
s .
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Proof. Constructp(s) by induction such that for eachα ≤  we havep(s)�α ∈ Pα
and p(s)�α ≤F∩α,i p�α.

Assume p(s)�α has been defined; to define p(s)(α), there are two cases to
distinguish:

• If α /∈ F , set p(s)(α) :=

{
s(α), if s�α ∈ Ġα,
p(α), otherwise.

• If α ∈ F , set p(s)(α) :=

{
s(α) ∪ (p(α)\p(α)[g(α)]), if s�α ∈ Ġα,
p(α), otherwise.

Note that we have s�α � g(α) ∈ p(α) and

p(s)�α � p(s)(α) ≤i p(α).

To see that p(s)�� ∈ P� for � limit, we note that

supp(p(s)��) ⊆ supp(s��).

Furthermore, we clearly have s ≤ p(s).
It remains to check the second requirement. Take some (p, F, i)-determined s ′

following g with s ′ ≤ p(s). Assume inductively that s ′�α ≤ s�α. Since the caseα /∈ F
is trivial, we may restrict our attention to the case α ∈ F . Then we have s ′�α �
s ′(α) ≤Qα p

(s)(α) = s(α) ∪ (p(α)\p(α)[g(α)]). But then we already have s ′�α �
s ′(α) ≤Qα s(α). In conclusion, s ′ ≤ s , which finishes the proof of the lemma. �

Remark 4.12. The above construction yields the following observation: not only
is p(s) an interpolant for p, s, F and i, but we even have that p(s)�α is an interpolant
for p�α, s�α, F ∩ α and i for any α <  .

In the next lemma, we show that under certain conditions, the forcing P admits
least upper bounds of the form ∨

s≤q,
s is (q,F,i)–determined following g

s.

Lemma 4.13. Let p ∈ P and s be (p, F, i)-determined following g ∈
∏
�∈F κ

<κ.
Then for every q ≤F,i p(s) there exists an s̃ ≤ q, s that is (q, F, i)-determined following
g such that for every s ′ ≤ q, if s ′ is (q, F, i)-determined following g, then s ′ ≤ s̃ . In
other words, s̃ is the weakest (q, F, i)-determined condition following g.

Proof. Construct s̃ by induction such that for all α ≤  we have s̃�α ∈ Pα ,
s̃�α ≤ q�α and s̃�α is (q�α, F ∩ α, i)-determined following g�α.

Assume s̃�α has been defined; define s̃(α) as

s̃(α) :=

{
q(α)[g(α)], if α ∈ F,
q(α), otherwise.

If α /∈ F , there is nothing to prove. For α ∈ F , observe that since s̃�α ≤ q�α is
(q�α, F ∩ α, i)-determined following g�α and q ≤F,i p(s), so by the above remark
we can conclude s̃�α ≤ s�α. But

s�α � ∃� : g(α) ∈ succp(�) ∧ � ∈ spliti(p(α))
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and q�α � spliti(p(α)) = spliti(q(α)), hence s̃(α) is well-defined. The other two
properties follow easily.

If � is a limit, then we have supp(s̃��) ⊆ supp(q) ∪ F , hence s̃�� ∈ P� is a
condition.

Knowing s̃ to be well-defined, one can easily see that for each s ′ ≤ q that is
(q, F, i)-determined following g we have s ′ ≤ s̃ . �

Fact 4.14. (P ,≤F,i) is <κ-closed for all , F, i .

Let us now introduce two auxiliary “boundedness” properties a P -condition may
exhibit.

Definition 4.15. We say a conditionp ∈ P is (F, i)-bounded forF ∈ []<κ, i < κ
iff there exists a � < κ with

∀� ∈ F : p�� � spliti(p(�)) ⊆ �<�.
Fact 4.16. If p ∈ P is (F, i)-bounded and p′ ≤F,i p, then p′ is as well.

Definition 4.17. Let  ≤ κ++, p ∈ P , F ∈ []<κ and i < κ. Take furthermore a
D ⊆ P that is open dense below p. We say p is (D,F, i)-complete iff there exists a
C ⊆

∏
�∈F κ

<κ, |C | < κ and a family (sg)g∈C in D such that:

a) sg is (p, F, i)-determined following g for all g ∈ C.
b) Whenever s ≤ p is (p, F, i)-determined following a function g and s ∈ D, then
g ∈ C and s ≤ sg .

Fact 4.18. If p ∈ P is (D,F, i)-complete as witnessed by (sg)g∈C , then (sg)g∈C
is a maximal antichain below p.

Lemma 4.19. Let p′ ≤F,i p be P -conditions such that p is (D,F, i)-complete and
p′ is (D′, F, i)-complete. Let (sg)g∈C and (s ′g)g∈C ′ witness this. Then C ′ ⊆ C . If in
addition D′ ⊆ D, then we even have s ′g ≤ sg for each g ∈ C ′.

Proof. Assume that g ∈ C ′ and find a t ≤ s ′g with t ∈ D (note that s ′g ≤ p).
Then t ≤ p is (p, F, i)-determined following g by Fact 4.10 and thus g ∈ C and
t ≤ sg by the second requirement in the definition of completeness. If D′ ⊆ D, we
may take t = s ′g and get s ′g ≤ sg . �

In particular we know that the set C in the definition of completeness is completely
determined by p. Complete conditions are also going to be playing a major role later
in Lemma 7.1.

Our strategy for proving Property B* for all P ,  ≤ κ++ is by the equivalence of
the following four statements:

a(): Pα has Property B* for each α <  .
b(): The set of (F, i)-bounded conditions is ≤F,i -dense in Pα for all α ≤  ,

F ∈ [α]<κ and i < κ.
c(): The set of (D,F, i)-complete conditions is ≤F,i -dense in P for all F, i and

open dense D ⊆ P .
d(): P has Property B*.
The implication a() ⇒ b() is Lemma 4.21, b() ⇒ c() is Lemma 4.22, and

c() ⇒ d() is Lemma 4.23. Thus a() ⇒ d() establishes an induction by which
Property B* is verified for all P .
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Corollary 4.20. P has Property B* for all  ≤ κ++.

Lemma 4.21. Let  ≤ κ++ and assume Pα has Property B* for each α <  . Then
for each α ≤  , p ∈ Pα, F ∈ [α]<κ and i < κ there is a condition q ≤F,i p that is
(F, i)-bounded.

Proof. We proceed by induction on α ≤  .
• α = 1: Trivial by the inaccessibility of κ.
• α → α + 1: Let p ∈ Pα+1, F ∈ [α + 1]<κ and i < κ be given. Since Pα is <κ-

closed, κ remains inaccessible in V Pα . Thus

�Pα ∀� ∈ F ∃�� < κ : spliti (p(�)) ⊆ �<��
�

and considering sup�∈F �� we can find a name �̇ for an ordinal less than κ
with

�Pα ∀� ∈ F : spliti (p(�)) ⊆ �̇<�̇.

Let now A ⊆ Pα be a maximal antichain deciding �̇; we may find a Pα �
q̂ ≤F∩α,i p�α with |A�q̂| < κ. Thus

q̂ � �̇ < �q
for some �q < κ and therefore

∀� ∈ F : q̂�� � spliti (p(�)) ⊆ �<�qq .

Setting q := q̂�p(α) and noting that since q̂ ≤F∩α,i p�α we have q�� �
split(q(�)) = split(p(�)) for all � ∈ F , so it follows that q is (F, i)-bounded.

• � ≤  is a limit: Let p ∈ P� , F ∈ [�]<κ and i < κ be given. Using <κ-closure
of (P� ,≤F,i ) (see Fact 4.14) and the inductive assumption, we can construct a
≤F,i -decreasing sequence (q�)�∈F in P� with the following properties:

– ∀� ∈ F ∀� ′ ∈ F ∩ � : q� ≤F,i q� ′ ≤F,i p.
– ∀� ∈ F ∃�� < κ ∀� ′ ∈ F ∩ (� + 1) : q��� ′ �P�′ spliti (q�(� ′)) ⊆ �<��

�
.

Again using<κ-closure of (P� ,≤F,i ), set q to a ≤F,i -lower bound of (q�)�∈F
and � := sup�∈F �� . Now q ≤F,i p and

∀� ∈ F : q�� � spliti (q(�)) ⊆ �<�. �

Lemma 4.22. Let  ≤ κ++, F ∈ []<κ, i < κ and suppose p ∈ P is (F, i)-bounded.
Let furthermore D ⊆ P be open dense below p. Then there is a q ≤F,i p which is
(D,F, i)-complete.

In particular, if the set of (F, i)-bounded conditions is ≤F,i -dense in P , then for all
open dense D ⊆ P the set of (D,F, i)-complete conditions is ≤F,i -dense as well.

Proof. By assumption p is (F, i)-bounded, hence we can find a � such that

∀� ∈ F : p�� � spliti(p(�)) ⊆ �<�.

Our strategy is to consider all possible choices a (p, F, i)-determined condition might
make at the ith splitting front of p and then interpolate on the witnesses of such
choices. Since we have a uniform bound � on the respective splitting fronts, this will
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require us to only iterate through <κ many possibilities. Set �̃� := supj≤� f�(j)
and consider the set

C̃ :=
∏
�∈F
�̃≤�� .

Whenever s is (p, F, i)-determined following some g, then g ∈ C̃ . Enumerate C̃ as
(gj+1)j<	 with 	 < κ. We now construct a ≤F,i -decreasing sequence (tj)j<	 :

• j = 0: Set t0 := p.
• j → j + 1: If there exists an s ≤ tj that is (p, F, i)-determined following gj+1,

pick an arbitrary such condition from D (this is possible, since D is dense

below p) and call it s̃gj+1 . Set tj+1 := t
(s̃gj+1 )

j . If there is no such s, simply set
tj+1 := tj . In any case we have tj+1 ≤F,i tj .

• � is a limit: Set t� to a ≤F,i -lower bound of (tj)j<� (see Fact 4.14).

Set q to a ≤F,i -lower bound of (tj)j<	 . We know q ≤F,i p. Now let

C :=
{
g ∈ C̃ : s̃g exists

}
,

i.e., C is the set of all gj+1 for which a witness was found in the inductive step
j → j + 1. We have |C | < κ. Finally, for each g = gj+1 ∈ C apply Lemma 4.13 to
p = tj , s = s̃gj+1 and q = q to construct the condition sg . We have sg ∈ D since
sg ≤ s̃g ∈ D and D is open.

We verify that q is (D,F, i)-complete, witnessed by (sg)g∈C . The first condition
in the definition of completeness follows by construction. The second follows
immediately from Lemma 4.13 by noting that if s ≤ q is (q, F, i)-determined
following g, then g = gj+1 for some j < 	, and thus a witness was found in the
inductive step j → j + 1; hence g ∈ C . �

Lemma 4.23. If the set of (D,F, i)-complete conditions is ≤F,i -dense in P for all
F, i and D ⊆ P open dense, then P has Property B*.

Proof. We have seen in Lemma 4.6 that the fusion condition is always fulfilled.
We will now prove that P fulfils the antichain condition: let A ⊆ P be a maximal
antichain, p ∈ P , F ∈ []<κ and i < κ. Find a q ≤F,i p that is (D,F, i)-complete,
where

D = {r ∈ P : |A�r| = 1}

and let (sg)g∈C witness this. Since (sg)g∈C is a maximal antichain below q by Fact
4.18, it is easy to see that

A�q ⊆ {r ∈ A : ∃g ∈ C : A�sg = {r}}

and thus |A�q| ≤ |C | < κ. �

From this point onward, assume that

V |= |2κ| = κ+.

From among our stated goals at the beginning of this section, only one remains to
be verified; our interest now turns to the κ++-chain condition:
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Theorem 4.24. P has the κ++-c.c.

This will follow easily from Lemma 4.29 once we have proven that each Pα for
α < κ++ has a dense subset of size κ+.

For the purposes of the next definition, for each α < κ++ fix a Pα-name ċα for a
bijection cα : (PTfα )V

Pα → (P(κ))V
Pα such that cα(1PTfα ) = ∅. Let us also fix a �

sufficiently large (e.g., � > |2P|) and a well-ordering � of H (�) (by which we mean
the sets hereditarily of size <�, not H� as defined below).

Definition 4.25. Let α < κ++.

• A Pα-name �̇ for a subset of κ is α-good iff �̇ is a nice name of the form

�̇ = {{j} × Aj : j < κ},
where Aj ⊆ Hα and |Aj | ≤ κ for all j < κ.

• A condition p ∈ Pα is in H̃α iff p�� ∈ H� for each � < α and, if α = � + 1 is a
successor, there additionally is a�-good name �̇ such thatp�� �� ċ�(p(�)) = �̇
and p(�) is the �-least P� -name that satisfies this relation for p�� and �̇. Now
let Hα be the closure of H̃α under canonical fusion limits (see Remark 4.7),
where we always choose the pointwise �-least name for the canonical fusion
limit (i.e., for every � < α, q(�) is the �-least name for the �th entry of the
canonical fusion limit q of a fusion sequence)2 .

Remark 4.26. It is easy to see that for p ∈ Hα (not only p ∈ H̃α) we have
p�� ∈ H� for all � < α as well.

Note also that there is a canonical embedding H� ↪→ Hα for � < α.

Remark 4.27. Hα-conditions and α-good names appeared first asHκ-Pα-names
in [2] and are themselves a straightforward generalization of hereditarily countable
names as introduced in [23].

Lemma 4.28. For every 0 < α < κ++, F ∈ [α]<κ and i < κ, Hα is ≤F,i -dense in
Pα and |Hα | = κ+.

Proof. We prove the statements by induction on α.

• α = 1: We haveH1 = P1 and |P1| = |PTf0 | = κ+.
• α → α + 1: Let p ∈ Pα+1, F ∈ [α + 1]<κ and i < κ. Using the inductive

hypothesis, we may assume p�α �α ċα(p(α)) = {{j} × Aj : j < κ} with
Aj ⊆ Hα for all j < κ. Additionally using Property B*, construct a fusion
sequence 〈qj, Fj : j < κ〉 with:

– ∀j < κ : qj ∈ Hα and |Aj�qj | < κ,
– q0 ≤F∩α,i p�α,
– ∀j < � < κ : q� ≤Fj ,i+j qj and F ∩ α ⊆ Fj ,

where the Fj are constructed using a bookkeeping argument. Let qκ be a
canonical fusion limit of this sequence that is a member of Hα . By the first
property of the fusion sequence,

�̇ = {{j} × (Aj�qκ) : j < κ}

2For α = 0 let H0 = P0 be the trivial forcing notion.

https://doi.org/10.1017/jsl.2023.100 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.100


STRONG MEASURE ZERO SETS ON 2κ FOR κ INACCESSIBLE 15

is an α-good name and qκ �α ċα(p(α)) = �̇. Let thus ṙ be the �-least Pα-
name that satisfies qκ �α ċα(ṙ) = �̇; now we can (pedantically, using Remark
4.26) conclude Hα+1 � (qκ �ṙ) ≤F,i p.Since |Hα | = κ+ and there are only
|(κ+)κ| = κ+ many α-good names for reals, we get |H̃α+1| = κ+ and therefore
also |Hα+1| = κ+ by standard arguments.

• � is a limit: If cf(�) = κ+, density is trivial and |H� | ≤ |
⋃
�<� H� | ≤ κ+.

Assume cf(�) = 	 ≤ κ and let furthermore p ∈ P� , F ∈ [�]<κ and i < κ be
given. For a cofinal sequence (�j)j<	 construct a fusion sequence 〈qj, Fj : j <
	〉 with:

– ∀j < 	 : F ∩ �j ⊆ Fj ⊆ �j ,
– ∀j < 	 : qj��j ≤Fj ,i+j p��j ,
– ∀j < � < 	 : q� ≤Fj ,i+j qj ,
– ∀j < 	 : qj ∈ H� , which may be achieved by having qj��j ∈ H�j and

letting qj(�) be the trivial condition for � ≥ �j .
The Fj are again constructed using a bookkeeping argument. Set q	 to be
a fusion limit contained in H� ; then we have H� � q	 ≤F,i p. Lastly, using

Remark 4.26, we get |H� | ≤
∣∣∣∏j<	 H�j ∣∣∣ ≤ κ+. �

Lemma 4.29. Let 〈Pα, Q̇� : α ≤ , � < 〉 be an iteration such that

∀α <  : Pα has the �-c.c.,

where � is a regular uncountable cardinal. If P is a direct limit and, additionally, either
cf() 	= � or the set {� <  : P� is a direct limit} is stationary, then P has the �-c.c.

Proof. See [12, Theorem 16.30]. �
Proof of Theorem 4.24. By Lemma 4.28, each Pα has a dense subset of size

≤κ+ and therefore satisfies the κ++-c.c.; our desired conclusion thus follows easily
from Lemma 4.29 and by noting that the set {� < κ++ : cf(�) = κ+} is stationary
in κ++. �

As we have remarked at the beginning of this section, we get the following
corollary:

Corollary 4.30. Forcing with Pα, α ≤ κ++ does not collapse cardinals.

Lemma 4.31. We have:
• If α < κ++, then V Pα |= |2κ| = κ+.
• If cof(α) > κ, then V Pα |= 2κ =

⋃
�<α(2κ ∩ V P� ).

• V P |= |2κ| = κ++.

Proof. Suppose α < κ++. Let �̇ be a Pα-name and p ∈ Pα force �̇ to be a subset
of κ. Without loss of generality assume �̇ = {{j} × Aj : j < κ} is a nice name
with Aj ⊆ Hα for all j < κ. Just like in Lemma 4.28, construct a fusion sequence
〈qj, Fj : j < κ〉 below p with |Aj�qj | < κ for all j < κ. The fusion limit qκ forces �̇
to be equal to an α-good name, of which there are only κ+ many. If we additionally
assume cf(α) > κ, then qκ forces �̇ to be equal to a P� -name for some � < α. The
first two statements thus follow by a density argument.

The last point follows immediately from the previous two. �

https://doi.org/10.1017/jsl.2023.100 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.100


16 NICK STEVEN CHAPMAN AND JOHANNES PHILIPP SCHÜRZ

For α < κ++ we can define in V Pα the ≤κ-support tail iteration 〈P̃� , ˙̃Q� : � ≤
κ++, � < κ++〉 such that �

P̃�

˙̃Q� = Q̇α+� . Set Pα,κ++ := P̃κ++ and note that Pα,κ++

has Property B* as well. It follows from standard proper forcing arguments (adapting
[23, Theorem III.3.4] to the case of κ-properness) that P � Pα � P/Ġα is densely
embedded in Pα � Pα,κ++ .

§5. First proof. We are now equipped to present the first proof of the relative
consistency of

ZFC + |2κ| = κ++ + SN = [2κ]≤κ
+
.

Starting with a model of |2κ| = κ+, we consider a ≤κ-supported forcing iteration
〈Pα, Q̇� : α ≤ κ++, � < κ++〉 with

∀α < κ++ : �Pα Q̇α = PTfα ,

such that (fα)α<κ++ ∈ V and each increasingf ∈ κκ ∩ V appears as anfα cofinally
often. Set P := Pκ++ . By Lemma 4.31 we see V P |= |2κ| = κ++.

By a density argument, theαth generic real ṡα will encode a covering of the ground
model reals satisfying the ‘challenge’ fα . For this argument it is sufficient that only
fα from some dominating family appear cofinally often; from the perspective of
some intermediate modelV Pα , the tail forcing Pα,κ++ fulfils this criterion. Hence the
observation can be extended to the set of reals appearing already in some V Pα ; the
following theorem formalizes this.

Theorem 5.1. V P |= ∀α < κ++ : 2κ ∩ V Pα ∈ SN .

Proof. Working within V P, take α < κ++ and f ∈ κκ. Since P is κκ-bounding
by Fact 4.5, we find an h ∈ κκ ∩ V with f ≤ h and � > α with f�(i) = |2h(i)| for
all i < κ. In V we may construct bijections c� : |2� | → 2� for � < κ.

Working now in V P� , define the function �̇(i) = ch(i)(ṡ�(i)). For x ∈ 2κ ∩ V Pα

the set

Dx := {p ∈ Q� : ∃i < κ : p � �̇(i) = x�h(i)}

is dense; in fact, it is easy to see that for any p ∈ Q� and � ∈ split(p), j = dom(�)

we have p[��c–1
h(j)(x�h(j))] ∈ Dx . Here c–1

h(j)(x�h(j)) is well-defined, since 2<κ ∩ V =

2<κ ∩ V P� . Hence (�(i))i<κ provides the required covering for the challenge f and
2κ ∩ V Pα ∈ SN follows. �

If V P |= X ⊆ 2κ, |X | ≤ κ+, then by the κ++-c.c., X already appears at some
intermediate stage V Pα . We thus get one direction of our desired result by the
previous theorem.

Theorem 5.2. V P |= [2κ]≤κ
+ ⊆ SN .

In order to lift the arguments appearing in [8], we require additional large cardinal
assumptions on κ. A priori it is sufficient for our purposes for κ to merely be weakly
compact, since the only occasion at which a property stronger than inaccessibility
is utilized is a crucial invocation of the tree property in Lemma 5.5. However, the
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aforementioned lemma is invoked not only in V, but also at intermediate stagesV Pα ;
it might be the case that weak compactness of κ is by that point destroyed.

The following large cardinal property was introduced by Villaveces [25, Definition
4]:

Definition 5.3. Let � be an ordinal. We say an inaccessible cardinal κ is �-
strongly unfoldable iff for all transitive models M of ZF– (ZF without the Power Set
Axiom) such that |M | = κ, κ ∈M and <κM ⊆M there exists a transitive model N
with V� ∪ {�} ⊆ N and an elementary embedding j :M → N with critical point κ
and j(κ) ≥ �.

Furthermore, call κ strongly unfoldable iff it is �-strongly unfoldable for all �.

Strongly unfoldable cardinals are weakly compact and are downwards absolute
to L [25]. Villaveces also observed that Ramsey cardinals are strongly unfoldable in
L (though they may fail to be such in V). The consistency strength of a strongly
unfoldable cardinal thus slots between a weakly compact and Ramsey cardinal,
with it being a conservative enough strengthening of weak compactness as to still
be consistent with V = L.

Of interest to us is a preservation theorem by Johnstone [13].

Theorem 5.4 (Johnstone [13]). For any κ strongly unfoldable there is a forcing
extension in which the strong unfoldability of κ is indestructible under <κ-closed,
κ-proper forcing notions.

We stress that the full strength of strong unfoldability is not used in our proof; we
merely require it in order to make the weak compactness of κ indestructible by the
forcings Pα .

For a strongly unfoldable κ, after forcing indestructibility using Johnstone’s
theorem, we may collapse a potentially blown up 2κ back to κ+ with a <κ+-closed
forcing3. Throughout this section we may therefore assume

V |= “|2κ| = κ++ the strong unfoldability of κ is indestructible

under <κ-closed, κ-proper forcing notions”.

We now set out to prove V P |= SN ⊆ [2κ]≤κ
+

.
The statement of the next two lemmas takes place in V Pα . Recall that Pα,κ++

denotes the tail forcing.

Lemma 5.5. Let α < κ++ be an ordinal, �̇ a Pα,κ++-name for a real in 2κ, F ∈
[κ++\α]<κ and i < κ. Assume furthermore that p ∈ Pα,κ++ forces �̇ /∈ V Pα . Then
there exists a 	 < κ such that

∀� ∈ 2	 ∃q ≤F,i p : q �Pα,κ++ � � �̇.

We will write 	p,F,i for the least such 	.

Proof. Suppose not. Then we can find α, �̇, F, i and p with

∀	 < κ ∃�	 ∈ 2	 : ¬(∃q ≤F,i p : q � � � �̇).

3<κ+-closed forcings and two-step iterations of κ-proper forcings are κ-proper.
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Set T := {�	�� : � ≤ 	 < κ}. By virtue of the preparation of κ,

V Pα |= κ is weakly compact

and therefore, since T is a <κ-splitting tree of height κ, it has a branch b∗ in V Pα .
Since p forces �̇ /∈ V Pα , there is a Pα,κ++-name �̇ for an ordinal less than κ such that
p � �̇��̇ 	= b∗��̇. As Pα,κ++ satisfies Property B*, there is a q ≤F,i p and �∗ < κ with
q � �̇ < �∗.

Since b∗��∗ ∈ T , there is a 	 ≥ �∗ such that b∗��∗ = �	��∗. But this means q �
�̇��∗ 	= �̌	��∗ and therefore q � �	 � �̇, a contradiction. �

In the following we refer to pointwise (everywhere) domination ≤ and not just the
eventually dominating relation. For a <κ-closed, κκ-bounding forcing, the ground
model κ-reals form a pointwise dominating family.

Definition 5.6. Let D ⊆ κκ be a dominating family. We say that H has index D
iffH = {hf : f ∈ D} and ∀i < κ : hf(i) ∈ 2f(i).

Fact 5.7.

X ∈ SN ⇔ ∀D dominating ∃H with indexD : X ⊆
⋂
f∈D

⋃
α<κ

[hf(α)].

Lemma 5.8. LetD ∈ V be a dominating family,α < κ++ andH ∈ V Pα have index
D. Let furthermore �̇ be a name for an element of 2κ with �Pα,κ++ �̇ /∈ V Pα . Then we
have

�Pα,κ++ �̇ /∈
⋂
f∈D

⋃
i<κ

[hf(i)].

Proof. We prove the claim with a density argument, let therefore p ∈ Pα,κ++

be arbitrary. Working in V Pα , we will construct an increasing sequence (	i)i<κ of
ordinals less than κ. On the tree

T := {g ∈
∏
j<i

2	j : i < κ}

we shall construct a mapping q : T → Pα,κ++ and a sequence of increasing sets
(Fi)i<κ such that whenever b ∈

∏
j<κ 2	j is a branch of T in V Pα , then

〈q(b�i), Fi : i < κ〉

is a fusion sequence below p. Each condition q(g) will carry some information about
an increasingly long initial segment of �̇. More specifically, we will ensure that for
all i < κ and g ∈

∏
j<i 2	j we have

q(g) � ∀j < i : g(j) � �̇.

We define q(g) for g ∈
∏
j<i 2	j by induction in i.

• i = 0: Set q(∅) := p and F0 := ∅.
• i → i + 1: Assume q(g) is defined for every g ∈

∏
j<i 2	j . Using Lemma 5.5

we can define 	i := sup
(
{	q(g),Fi ,i : g ∈

∏
j<i 2	j} ∪ {	j + 1 : j < i}

)
and for
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every g ∈
∏
j<i 2	j , �i ∈ 2	i find a condition q(g��i ) ≤Fi ,i q(g) with

q(g��i ) � �i � �̇.

Now since q(g��i ) ≤ q(g), we also have

q(g��i ) � ∀j < i : g(j) � �̇.

Use a bookkeeping argument to define Fi+1.
• � < κ is a limit: By construction, for every g ∈

∏
j<� 2	j the sequence

(q(g�j))j<� is a fusion sequence. Set q(g) to be a fusion limit of said sequence
and F� :=

⋃
j<� Fj . Note that we have

q(g) � ∀j < � : g(j) � �̇.

This concludes the construction of q. Let now f ∈ D dominate the function
i �→ 	i and set �i := hf(i)�	i . Now (q(gi))i<κ with gi = (�j)j<i is a fusion sequence
and has a fusion limit qκ. It follows that

qκ � �i � �̇

for each i < κ and therefore qκ � �̇ /∈
⋂
f∈D

⋃
i<κ[hf(i)]. Thus the set of conditions

that force �̇ /∈
⋂
f∈D

⋃
i<κ[hf(i)] is dense in Pα,κ++. �

We see that every intermediate model V Pα believes that a set X ⊆ 2κ which
contains a real appearing in a later model will never be strong measure zero with
respect to any test conducted in V Pα . This essentially gives us our theorem.

Theorem 5.9. V P |= SN = [2κ]≤κ
+

.

Proof. Since we already saw one inclusion in Theorem 5.2, it suffices to show
V P |= SN ⊆ [2κ]≤κ

+
. Let nowX ∈ V P be of size κ++ and D be a dominating family

in V P which lies in V. We will show that there is noH ∈ V P with index D such that

X ⊆
⋂
f∈D

⋃
i<κ

[hf(i)],

hence X is not strong measure zero by Fact 5.7. Towards a contradiction, assume
such an H exists. Note that since D is in V, the set H can have cardinality at most κ+;
since P fulfils the κ++-c.c., we know H must already appear in some intermediate
model V Pα . But |X | = κ++, thus there must be an x ∈ X with x /∈ V Pα .

Working in V Pα , let ẋ and Ẋ be Pα,κ++ -names for x and X, respectively, so that
we have

�Pα,κ++ ẋ ∈ Ẋ ∧ ẋ /∈ V Pα .

Then by Lemma 5.8 we have

�Pα,κ++ ẋ /∈
⋂
f∈D

⋃
i<κ

[hf(i)],

and thus X �
⋂
f∈D

⋃
i<κ[hf(i)] in V P, a contradiction. �
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§6. Coding of continuous functions. For the reader’s convenience we collect some
selected facts about the coding of continuous functions that are going to find use in
the next section.

Throughout this section, every tree T is assumed to be a tree on 2<κ.

Definition 6.1. Let T be a tree and (T�)�∈2<κ a family of trees. Then
〈T, (T�)�∈2<κ 〉 is a code for a continuous function (or just code) iff:

1. if �1 � �2, then [T�2 ] ⊆ [T�1 ].
2. if �1 ⊥ �2, then [T�1 ] ∩ [T�2 ] = ∅.
3.

⋃
�∈2i [T�] = [T ] for each i < κ.

Theorem 6.2. If P is a <κ-closed forcing notion, then Σ1
1(κ) properties (i.e.,

analytic properties in the sense of the projective hierarchy on κκ) are absolute between
V and VP .

Proof. See [7]. �

Lemma 6.3. Let 〈T, (T�)�∈2<κ 〉 be a code. Then there exists a unique continuous
function g〈T,(T�)�∈2<κ 〉 : [T ] → 2κ such that

g–1
〈T,(T�)�∈2<κ 〉

([�]) = [T�]

for all � ∈ 2<κ.

Proof. If we set g(y) :=
⋃
{� ∈ 2<κ : y ∈ [T�]}, then it is easy to see that g :

[T ] → 2κ is a well-defined continuous function and g–1([�]) = [T�] for all � ∈ 2<κ.
Since ([�])�∈2<κ forms a clopen basis of 2κ, uniqueness is given. �

On the other hand, if g : Y → 2κ is a continuous function whereY ⊆ 2κ is closed,
then 〈T, (T�)�∈2<κ 〉 is a code for g, where T and the T�’s are trees with [T ] = Y and
[T�] = g–1([�]).

Definition 6.4. For codes c, c′ define c � c′ :⇔ gc ⊆ gc′ .

Clearly � is reflexive and transitive.

Definition 6.5. A function g : Y → Z with Y,Z ⊆ 2κ is uniformly continuous
iff

∀i < κ ∃j(i) < κ ∀x ∈ Y : g ′′([x�j(i)] ∩ Y ) ⊆ [g(x)�i ] ∩ Z.

The map i �→ j(i) is the modulus of continuity of g.

Fact 6.6. The following statements are Π1
1(κ) and therefore absolute for<κ-closed

forcing extensions:

• c is a code for a continuous function.
• “[T ] = [T ′]” for trees T,T ′.
• “c � c′” for codes c, c′.
• “gc is a total function” for a code c.
• “ran(gc) ⊆ [T ]” for a code c and a tree T.
• “gc is uniformly continuous with modulus of continuity i �→ j(i)” for a code c.
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Let nowY ⊆ 2κ be closed and g : Y → 2κ be continuous. The above thus yields a
method to continuously and uniquely extend g to g̃ : Y (VP ) → (2κ)(VP )4 for a <κ-
closed forcing P . To do so, choose a code c for g and evaluate it in VP . It is easy to
prove that g̃ = (gc)V

P
is an extension of g; also observe that g̃ is independent of the

chosen code c, since the statement c � c′ is absolute by the above fact. Furthermore,
we note that g̃ is the unique continuous extension of g, since Y is dense in YV

P
.

In the future we will not be making a notational distinction between g and g̃.

§7. Second proof. In this section we will construct a model in which everyX ⊆ 2κ

of size |2κ| can be uniformly continuously mapped onto 2κ. The construction closely
follows Corazza’s approach [4].

We will consider the same forcing iteration 〈Pα, Q̇� : α ≤ κ++, � < κ++〉 with
≤κ-support as in the previous section. Additionally, we also choose Q̇α to be
κ-Sacks forcing (i.e., fα ≡ 2) for α = 0 and for α with cofinality κ+. We still
assume V |= |2κ| = κ+, but κ is only required to be inaccessible this time.

Since the forcing iteration is identical to the one in the previous section, Theorem
5.2 holds and thus

V P |= [2κ]≤κ
+ ⊆ SN .

The other direction of the proof hinges on a technical lemma.

Lemma 7.1. Let p ∈ P, F ∈ [κ++]<κ, i < κ, Y ∈ [2κ]<κ and a P-name �̇ be given
such that p forces �̇ ∈ 2κ and �̇ /∈ V . Then we may find an X ∈ [2κ]<κ and a sequence
(qj)j<κ of conditions below p such that:

• ∀j1 < j2 < κ : qj2 ≤F,i qj1 ≤F,i p,
• ∀j < κ : qj � ∃x ∈ X̌ : �̇�j = x�j, and
• X ∩ Y = ∅.

Proof. If necessary, we may strengthen p twice in the following manner:

• Firstly, since |Y | < κ and p � �̇ /∈ Y̌ , we may find a name �̇ for an ordinal less
than κ such that

p � ∀y ∈ Y̌ : �̇��̇ 	= y��̇ .
Property B* enables us to find a p′ ≤F,i p and �∗ < κ with

∀y ∈ Y : p′ � �̇��∗ 	= y��∗

by restricting a maximal antichain deciding �̇.
• Secondly, we can find a p′′ ≤F,i p′ that is (F, i)-bounded (see Definition 4.15).

So without loss of generality assume that p already has both these properties. We
construct the sequence (qj)j<κ inductively:

4Here Y (VP ) is defined as [T ](VP ) for a ground model tree T with [T ] = Y . By the above fact, this
definition does not depend on the choice of T.
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• j = 0: Set q0 := p.
• j → j + 1: Since

Dj+1 := {r ≤ qj : r decides �̇�(j + 1)}
is open dense below qj , we may apply Lemma 4.22 to qj, F, i and Dj+1

5 to get

qj+1 and (sj+1
g )g∈Cj+1 such that qj+1 is (Dj+1, F, i)-complete as witnessed by

(sj+1
g )g∈Cj+1 . Note that we have qj+1 ≤F,i qj ≤F,i p.

• 	 is a limit: Find a ≤F,i -lower bound q̃	 of (q�)�<	 . Just as in the successor step,
apply Lemma 4.22 to q̃	 , F, i and

D	 := {r ≤ q̃	 : r decides �̇�	}

to get q	 and (s	g )g∈C	 .

By Lemma 4.19 we know that (Cj)j<κ is a decreasing sequence of non-empty sets
of size less than κ; as such, the sequence is eventually constant. Let j∗ be the index
at which this happens.

Now define

X := {x ∈ 2κ : ∃g ∈ Cj∗ ∀j < κ : sjg � �̇�j = x�j}.

For g ∈ Cj∗ the sequence (sjg )j<κ is decreasing by Lemma 4.19. Hence each
g ∈ Cj∗ successfully interprets �̇ as some unique x ∈ X , i.e.,

∀g ∈ Cj∗ ∃! x ∈ X ∀j < κ : sjg � �̇�j = x�j.
Since ∀y ∈ Y : p � �̇��∗ 	= y��∗, we know that X ∩ Y = ∅.

Suppose now that j ≥ j∗ and r ≤ qj . Then r is compatible with sjg for some
g ∈ Cj = Cj∗ and we can find a t ≤ r, sjg . But then ∃x ∈ X : t � �̇�j = x�j, so we
can conclude

qj � ∃x ∈ X̌ : �̇�j = x�j.
Since |Y | < κ, we may for each j < j∗ pick an arbitrary xj ∈ [�j ]\Y , where

qj � �̇�j = �̌j

and add those xj to X, thereby ensuring that

qj � ∃x ∈ X̌ : �̇�j = x�j
holds for j < j∗ as well. �

We are now preparing to show that every new real �̇G ∈ V P can be mapped onto
the first Sacks real ṡ0 via a uniformly continuous ground model function. In what
follows we shall slightly abuse notation; for p ∈ P and a node � ∈ p(0) denote by
p[�] the condition that satisfies p[�](0) = p(0)[�] and p[�](�) = p(�) for � > 0.

Lemma 7.2. Let p ∈ P, F ∈ [κ++]<κ and i, � < κ. Let furthermore a P-name �̇ be
given such that p forces �̇ ∈ 2κ and �̇ /∈ V . Then we can find a q ≤F,i p, an �∗ > � and
a family (A�)�∈spliti (p(0)) of non-empty, clopen sets with:

5qj is (F, i)-bounded by Fact 4.16.

https://doi.org/10.1017/jsl.2023.100 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.100


STRONG MEASURE ZERO SETS ON 2κ FOR κ INACCESSIBLE 23

• if �1 	= �2, then A�1 ∩ A�2 = ∅,
• A� =

⋃
�∈S� [�] for some S� ⊆ 2�

∗
, and

• q[�] � �̇ ∈ A�.

Proof. Enumerate spliti(p(0)) as (�k)k<	 with 	 < κ. We inductively construct
sequences ((tkj )j<κ)k<	 and a sequence of sets (Xk)k<	 : assuming that Xm has been
constructed for m < k, apply Lemma 7.1 to p[�k ] and Y :=

⋃
m<k Xm to get a

sequence of conditions (tkj )j<κ and a set Xk .
Now let �∗ > � be an ordinal large enough such that whenever j1 	= j2 for j1, j2 <

	 and x1 ∈ Xj1 , x2 ∈ Xj2 then x1��∗ 	= x2��∗. This is possible, since the (Xk)k<	 are
disjoint and of size less than κ. This allows us to define

A�k :=
⋃
x∈Xk

[x��∗].

Now we glue the conditions tk�∗ together in the following way: Set

q(0) :=
⋃
k<	

tk�∗(0)

and for � > 0 define q(�) inductively; assuming q�� has been defined, set

q(�) := tk̇�∗(�), where k̇ is the unique ordinal less than 	 such that tk̇�∗�� ∈ Ġ� .

Note that (tk�∗��)k<	 is a maximal antichain below q�� . For limit � observe that
supp(q��) ⊆

⋃
k<	 supp(tk�∗��). By Lemma 7.1 we know that tk�∗ ≤F,i p[�k ] for each

k < 	, and since spliti(p(0)) = {�k : k < 	}, we can inductively conclude q�� ≤F∩�,i
p�� for all � ≤ κ++.

To see the last claim, only note that q[�] = tk�∗ for some k < 	, therefore by Lemma
7.1 we have tk�∗ � ∃x ∈ X̌k : �̇��∗ = x��∗ and thus

q[�] � �̇ ∈ A�

by definition of A�. �

Remark 7.3. Without loss of generality, we may choose the A� in the previous
lemma to be minimal in the following sense: for each � ∈ 2�

∗
we have � ∈ S� iff there

exists a condition r ≤ q[�] such that r � �̇ ∈ [�].

Lemma 7.4. Let p ∈ P and a P-name �̇ be given such that p forces �̇ ∈ 2κ and
�̇ /∈ V . Then there exists a q ≤ p, a sequence (�∗(i))i<κ and a family (A�)�∈split(q(0))
such that A� ⊆ 2κ are non-empty, clopen and:

• if �1 � �2, then A�2 ⊆ A�1 ,
• if �1 ⊥ �2, then A�1 ∩ A�2 = ∅,
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• if � ∈ spliti (q(0)), then A� =
⋃
�∈S� [�] for some S� ⊆ 2�

∗(i), and

• q[�] � �̇ ∈ A�.

Proof. We shall construct a fusion sequence 〈qi , Fi : i < κ〉 and a strictly
increasing sequence (�∗(i))i<κ of ordinals less than κ such that qi+1 has the required
properties for (A�)�∈spliti (qi (0)).

• i = 0: Set q0 := p and F0 := {0}.
• i → i + 1: Applying Lemma 7.2 to qi , Fi , i and supj<i �

∗(j) yields a q̃ ≤Fi ,i qi ,
an ordinal �∗(i) and a family (Ai�)�∈spliti (qi (0)). Set qi+1 := q̃. Define Fi+1 with
a bookkeeping argument.

• 	 is a limit: Set q	 to a fusion limit of 〈qj, Fj : j < 	〉 and F	 :=
⋃
j<	 Fj .

Let now qκ be a fusion limit of the sequence 〈qi , Fi : i < κ〉 and for � ∈ split(qκ(0))
define

A� := Ai(�)� ,

where i(�) is the unique i with � ∈ spliti(qκ(0)) = spliti(qi(0)). We claim qκ has the
properties we are looking for:

• The third property holds by Lemma 7.2.
• If we assume theAi(�)� have been chosen minimal in each step as in Remark 7.3,

then the first property holds. To see this, take � � � and �′ ∈ S�, where S� is as
stated in Lemma 7.2. By Remark 7.3 there is a condition r ≤ q[�]

i(�)+1
such that

r � �̇ ∈ [�′]. But then r ≤ q[�]
i(�)+1

≤ q[�]
i(�)+1

, and thus �′��∗(i(�)) ∈ S� . Hence
A� ⊆ A� .

• For the second property, let �, � ∈ split(qκ(0)) with � ⊥ � be given. Without
loss of generality assume i(�) ≤ i(�) and find an �′ with �′ � � and �′ ∈
spliti(�)(qκ(0)); by incompatibility we have �′ 	= �. By the first property we
have A� ⊆ A�′ and Lemma 7.2 yields A�′ ∩ A� = ∅.

• To see the fourth property, let � ∈ split(qκ(0)). Then we have q[�]
κ ≤ q[�]

i(�)+1
and

therefore

q
[�]
κ � �̇ ∈ A�,

as desired. �

The following lemma substitutes in for Tietze’s Extension Theorem from the
countable case in [4]. Recall the notion of superclosure (page 4) and uniform
continuity (Definition 6.5).

Lemma 7.5. LetY,Z ⊆ 2κ, where Y is closed and Z is superclosed, and let g : Y →
Z be uniformly continuous. Then g can be extended to a uniformly continuous function
g̃ : 2κ → Z with the same modulus of continuity as g.

Proof. The open set 2κ\Y can be be written as a union of basic open sets
⋃
i<	 [�i ]

with 	 ≤ κ, �i ∈ 2�i such that the �i are minimal, i.e.,

∀j < �i : [�i�j] ∩ Y 	= ∅.
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In particular the sets [�i ] are pairwise disjoint. We will define g̃ to extend g and to
be constant on each [�i ].

For i < 	 define

S(i) := {� ∈ 2<κ : ∃j < �i : g ′′([�i�j] ∩ Y ) ⊆ [�] ∩ Z}.
Clearly S(i) consists of pairwise �-compatible elements; furthermore, for each
� ∈ S(i) we have [�] ∩ Z 	= ∅. Since Z is superclosed6, we haveZ ∩ [

⋃
S(i)] 	= ∅. We

may thus set g̃�[�i ] to be constant with an arbitrary, fixed value from Z ∩ [
⋃
S(i)].

It remains to check that g̃ : 2κ → Z is uniformly continuous with the same
modulus of continuity as g. To this end, let i < κ and x ∈ 2κ. Consider y ∈
[x�j(i)].

• If x ∈ Y , the interesting case is y /∈ Y , hence y ∈ [�� ] for some � < 	. But then
j(i) < �� and

g ′′([x�j(i)] ∩ Y ) ⊆ [g(x)�i ] ∩ Z,
hence by definition g(x)�i ∈ S(�) and thus g̃(y) ∈ [

⋃
S(�)] ∩ Z ⊆

[g̃(x)�i ] ∩ Z.
• On the other hand, ifx /∈ Y , then x is in [�k ] for somek < 	.Now one possibility

is [x�j(i)] ∩ Y = ∅, in which case j(i) ≥ �k and g̃ is constant on [x�j(i)],
therefore g̃(y) = g̃(x) ∈ [g̃(x)�i ] ∩ Z.
The other possibility is [x�j(i)] ∩ Y 	= ∅ and thus j(i) < �k , and there once
again are two cases to be distinguished:

– If y ∈ Y , then g(y)�i ∈ S(k) and thus

g̃(y) = g(y) ∈ [g(y)�i ] ∩ Z = [g̃(x)�i ] ∩ Z.
– On the other hand, if y /∈ Y , then y ∈ [�� ] for some � < 	. Since [y�j(i)] ∩
Y = [x�j(i)] ∩ Y 	= ∅, we can also conclude j(i) < �� . This means that
S(k) ∩ S(�) contains an � with dom(�) = i (namely g(x′)�i for some
x′ ∈ [x�j(i)] ∩ Y ) and thus g̃(y) ∈ [�] ∩ Z = [g̃(x)�i ] ∩ Z. �

A natural question the inquisitive reader might pose is the validity of Lemma
7.5 in case of the additional “artificial” assumption of superclosure being dropped.
Indeed, the statement no longer holds; in [19] the authors observe, for instance, that
the closed subset Y of 2κ consisting of all sequences with finitely many zeroes is not
a retract of 2κ (and thus the identity Y → Y cannot be extended to a continuous
function on 2κ).

Theorem 7.6. Let p ∈ P force �̇ ∈ 2κ and �̇ /∈ V . Then there exists a q ≤ p and a
uniformly continuous function f∗ : 2κ → [q(0)] in V such that

q � f∗(�̇) = ṡ0,

where ṡ0 denotes the first Sacks real.

6If |S(i)| = κ, then [
⋃
S(i)] is not defined, so work with {

⋃
S(i)} instead.
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Proof. Lemma 7.4 yields a condition q ≤ p, a sequence (�∗(i))i<κ and a family
(A�)�∈split(q(0)) of clopen sets. This family codes7 a continuous function

f : Y → [q(0)]

y �→
⋃

{� : y ∈ A�}

defined on the closed set Y =
⋂
i<κ

⋃
�∈spliti (q(0))A�

8.
We claim that f is in fact uniformly continuous. To see this, let i < κ and x ∈ Y .

Choose � such that x ∈ A� and � ∈ spliti(q(0)). Recall that A� is of the form (see
Lemma 7.4)

A� =
⋃
�∈S�

[�]

with S� ⊆ 2�
∗(i). Therefore we have

f′′([x��∗(i)]) ⊆ [�] ⊆ [f(x)�i ],
since i ≤ dom(�).

Since the set [q(0)] is superclosed, we can apply Lemma 7.5 and extend f to a
uniformly continuous function f∗ : 2κ → [q(0)]. Lastly, we have

q[�] � �̇ ∈ A� ⊆ (f∗)–1([�])

for each � ∈ split(q(0)) and thus

q � f∗(�̇) = ṡ0. �
As in the classical case, every κ-Sacks condition can be decomposed into |2κ|

many κ-Sacks conditions in a continuous way. The last auxiliary result we require
formalizes this:

Lemma 7.7. Let p ∈ P be a condition. Then there exists a uniformly continuous
g∗ : [p(0)] → 2κ9 and for each x ∈ 2κ ∩ V a condition qx ≤ p such that

qx � x̌ = g∗(ṡ0).

Proof. First we construct a function e = (e1, e2) : p(0) → 2<κ × 2<κ with the
following properties:

• e is continuous and monotone increasing,
• e(∅) = (∅, ∅),
• if � /∈ split(p(0)), then e(��i) = e(�),
• if � ∈ splitj(p(0)) and:

7If we define

A′
� :=

{
A�, where � = min{� ∈ split(q(0)) : � � �}, for � ∈ q(0),

∅, for � /∈ q(0),

and set c := 〈T, (T�)�∈2<κ 〉, where [T ] = Y and [T�] = A′
� ∩ Y , then it can be seen that c is a code for

a continuous function; to avoid abuse of notation, we could also be working with c at this point instead.
8Note that the <κ-box topology is closed under intersections of size less than κ.
9Recall that p(0) ⊆ 2<κ .
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– j is a successor, then e(��i) = (e1(�)�i, e2(�)),
– j = 0 or j is a limit, then e(��i) = (e1(�), e2(�)�i).

Define ĝ = (ĝ1, ĝ2) : [p(0)] → 2κ × 2κ as ĝk(b) =
⋃
{ek(b�i) : i < κ} for k = 1, 2.

Since [p(0)] is perfect, ĝ is well-defined. Moreover, ĝ maps the clopen basis
([�])�∈split(p(0)) to a clopen basis of 2κ × 2κ, hence it is a homeomorphism.

For x ∈ 2κ now set qx(0) := {� ∈ 2<κ : ∃y ∈ ĝ–1({x} × 2κ) : � � y} and
qx(�) = p(�) for � > 0. We claim that qx is a condition; it is sufficient to check
that qx(0) is. We check (S2), (S5), and (S6); the rest is left as an exercise for the
reader.

• (S2): Since ĝ is a homeomorphism, it follows that ĝ–1 ({x} × 2κ) is a perfect
set.

• (S5): Let
(
�j

)
j<	

with �j ∈ qx(0) be a strictly increasing sequence of length 	 <

κ. Set � :=
⋃
j<	 �j . It easily follows that � ∈ qx(0) ⇔ x ∈ [e1(�)] for all � ∈

2<κ. As e1(�) =
⋃
{e1(�j) : j < 	} we see that x ∈ [e1(�)], hence � ∈ qx(0).

• (S6): Let (�j)j<	 be a strictly increasing sequence of length less than κ such
that �j ∈ split(qx(0)). Again, set � :=

⋃
j<	 �j . It follows that � ∈ split�(p(0))

for some limit �. But as x ∈ [e1(�)] and e1(�) = e1(��i), we have ��i ∈ qx(0)
for i = 0, 1, hence � ∈ split(qx(0)).

Clearly qx ≤ p. Now set g∗ := ĝ1. Then g∗ is uniformly continuous with modulus
of continuity

i �→ j(i) := sup{dom(�) + 1 : � ∈ spliti+1(p(0))}.
Finally, we have qx � x̌ = g∗(ṡ0) by the definition of qx(0) and the absoluteness (see
Fact 6.6) of the statement

ran(g∗ � [qx(0)]) ⊆ {x}. �
Theorem 7.8. InV P, every subset X of 2κ of sizeκ++ can be uniformly continuously

mapped onto 2κ.

Proof. Assume that Ẋ is a P-name for a subset of 2κ such that

�P ∀h uniformly continuous function ∃y ∈ 2κ : y /∈ h′′Ẋ .

We will show ∃α∗ < κ++ : �P Ẋ ⊆ V Pα∗ , thus �P |Ẋ | ≤ κ+.
By our assumption on Ẋ and P satisfying the κ++-c.c. we get

∀α < κ++ ∀ḣ Pα-name for a uniformly continuous function

∃� < κ++, � ≥ α ∃y P� -name for a real : �P ẏ /∈ ḣ′′Ẋ .
To increase legibility, let the ellipsis (... ) denote the four quantifications in the above
statement. By interpreting the name Ẋ partially in the intermediate model V P� , i.e.,
by identifying Ẋ with a canonical P� -name for a P�,κ++-name, we get

(... ) : �P�
�P�,κ++ ẏ /∈ ḣ′′Ẋ .

Keep in mind that ẏ, ḣ are both P� -names, since � ≥ α.
Without loss of generality assume that the function α �→ �(α) maps to the

minimal � for which the statement holds. Observe that, crucially, since every
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continuous function h : 2κ → 2κ can be coded by an element of 2κ (see Section
6), no new functions of the kind appear at stages of cofinality > κ (Lemma 4.31).
Therefore we can easily find a fixed point of the function α �→ �(α) with cofinality
κ+; call it α∗. For α∗ we thus know that

V Pα∗ |= ∀h uniformly continuous function ∃y ∈ 2κ : �Pα∗ ,κ++ y̌ /∈ h′′Ẋ .

For the remainder of this proof we will be working within V Pα∗ . We wish to show
�Pα∗ ,κ++ Ẋ ⊆ V Pα∗ .

Let thus p ∈ Pα∗,κ++ and �̇ be a Pα∗,κ++-name such that p forces �̇ ∈ 2κ and
�̇ /∈ V Pα∗ . Theorem 7.6 applied within V Pα∗ (recall that the tail iteration Pα∗,κ++

has the same structure as the full iteration) yields a q ≤ p and a uniformly
continuous function f∗ : 2κ → [q(0)] such that q �Pα∗ ,κ++ f

∗(�̇) = ṡ0. Likewise,
Lemma 7.7 applied to q gives us a uniformly continuous function g∗ : [q(0)] → 2κ

and conditions (qx)
x∈2κ∩V Pα∗ with qx �Pα∗ ,κ++ x̌ = g∗(ṡ0).

Now let x ∈ 2κ ∩ V Pα∗ be arbitrary. By construction we have qx � x̌ = (g∗ ◦
f∗)(�̇). For the uniformly continuous function (g∗ ◦ f∗) : 2κ → 2κ we can by
our assumption on α∗ find a y ∈ 2κ ∩ V Pα∗ with �Pα∗ ,κ++ y̌ /∈ (g∗ ◦ f∗)′′Ẋ . The

condition qy thus forces �̇ /∈ Ẋ . Since p and �̇ were arbitrary, we may conclude

�Pα∗ ,κ++ Ẋ ⊆ V Pα∗ .

Thus we have shown V |= �Pα∗�Pα∗ ,κ++ Ẋ ⊆ V Pα∗ , which finishes the proof. �

It is easy to see that the uniformly continuous image of a strong measure zero set
remains strong measure zero; thus we have shown

V P |= SN ⊆ [2κ]≤κ
+
.

Corollary 7.9. V P |= SN = [2κ]≤κ
+

.

§8. Stationary strong measure zero. Finally, let us take a look at the following
definition, introduced by Halko [10]:

Definition 8.1. A set X ⊆ 2κ is called stationary strong measure zero iff

∀f ∈ κκ ∃(�i)i<κ : (∀i < κ : �i ∈ 2f(i)) ∧ X ⊆
⋂

cl⊆κ club

⋃
i∈cl

[�i ].

So a set X is stationary strong measure zero iff we can find coverings that cover
every point of X stationarily often. To motivate why this definition might be of
interest, observe that even for regular strong measure zero sets, we can always find
coverings that cover each point at least unboundedly often:

Lemma 8.2. Let X ⊆ 2κ be strong measure zero. Then

∀f ∈ κκ : ∃(�i)i<κ : (∀i < κ : �i ∈ 2f(i)) ∧ X ⊆
⋂
j<κ

⋃
i≥j

[�i ].
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Proof. Partition κ into sets (Ui)i<κ, where each Ui has size κ. For a challenge
f ∈ κκ and every i < κ we can find coverings (�ij)j∈Ui that satisfy the challenge
(f(j))j∈Ui . But now (�ij)j∈Ui ,i<κ has the property we are looking for. �

Lemma 8.3. Let P be a κκ-bounding forcing notion and cl ∈ VP a club subset of
κ. Then there is a club cl ′ ∈ V with cl ′ ⊆ cl .

Proof. In VP , let h ∈ κκ enumerate cl and g ∈ κκ ∩ V dominate h; note that h
is a continuous function. Define the functions

g ′(0) = g(0), g ′(α + 1) = g(g ′(α)) and g ′(�) = sup
i<�

g ′(i) for limit �,

h′(0) = h(0), h′(α + 1) = h(g ′(α)) and h′(�) = sup
i<�

h′(i) for limit �.

Let � be a limit. Then since h′(α) ≤ g ′(α) and g ′(α) ≤ h′(α + 1), we have h′(�) =
g ′(�); furthermore we know h′(�) ∈ cl and g ∈ V , hence (g ′(�))�<κ,� limit is a ground
model club contained in cl . �

In the Corazza-type model from Section 7, the notions of strong measure zero
and stationary strong measure zero coincide.

Theorem 8.4. V P |= ∀X ⊆ 2κ : X ∈ SN ⇔ X is stationary strong measure zero.

Proof. Modify the argument in Theorem 5.1 to show

V P |= ∀α < κ++ : 2κ ∩ V Pα is stationary strong measure zero

by instead showing the set

Dx,cl := {p ∈ Q� : ∃i ∈ cl : p � �̇(i) = x�h(i)}

to be dense for every x ∈ V Pα and every ground model club cl ⊆ κ, where �̇ is as
defined in Theorem 5.1. As every club cl ∈ V P contains a ground model club cl ′

by Lemma 8.3, this is sufficient. To see that Dx,cl is dense, merely note that for any
p ∈ Q� and b ∈ [p] ∩ V P� , the set

{j < κ : b�j ∈ split(p)}

is a club and thus intersects cl . �

On the other hand, it follows from |2κ| = κ+ that there is a strong measure zero
set which is not stationary strong measure zero.

Theorem 8.5. Under |2κ| = κ+ there exists an X ∈ SN that is not stationary
strong measure zero.

Proof. First off, let us enumerate all strictly increasing functions in κκ as
(fα)α<κ+ and likewise enumerate the set

S := {� ∈ (2<κ)κ : ∀i < κ : dom(�(i)) = i + 1}

as (�α)α<κ+.
We shall inductively construct three sequences (xα)α<κ+ , (�α)α<κ+, and (clα)α<κ+

with the following properties:
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a) ∀α < κ+ : xα ∈ 2κ, �α ∈ (2<κ)κ and clα is a club subset of κ.
b) ∀α < κ+ ∀i < κ : dom(�α(i)) = fα(i).
c) ∀α < κ+ ∀i < κ :

⋃
j≥i [�α(j)] is open dense.

d) ∀α < κ+ ∀� ≤ α : x� ∈
⋃
i<κ[�α(i)].

e) ∀� < κ+ ∀α < � : x� ∈
⋃
i<κ[�α(i)].

f) ∀α < κ+ : xα /∈
⋃
i∈clα [�α(i)].

Setting X = {xα : α < κ+} yields a strong measure zero set (by b), d), and e)).
However, X is not stationary strong measure zero, since for the challenge g : i �→
i + 1 property f) ensures

∀� ∈ S ∃x ∈ X ∃cl club : x /∈
⋃
i∈cl

[�(i)].

Suppose now, inductively, that (xα)α<� , (�α)α<� , and (clα)α<� have been
constructed for � < κ+. We wish to define x�, �� , and cl� . To this end, reindex
(xα)α<� and (�α)α<� as (x̃i+1)i<κ, (�̃i+1)i<κ10 and inductively construct x� and cl� by
building up partial approximations xj� and cl j� for j < κ. Here xj� will be a binary
sequence of length at least j + 1.

• j = 0: Set cl0� := 0 and x0
� := 〈1 – ��(0)(0)〉.

• j → j + 1: Since by assumption � �→ dom(�̃j+1(�)) is strictly increasing

and
⋃
�′≥� [�̃j+1(� ′)] is open dense for all � < κ, we can find an �∗ > clj�

with xj� � �̃j+1(�∗). Set clj+1
� := dom(�̃j+1(�∗)) and xj+1

� := �̃j+1(�∗)�(1 –

��(cl
j+1
� )(clj+1

� )).

• � is a limit: Set cl�� := supj<� cl
j
� and x�� := (

⋃
j<� x

j
� )�(1 – ��(cl�� )(cl�� )).

Now set x� :=
⋃
{xj� : j < κ} and cl� := {cl j� : j < κ}. In the construction we

have ensured x� /∈
⋃
j∈cl� [��(j)] and x� ∈

⋃
j<κ[�̃i+1(j)] for all i < κ. Finally, it is

elementary to construct �� such that b), c), and d) holds. �
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[3] É. Borel, Sur la classification des ensembles de mesure nulle. Bulletin de la Société Mathématique
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[24] W. Sierpiński, Sur une ensemble non dénombrable, dont toute image continue est de mesure nulle.
Fundamenta Mathematicae, vol. 11 (1928), pp. 302–304. https://doi.org/10.4064/fm-11-1-302-303.

[25] A. Villaveces, Chains of end elementary extensions of models of set theory, this Journal, vol. 63
(1998), no. 3, pp. 1116–1136. https://doi.org/10.2307/2586730.

INSTITUTE FOR DISCRETE MATHEMATICS AND GEOMETRY
TU WIEN

WIEDNER HAUPTSTRAßE
8-10/104, 1040 WIEN, AUSTRIA

E-mail: nick.steven.chapman@gmail.com

E-mail: jschuerz@gmail.com

https://doi.org/10.1017/jsl.2023.100 Published online by Cambridge University Press

https://doi.org/10.2307/2001276.
https://doi.org/10.1016/j.apal.2013.06.011.
https://doi.org/10.1016/j.apal.2013.06.011.
https://doi.org/10.1016/j.apal.2016.01.001
https://doi.org/10.1016/j.apal.2016.01.001
https://doi.org/10.2307/2275146
https://doi.org/10.1090/S0002-9947-2013-05783-2
https://doi.org/10.4064/fm170-3-1
https://doi.org/10.2178/jsl/1230396915
https://doi.org/10.1016/0168-0072(90)90058-A
https://doi.org/10.1016/0003-4843(80)90021-2
https://doi.org/10.1007/s11856-022-2465-5
https://doi.org/10.1007/s11856-022-2465-5
https://doi.org/10.1002/malq.201600051
https://doi.org/10.1007/BF02392416
https://doi.org/10.1007/s11856-015-1224-2
https://doi.org/10.2307/2273449
https://arxiv.org/abs/1808.01636
https://doi.org/10.1007/s00153-013-0334-y
https://doi.org/10.1007/s00153-013-0334-y
https://doi.org/10.1007/978-3-662-12831-2
https://doi.org/10.4064/fm-11-1-302-303
https://doi.org/10.2307/2586730
mailto:nick.steven.chapman@gmail.com
mailto:jschuerz@gmail.com
https://doi.org/10.1017/jsl.2023.100

	1 Introduction
	2 Notation and basic definitions
	3 Perfect tree forcing
	4 The iteration
	5 First proof
	6 Coding of continuous functions
	7 Second proof
	8 Stationary strong measure zero

