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Abstract

In this paper we prove the existence of complete minimal surfaces in some metric semidirect products.
These surfaces are similar to the doubly and singly periodic Scherk minimal surfaces in R3. In particular,
we obtain these surfaces in the Heisenberg space with its canonical metric, and in Sol3 with a one-
parameter family of nonisometric metrics.
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1. Introduction

In this paper we construct examples of periodic minimal surfaces in some semidirect
products R2 oA R, depending on the matrix A. By ‘periodic surface’ we mean a
properly embedded surface invariant with respect to a nontrivial discrete group of
isometries.

One of the simplest examples of a semidirect product is H2 × R = R2 oA R, when
we take A =

(1 0
0 0

)
. In this space, Mazet et al. [2] proved some results about periodic

constant mean curvature surfaces and constructed examples of such surfaces. One of
their methods is to solve a Plateau problem for a certain contour. In [5], using a similar
technique, Rosenberg constructed examples of complete minimal surfaces in M2 × R,
where M is either the 2-sphere or a complete Riemannian surface with nonnegative
curvature or the hyperbolic plane.

Meeks et al. [3] have proved results concerning the geometry of solutions to Plateau
type problems in metric semidirect products R2 oA R, when there is some geometric
constraint on the boundary values of the solution (see Theorem 2.5).

The first example that we construct is a complete periodic minimal surface similar
to the doubly periodic Scherk minimal surface in R3. It is invariant with respect to two
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128 A. Menezes [2]

translations that commute and is a four-punctured sphere in the quotient of R2 oA R
by the group of isometries generated by the two translations. In the final section we
obtain a complete periodic minimal surface analogous to the singly periodic Scherk
minimal surface in R3.

These surfaces are obtained by solving the Plateau problem for a geodesic
polygonal contour Γ (it uses a result by Meeks et al. [3] about the geometry of solutions
to the Plateau problem in semidirect products), and letting some sides of Γ tend to
infinity in length, so that the associated Plateau solutions all pass through a fixed
compact region (this will be assured by the existence of minimal annuli playing the role
of barriers). Then a subsequence of the Plateau solutions will converge to a minimal
surface bounded by a geodesic polygon with edges of infinite length. We complete
this surface by symmetry across the edges. The whole construction requires precise
geometric control and uses curvature estimates for stable minimal surfaces.

These results are obtained for semidirect products R2 oA R where A =
(0 b

c 0
)
. For

example, we obtain periodic minimal surfaces in the Heisenberg space, when A =
(0 1
0 0

)
,

and in Sol3, when A =
(0 1
1 0

)
, with their well-known Riemannian metrics. When we

consider the one-parameter family of matrices A(c) =
( 0 c
1/c 0

)
, c ≥ 1, we get a one-

parameter family of metrics in Sol3 which are not isometric.

2. Preliminary results

Generalizing direct products, a semidirect product is a particular way in which a
group can be constructed from two subgroups, one of which is a normal subgroup. As a
set, it is the cartesian product of the two subgroups but with a particular multiplication
operation.

In our case, the normal subgroup is R2 and the other subgroup is R. Given a
matrix A ∈M2(R), we can consider the semidirect product R2 oA R, where the group
operation is given by

(p1, z1) ∗ (p2, z2) = (p1 + ez1A p2, z1 + z2), p1, p2 ∈ R
2, z1, z2 ∈ R, (2.1)

and

A =

(
a b
c d

)
∈M2(R).

We choose coordinates (x, y) ∈ R2, z ∈ R. Then ∂x = ∂/∂x, ∂y, ∂z is a parallelization
of G = R2 oA R. Taking derivatives at t = 0 in (2.1) of the left multiplication
by (t, 0, 0) ∈G (respectively by (0, t, 0), (0, 0, t)), we obtain the following basis
{F1, F2, F3} of the right invariant vector fields on G:

F1 = ∂x, F2 = ∂y, F3 = (ax + by)∂x + (cx + dy)∂y + ∂z.

Analogously, if we take derivatives at t = 0 in (2.1) of the right multiplication
by (t, 0, 0) ∈G (respectively by (0, t, 0), (0, 0, t)), we obtain the following basis
{E1, E2, E3} of the Lie algebra of G:

E1 = a11(z)∂x + a21(z)∂y, E2 = a12(z)∂x + a22(z)∂y, E3 = ∂z,
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[3] Periodic minimal surfaces in semidirect products 129

where we have denoted

ezA =

(
a11(z) a12(z)
a21(z) a22(z)

)
.

We define the canonical left invariant metric on R2 oA R, denoted by 〈, 〉, to be that
one for which the left invariant basis {E1, E2, E3} is orthonormal.

The Riemannian connection ∇ for the canonical left invariant metric of R2 oA R in
this frame is expressed as:

∇E1 E1 = aE3, ∇E1 E2 =
b + c

2
E3, ∇E1 E3 = −aE1 −

b + c
2

E2,

∇E2 E1 =
b + c

2
E3, ∇E2 E2 = dE3, ∇E2 E3 = −

b + c
2

E1 − dE2,

∇E3 E1 =
c − b

2
E2, ∇E3 E2 =

b − c
2

E1, ∇E3 E3 = 0.

In particular, for every (x0, y0) ∈ R2, γ(z) = (x0, y0, z) is a geodesic in G.

R 2.1. Since [E1, E2] = 0, we have for all z that R2 oA {z} is flat and the
horizontal straight lines are geodesics. Moreover, the mean curvature of R2 oA {z}
with respect to the unit normal vector field E3 is the constant H = tr(A)/2.

The change from the orthonormal basis {E1, E2, E3} to the basis {∂x, ∂y, ∂z}

produces the following expression for the metric 〈, 〉 :

〈, 〉(x,y,z) = [a11(−z)2 + a21(−z)2]dx2 + [a12(−z)2 + a22(−z)2]dy2 + dz2

+ [a11(−z)a12(−z) + a21(−z)a22(−z)](dx ⊗ dy + dy ⊗ dx)

= e−2tr(A)z{[a21(z)2 + a22(z)2]dx2 + [a11(z)2 + a12(z)2]dy2} + dz2

− e−2tr(A)z[a11(z)a21(z) + a12(z)a22(z)](dx ⊗ dy + dy ⊗ dx).

In particular, for every matrix A ∈M2(R), the rotation by angle π around the vertical
geodesic γ(z) = (x0, y0, z) given by the map R(x, y, z) = (−x + 2x0, −y + 2y0, z) is an
isometry of (R2 oA R, 〈, 〉) into itself.

R 2.2. As we observed, the vertical lines of R2 oA R are geodesics of its
canonical metric. For any line l in R2 oA {0} let Pl denote the vertical plane {(x, y, z) :
(x, y, 0) ∈ l; z ∈ R} containing the set of vertical lines passing through l. It follows that
Pl is ruled by vertical geodesics and, since rotation by angle π around any vertical line
in Pl is an isometry that leaves Pl invariant, Pl has zero mean curvature.

Although the rotation by angle π around horizontal geodesics is not always an
isometry, we have the following result.

P 2.3. Let A =
(0 b

c 0
)
∈M2(R) and consider the horizontal geodesic α =

{(x0, t, 0) : t ∈ R} in R2 oA {0} parallel to the y-axis. Then the rotation by angle π
around α is an isometry of (R2 oA R, 〈, 〉) into itself. The same result is true for a
horizontal geodesic parallel to the x-axis.
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130 A. Menezes [4]

P. The rotation by angle π around α is given by the map φ(x, y, z) = (−x +

2x0, y, −z), so φx = −∂x, φy = ∂y and φz = −∂z.
If A =

(0 b
c 0

)
, then

ezA =


∞∑

k=0

(bc)kz2k

(2k)!

∞∑
k=1

bkck−1z2k−1

(2k − 1)!
∞∑

k=1

ckbk−1z2k−1

(2k − 1)!

∞∑
k=0

(bc)kz2k

(2k)!

 .
Hence, a11(z) = a22(z) and e−zA =

( a11(z) −a12(z)
−a21(z) a11(z)

)
. Then

〈, 〉(x,y,z) = {[a21(z)2 + a11(z)2]dx2 + [a11(z)2 + a12(z)2]dy2} + dz2

− [a11(z)a21(z) + a12(z)a11(z)](dx ⊗ dy + dy ⊗ dx)

and

〈, 〉φ(x,y,z) = {[a21(z)2 + a11(z)2]dx2 + [a11(z)2 + a12(z)2]dy2} + dz2

+ [a11(z)a21(z) + a12(z)a11(z)](dx ⊗ dy + dy ⊗ dx).

Therefore, 〈φx, φx〉φ(x,y,z) = 〈∂x, ∂x〉(x,y,z), 〈φy, φy〉 = 〈∂y, ∂y〉, 〈φz, φz〉 = 〈∂z, ∂z〉, that is,
φ is an isometry. Analogously, we can show that the rotation by angle π around a
horizontal geodesic parallel to the x-axis is also an isometry. �

R 2.4. When the matrix A in R2 oA R is
(0 1
0 0

)
and

(0 1
1 0

)
, we have the Heisenberg

space and Sol3, respectively, with their well-known Riemannian metrics. When we
consider the one-parameter family of matrices A(c) =

( 0 c
1/c 0

)
, c ≥ 1, we get a one-

parameter family of metrics in Sol3 which are not isometric. For more details, see [4].

Meeks et al. [3] have proved results concerning the geometry of solutions to Plateau
type problems in metric semidirect products R2 oA R, when there is some geometric
constraint on the boundary values of the solution. More precisely, they proved the
following theorem.

T 2.5 (Meeks et al. [3]). Let X = R2 oA R be a metric semidirect product with
its canonical metric and let Π : R2 oA R→ R

2 oA {0} denote the projection Π(x, y, z) =

(x, y, 0). Suppose that E is a compact convex disk in R2 oA {0}, C = ∂E and Γ ⊂ Π−1(C)
is a continuous simple closed curve such that Π : Γ→C monotonically parameterizes
C. Then:

(1) Γ is the boundary of a compact embedded disk Σ of finite least area;
(2) the interior of Σ is a smooth Π-graph over the interior of E.

3. A doubly periodic Scherk minimal surface

Throughout this section, we consider the semidirect product R2 oA R with the
canonical left invariant metric 〈, 〉, where A =

(0 b
c 0

)
. In this space, we prove the
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[5] Periodic minimal surfaces in semidirect products 131

existence of a complete minimal surface analogous to Scherk’s doubly periodic
minimal surface in R3.

Fix 0 < c0 < c1 and let a be a sufficiently small positive quantity such that

a <
∫ c1

c0

√
a2

11(z) + a2
21(z) +

√
a2

11(z) + a2
12(z) dz

−

∫ c1

c0

√
(a11(z) + a12(z))2 + (a11(z) + a21(z))2 dz.

(3.1)

Note that such positive number a exists, as

|∂x| =

√
a2

11(z) + a2
21(z), |∂y| =

√
a2

11(z) + a2
12(z)

and
|∂x + ∂y| =

√
(a11(z) + a12(z))2 + (a11(z) + a21(z))2.

For each c > 0, consider the polygon Pc in R2 oA R with sides α1, α2, α
c
3, α

c
4 and αc

5
defined by

α1 = {(t, 0, 0) : 0 ≤ t ≤ a},

α2 = {(0, t, 0) : 0 ≤ t ≤ a},

αc
3 = {(a, 0, t) : 0 ≤ t ≤ c},

αc
4 = {(0, a, t) : 0 ≤ t ≤ c},

αc
5 = {(t, −t + a, c) : 0 ≤ t ≤ a},

as illustrated in Figure 1.
We will denote α0

1 = {(t, 0, 0) : 0 ≤ t < a}, α0
2 = {(0, t, 0) : 0 ≤ t < a}, α3 = {(a, 0, t) :

t > 0} and α4 = {(0, a, t) : t > 0}, hence P∞ = α0
1 ∪ α

0
2 ∪ α3 ∪ α4 ∪ {(a, 0, 0), (0, a, 0)}.

Let Π : R2 oA R→ R
2 oA {0} denote the projection Π(x, y, z) = (x, y, 0). The next

proposition is proved in [3, Lemma 1.2], using the maximum principle and the fact
that for every line L ⊂ R2 oA {0}, the vertical plane Π−1(L) is a minimal surface.

P 3.1. Let E be a compact convex disk in R2 oA {0} with boundary C = ∂E
and let Σ be a compact minimal surface with boundary in Π−1(C). Then every point in
intΣ is contained in intΠ−1(E).

Observe that, for each c > 0, the polygon Pc is transverse to the Killing field
X = ∂x + ∂y and each integral curve of X intersects Pc at at most one point. From
now on, denote by P the common projection of every Pc over R2 oA {0}, that is,
P = Π(Pc) = Π(Pd) for any c, d ∈ R, and denote by E the disk in R2 oA {0} with
boundary P. Let us denote by R the region E × {z ≥ 0}. Using Theorem 2.5, we
conclude that Pc is the boundary of a compact embedded disk Σc of finite least area
and the interior of Σc is a smooth Π-graph over the interior of E.

Let Ωc = {(t, −t + a, s) : 0 ≤ t ≤ a; 0 ≤ s ≤ c}.
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132 A. Menezes [6]

y

z

x

Pc

F 1. Polygon Pc.

P 3.2. If S is a compact minimal surface with boundary Pc, then S = Σc.

P. By Proposition 3.1, intΣc, intS ⊂ intΠ−1(E); then, in particular, intΣc, intS ⊂
int{ϕt(p) : t ∈ R; p ∈Ωc}, where ϕt is the flow of the Killing field X.

As S is compact, there exists t such that ϕt(Σc) ∩ S = ∅. If S , Σc, then there
exists t0 > 0 such that ϕt0 (Σc) ∩ S , ∅ and, for t > t0, ϕt(Σc) ∩ S = ∅. Since for all
t , 0, ϕt(Pc) ∩ S = ∅, the point of intersection is an interior point and, by the maximum
principle, ϕt0 (Σc) = S . But that is a contradiction, since t0 , 0. Therefore, S = Σc. �

The next proposition is a classical result.

P 3.3. Let N3 be a homogeneous 3-manifold. Let Σn be an oriented, properly
embedded minimal surface in N. Suppose that there exist c > 0 such that for all n,
|AΣn | ≤ c, and a sequence of points {pn} in Σn such that pn→ p ∈ N. Then there exists
a subsequence of Σn that converges to a complete minimal surface Σ with p ∈ Σ. Here
AΣn denotes the second fundamental form of Σn.

For each n ∈ N, let Σn be the solution to the Plateau problem with boundary Pn. By
Theorem 2.5 and Proposition 3.2, Σn is stable and unique. We are interested in proving
the existence of a subsequence of Σn that converges to a complete minimal surface
with boundary P∞. In order to do so, we will use a minimal annulus as a barrier
(whose existence is guaranteed by the Douglas criterion (see [1, Theorem 2.1])) to
show that there exist points pn ∈ Σn, Π(pn) = q ∈ intE for all n, which converge to a
point p ∈ R2 oA R, and then we will use Proposition 3.3.
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Consider the parallelepiped with the faces A, B,C, D, E and F, defined by

A = {(u, −ε, v) : ε ≤ u ≤ a + ε; c0 ≤ v ≤ c1},

B = {(−ε, u, v) : ε ≤ u ≤ a + ε; c0 ≤ v ≤ c1},

C = {(u, −u, v) : −ε ≤ u ≤ ε; c0 ≤ v ≤ c1},

D = {(u, −u + a, v) : −ε ≤ u ≤ a + ε; c0 ≤ v ≤ c1},

E = {(u, −u + v, c0) : −ε ≤ u ≤ v + ε; 0 ≤ v ≤ a},

F = {(u, −u + v, c1) : −ε ≤ u ≤ v + ε; 0 ≤ v ≤ a},

where ε is a positive constant that we will choose later. Observe that each one of these
faces is the least area minimal surface with its boundary. Let us analyse the area of
each face.

(1) In the plane {y = constant} the induced metric is given by g(x, z) = (a2
11(z) +

a2
21(z))dx2 + dz2. Hence,

area A =

∫ c1

c0

∫ a+ε

ε

√
a2

11(z) + a2
21(z) dx dz

= a
∫ c1

c0

√
a2

11(z) + a2
21(z) dz.

(2) In the plane {x = constant} the induced metric is given by g(y, z) = (a2
11(z) +

a2
12(z))dy2 + dz2. Hence,

area B =

∫ c1

c0

∫ a+ε

ε

√
a2

11(z) + a2
12(z) dx dz

= a
∫ c1

c0

√
a2

11(z) + a2
12(z) dz.

(3) The face C is contained in the plane parameterized by φ(u, v) = (u, −u, v) and
the face D is contained in the plane parameterized by ψ(u, v) = (u, −u + a, v). We have
ψu = φu = ∂x − ∂y, ψv = φv = ∂z. Then

|ψu ∧ ψv| = |φu ∧ φv| =
√

(a11(z) + a12(z))2 + (a11(z) + a21(z))2.

Hence,

area C =

∫ c1

c0

∫ +ε

−ε

√
(a11(z) + a12(z))2 + (a11(z) + a21(z))2 du dv

= 2ε
∫ c1

c0

√
(a11(z) + a12(z))2 + (a11(z) + a21(z)2dz,

area D =

∫ c1

c0

∫ a+ε

−ε

√
(a11(z) + a12(z))2 + (a11(z) + a21(z))2 du dv

= (a + 2ε)
∫ c1

c0

√
(a11(z) + a12(z))2 + (a11(z) + a21(z))2 dz.
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134 A. Menezes [8]

(4) As the plane {z = constant} is flat, the induced metric is the Euclidean metric.
Hence,

area E = area F =

∫ a

0

∫ v+ε

−ε

du dv =
a(a + 4ε)

2
.

Therefore,

area C + area D + area E + area F < area A + area B

if, and only if,

(a + 4ε)
[
a +

∫ c1

c0

√
(a11 + a12)2 + (a11 + a21)2 dz

]
< a

∫ c1

c0

√
a2

11 + a2
21 dz

+ a
∫ c1

c0

√
a2

11 + a2
12 dz

if, and only if,

ε <
a
4

∫ c1

c0

√
a2

11(z) + a2
21(z) +

√
a2

11(z) + a2
21(z) dz

a +
∫ c1

c0

√
(a11(z) + a12(z))2 + (a11(z) + a21(z))2 dz

−
a
4
. (3.2)

As we chose a satisfying (3.1), the factor on the right-hand side of (3.2) is a positive
number, and we can choose ε > 0 such that the Douglas criterion is satisfied [1]. Hence
we obtain a minimal annulusA with boundary ∂A ∪ ∂B such that its projection Π(A)
contains points of intE, where E is the disk in R oA {0}with boundary P (see Figure 2).

As R2 oA {z} is a minimal surface, the maximum principle implies that, for each c,
Σc is contained in the slab bounded by the planes {z = 0} and {z = c}. Then for c < c0,
Σc ∩A = ∅. As Σc is unique, Σc varies continuously with c, and when c increases
the boundary ∂Σc = Pc does not touch ∂A. Therefore, using the maximum principle,
Σc ∩A = ∅ for all c, and Σc is under the annulusA, which means that over any vertical
line that intersectsA and Σc, the points of Σc are under the points ofA.

Consider the flow ϕt of the Killing field X = ∂x + ∂y. Observe that {ϕt(A)}t<0 forms
a barrier for all points pn ∈ Σn such that Π(pn) is contained in a neighborhoodU ⊂ E of
the origin o = (0, 0, 0). Moreover, for any c2 < c3 we can use the flow ϕt of the Killing
field X and the maximum principle to conclude that Σc2 is under Σc3 in the same sense
as before.

As, by Theorem 2.5, each Σn is a vertical graph in the interior, then Σn ∩ Π−1(q) is
only one point pn, for every point q ∈ intE. Moreover, by the previous paragraph, the
sequence pn = Σn ∩ Π−1(q) is monotone. Then, since we have a barrier, the sequence
{pn = Σn ∩ Π−1(q)} converges to a point p ∈ Π−1(q), for all q ∈ U.

In order to understand the convergence of the surfaces Σn we need to observe some
properties of these surfaces.

First, notice that rotation by angle π around α3, which we will denote by Rα3 , is an
isometry. By the Schwarz reflection, we obtain a minimal surface Σ̃n = Σn ∪ Rα3 (Σn)
that has intα3 in its interior. Note that the boundary of Σ̃n is transverse to the Killing
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y

xO

Pc

F 2. AnnulusA.

field X = ∂x + ∂y, and if ϕt denotes the flow of X, we have that ϕt(∂Σ̃n) ∩ Σ̃n = ∅ for
all t , 0, hence, using the same arguments of the proof of Proposition 3.2, we can
show that the minimal surface Σ̃n is the unique minimal surface with its boundary.
In particular, it is area-minimizing, and then it is stable. Hence, by main theorem
in [6], we have uniform curvature estimates for points far from the boundary of Σ̃n.
In particular, we get uniform curvature estimates for Σn in a neighborhood of α3.
Analogously, we have uniform curvature estimates for Σn in a neighborhood of α4.

Hence, for every compact contained in {z > 0} ∩ R, there exists a subsequence of Σn

that converges to a minimal surface. Taking exhaustion by compact sets and using a
diagonal process, we conclude that there exists a subsequence of Σn that converges to
a minimal surface Σ that has α3 ∪ α4 in its boundary. From now on, we will use the
notation Σn for this subsequence.

It remains to prove that in fact Σ is a minimal surface with boundary P∞. In order to
do so, we will use the fact that the interior of each Σn is a vertical graph over the interior
of E. Let us denote by un the function defined in intE such that Σn = Graph(un). We
already know that un−1 < un in intE for all n.

C 3.4. There are uniform gradient estimates for {un} for points in α0
1 ∪ α

0
2.

P. For x0 < 0 and δ > 0 consider the vertical strip bounded by β1 = {(x0, y, c1) :
−δ ≤ y ≤ 0}, β2 = {(x0, t, −(c1/a)t + c1) : 0 ≤ t ≤ a}, β3 = {(x0, t − δ, −(c1/a)t + c1) :
0 ≤ t ≤ a} and β4 = {(x0, y, 0) : a − δ ≤ y ≤ a}. This is a minimal surface transversal
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F 3. Rotation by angle π around α1 of Σ.

to the Killing field ∂x, hence any small perturbation of its boundary gives a minimal
surface with that perturbed boundary. Thus, if we consider a small perturbation of the
boundary of this vertical strip by just slightly perturbing β1 by a curve contained in
{x ≥ x0} joining the points (x0, −δ, c1) and (x0, 0, c1), we will get a minimal surface S
with this perturbed boundary. This minimal surface S will have the property that the
tangent planes at the interior of β4 are not vertical, by the maximum principle with
boundary.

Applying translations along the x-axis and y-axis, we can use the translates of S to
show that Σn is under S in a neighborhood of α0

2, and then we have uniform gradient
estimates for points in α0

2. Analogously, constructing similar barriers, we can prove
that we have uniform gradient estimates in a neighborhood of α0

1. �

Observe that besides the gradient estimates, the translates of the minimal surface S
form a barrier for points in a neighborhood of α0

1 ∪ α
0
2.

We have that Σn is a monotone increasing sequence of minimal graphs with uniform
gradient estimates in α0

1 ∪ α
0
2, and it is a bounded graph for points in a neighborhoodU

of the origin (because of the barrier given by the annulusA). Therefore, there exists a
subsequence of Σn that converges to a minimal surface Σ̃ with α0

1 ∪ α
0
2 in its boundary.

As we already know that Σn converges to the minimal surface Σ, we conclude that in
fact Σ = Σ̃, and then Σ is a minimal surface with α0

1 ∪ α
0
2 ∪ α3 ∪ α4 in its boundary.

Notice that we can assume that Σ has P∞ as its boundary, with Σ being of class C1 up
to P∞ \ {(a, 0, 0), (0, a, 0)} and continuous up to P∞.

Now considering the rotation by angle π around α1 of Σ, we obtain the surface
illustrated in Figure 3.
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Continuing to rotate by angle π around the y-axis, the resulting surface will be a
minimal surface with four vertical lines as its boundary: {(a, 0, t) : t ∈ R}, {(0, a, t) : t ∈
R}, {(−a, 0, t) : t ∈ R}, {(0, −a, t) : t ∈ R}.

Now we can use the rotations by angle π around the vertical lines to get a complete
minimal surface that is analogous to the doubly periodic minimal Scherk surface in R3.
It is invariant with respect to two translations that commute and it is a four-punctured
sphere in the quotient of R2 oA R by the group of isometries generated by the two
translations.

T 3.5. In any semidirect product R2 oA R, where A =
(0 b

c 0
)
, there exists a

periodic minimal surface similar to the doubly periodic Scherk minimal surface in R3.

4. A singly periodic Scherk minimal surface

Throughout this section, we consider the semidirect product R2 oA R with the
canonical left invariant metric 〈, 〉, where A =

(0 b
c 0

)
. In this space, we construct a

complete minimal surface similar to the singly periodic Scherk minimal surface in R3.
Fix c0 > 0 and take 0 < ε < a sufficiently small so that

a + 2ε <
∫ c0

0

√
a2

11(z) + a2
21(z) dz.

For each c > 0, consider the polygon Pc in R2 oA R with the six sides defined by

αc
1 = {(t, 0, 0) : 0 ≤ t ≤ c},

αc
2 = {(c, t, 0) : 0 ≤ t ≤ a},

αc
3 = {(t, a, 0) : 0 ≤ t ≤ c},

αc
4 = {(0, a, t) : 0 ≤ t ≤ c},

αc
5 = {(0, t, c) : 0 ≤ t ≤ a},

αc
6 = {(0, 0, t) : 0 ≤ t ≤ c},

and for each δ > 0 with δ < a/2, consider the polygon Pδ
c with the six sides

αδ,c1 =

{(
t,
δ

c
t, 0

)
: 0 ≤ t ≤ c

}
αδ,c2 = {(c, t, 0) : δ ≤ t ≤ a − δ}

αδ,c3 =

{(
t,

ac − δt
c

, 0
)

: 0 ≤ t ≤ c
}
,

αc
4, α

c
5, α

c
6, as illustrated in Figure 4.

Denote by Ω(δ, c) the region in R2 oA {0} bounded by αδ,c1 , αδ,c2 , αδ,c3 and the segment
{(0, t, 0) : 0 ≤ t ≤ a}. For each c and δ, we have compact minimal surfaces Σc and Σδc
with boundary Pc and Pδ

c, respectively, which are solutions to the Plateau problem. By
Theorem 2.5, we know that Σc and Σδc are stable and smooth Π-graphs over the interior
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z

c

z

c

c c

a a
y y

x xPc

F 4. Polygons Pc and Pδ
c.

of Ω(0, c),Ω(δ, c), respectively. We will show that Σc is the unique compact minimal
surface with boundary Pc.

Fix c. For each 0 < δ < a/2, Pδ
c is a polygon transverse to the Killing field ∂x and

each integral curve of ∂x intersects Pδ
c at at most one point. Thus we can prove,

as we did in Proposition 3.2, that Σδc is the unique compact minimal surface with
boundary Pδ

c.
Denote by uδc, vc the functions defined in the interior of Ω(δ, c),Ω(0, c), whose Π-

graphs are Σδc, Σc, respectively. Then, as ∂x is a Killing field and each Pδ
c is transversal

to ∂x, we can use the flow of ∂x and the maximum principle to prove that for δ′ < δ we
have 0 ≤ uδc ≤ uδ

′

c ≤ vc in intΩ(δ, c), hence vc is a barrier for our sequence uδc. Because
of the monotonicity and the barrier, the family uδc converges to a function uc defined in
intΩ(0, c) whose graph is a compact minimal surface with boundary Pc, and we still
have uc ≤ vc on Ω(0, c).

We will now find another compact minimal surface with boundary Pc, whose
interior is the graph of a function wc defined in intΩ(0, c) such that vc ≤ wc and we
will show that uc = wc. In order to do so, for each 0 < δ < a/2, consider the polygon
P̃δ

c with the six sides defined by

α̃δ,c1 =

{(
t,
δt − δc

c
, 0

)
: 0 ≤ t ≤ c

}
,

αc
2 = {(c, t, 0) : 0 ≤ t ≤ a},

α̃δ,c3 =

{(
t,

(a + δ)c − δt
c

, 0
)

: 0 ≤ t ≤ c
}
,

α̃δ,c4 = {(0, a + δ, t) : 0 ≤ t ≤ c},

α̃δ,c5 = {(0, t, c) : −δ ≤ t ≤ a + δ},

α̃δ,c6 = {(0, −δ, t) : 0 ≤ t ≤ c},

as illustrated in Figure 5.

https://doi.org/10.1017/S1446788713000530 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788713000530


[13] Periodic minimal surfaces in semidirect products 139

z

c

z

c

c c

a a
y y

x xPc

F 5. Polygons Pc and P̃δ
c.

Denote by Ω̃(δ, c) the region in R2 oA {0} bounded by α̃δ,c1 , αc
2, α̃

δ,c
3 and the segment

{(0, t, 0) : −δ ≤ t ≤ a + δ}. For each δ, we have a compact minimal disk Σ̃δc with
boundary P̃δ

c and Σ̃δc is a smooth Π-graph over the interior of Ω̃(δ, c). As P̃δ
c is

transversal to the Killing field ∂x, we can prove that Σ̃δc is the unique compact minimal
surface with boundary P̃δ

c.

Denote by wδ
c the function defined in intΩ̃(δ, c) whose graph is Σ̃δc. Using the flow

of ∂x and the maximum principle, we can prove that for δ′ < δ we have wδ′

c ≤ wδ
c in

intΩ̃(δ′, c) and for all δ, vc ≤ wδ
c in intΩ(0, c). Because of the monotonicity and the

barrier, the family wδ
c converges to a function wc defined in intΩ̃(0, c) = intΩ(0, c)

whose graph is a compact minimal surface with boundary Pc, and we still have vc ≤ wc

in intΩ(0, c).
Let us call Σ1, Σ2 the graphs of uc, wc, respectively. We will now prove that Σ1 = Σ2.

Denote by νi the conormal to Σi along Pc, i = 1, 2. (See Figure 6.)
Suppose that uc , wc; then in fact we have uc < wc in intΩ(0, c). As ∂x is tangent to

αc
1 and αc

3, we have that 〈νi, ∂x〉 = 0, i = 1, 2, in αc
1 and αc

3. On the other sides of Pc we
have 〈ν1, ∂x〉 < 〈ν2, ∂x〉. Therefore,∫

Pc

〈ν1, ∂x〉 <

∫
Pc

〈ν2, ∂x〉.

But, using the flux formula for Σ1 and Σ2 with respect to the Killing field ∂x,∫
Pc

〈ν1, ∂x〉 = 0 =

∫
Pc

〈ν2, ∂x〉.

Then uc = wc, and therefore Σc = Σ1 = Σ2. In particular, Σc is the unique compact
minimal surface with boundary Pc.
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z

c
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F 6. Σ1 and Σ2.

Denote by Ω(∞) the infinite strip {(x, y, 0) : x ≥ 0, 0 ≤ y ≤ a}, and by R the
region {(x, y, z) : x ≥ 0, 0 ≤ y ≤ a, z ≥ 0}. Moreover, denote α1 = {(x, 0, 0) : x > 0},
α3 = {(x, a, 0) : x > 0}, α4 = {(0, a, z) : z > 0} and α6 = {(0, 0, z) : z > 0}, hence P∞ =

α1 ∪ α3 ∪ α4 ∪ α6 ∪ {(0, 0, 0), (0, a, 0)}.

For each n ∈ N, let Σn be the unique compact minimal surface with boundary Pn.
We are interested in proving the existence of a subsequence of Σn that converges to
a complete minimal surface with boundary P∞. Using the existence of a minimal
annulus, guaranteed by the Douglas criterion, we will show that there exist points
pn ∈ Σn, Π(pn) = q ∈ int Ω(∞) for all n, which converge to a point p ∈ R2 oA R, and
then we will use Proposition 3.3.

Consider the parallelepiped with faces A, B,C, D, E and F, defined by

A = {(u, −ε, v) : ε ≤ u ≤ d; 0 ≤ v ≤ c0},

B = {(u, a + ε, v) : ε ≤ u ≤ d; 0 ≤ v ≤ c0},

C = {(u, v, 0) : ε ≤ u ≤ d; −ε ≤ v ≤ a + ε},

D = {(u, v, c0) : ε ≤ u ≤ d; −ε ≤ v ≤ a + ε},

E = {(ε, u, v) : −ε ≤ u ≤ a + ε; 0 ≤ v ≤ c0},

F = {(d, u, v) : −ε ≤ u ≤ a + ε; 0 ≤ v ≤ c0},

where d > ε is a constant that we will choose later.
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As we did in the previous section, we can calculate the area of each one of these
faces and we obtain:

area A = area B = (d − ε)
∫ c0

0

√
a2

11(z) + a2
21(z) dz,

area C = area D = (d − ε)(a + 2ε),

area E = area F = (a + 2ε)
∫ c0

0

√
a2

11(z) + a2
12(z) dz.

Hence,
area C + area D + area E + area F < area A + area B

if, and only if,

(d − ε)(a + 2ε) + (a + 2ε)
∫ c0

0

√
a2

11 + a2
12 dz < (d − ε)

∫ c0

0

√
a2

11 + a2
21 dz

if, and only if,

(d − ε)
[
(a + 2ε) −

∫ c0

0

√
a2

11 + a2
21 dz

]
< −(a + 2ε)

∫ c0

0

√
a2

11 + a2
12 dz

if, and only if,

d > ε −
(a + 2ε)

∫ c0

0

√
a2

11(z) + a2
12(z) dz

(a + 2ε) −
∫ c0

0

√
a2

11(z) + a2
21(z) dz

.

As we chose a + 2ε <
∫ c0

0

√
a2

11(z) + a2
21(z) dz, we can choose d > ε so that the

Douglas criterion is satisfied [1]. Thus, there exists a minimal annulus A with
boundary ∂A ∪ ∂B such that its projection Π(A) contains points of intΩ(∞). (See
Figure 7.)

We know that, for each c < ε, Σc ∩A = ∅. When c increases Pc does not intersect
∂A; then, using the maximum principle, Σc ∩A = ∅ for all c, and Σc is under the
annulus A. Thus, there exists a point q ∈ intΩ(∞) such that pn = Σn ∩ Π−1(q) has a
subsequence that converges to a point p ∈ Π−1(q). Observe that, applying the flow of
the Killing field ∂x to the annulus A, we can conclude that, in the region {x ≥ d}, the
surfaces Σn are bounded above by, for example, the plane {z = c0}.

In order to understand the convergence of the surfaces Σn we need to prove some
properties of these surfaces.

C 4.1. The surfaces Σn are transversal to the Killing field ∂x in the interior.

P. Fix n. Suppose that at some point p ∈ intΣn the tangent plane TpΣn contains
the vector ∂x. As the planes that contain the direction ∂x are minimal surfaces, we

https://doi.org/10.1017/S1446788713000530 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788713000530


142 A. Menezes [16]

z

y

Pc

d

x

F 7. AnnulusA.

have that Σn and TpΣn are minimal surfaces tangent at p, and then the intersection
between them is formed by 2k curves, k ≥ 1, passing through p making equal angles
at p. By the shape of Pn (the boundary of Σn), we know that TpΣn intersects Pn either
at only two points or at one point and a segment of straight line (αn

1 or αn
3). Therefore,

we will necessarily have a closed curve contained in the intersection. As Σn is simply
connected this curve bounds a disk in Σn, but as the planes parallel to TpΣn are minimal
surfaces, we can use the maximum principle to prove that this disk is contained in
the plane TpΣn and then they coincide, which is impossible. Thus, the vector ∂x is
transversal to Σ at points p ∈ intΣn. �

Observe that, besides the interior points, the surfaces Σn are also transversal to ∂x

at the points in α4 and α6, by the maximum principle with boundary. Thus rotation by
angle π around α4 (respectively α6) gives a minimal surface which is also transversal
to the Killing field ∂x in the interior, extends the surface Σn and has αn

4 (respectively αn
6)

in the interior. Therefore, we have uniform curvature estimates for Σn up to α4 ∪ α6.
Hence, for every compact contained in {z > 0} ∩ R, there exists a subsequence of Σn

that converges to a minimal surface. Taking exhaustion by compact sets and using a
diagonal process, we conclude that there exists a subsequence of Σn that converges to
a minimal surface Σ that has α4 ∪ α6 in its boundary. From now on we will use the
notation Σn for this subsequence.

It remains to prove that in fact Σ is a minimal surface with boundary P∞. In
order to do so, we will use the fact that each Σn is a vertical graph in the interior.
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Let us denote by un the function defined in intΩ(n) such that Σn = Graph(un), where
Ω(n) = {(x, y, 0) : 0 ≤ x ≤ n; 0 ≤ y ≤ a}.

C 4.2. un−1 < un in intΩ(n − 1).

P. Recall that each Σn is the limit of a sequence of minimal graphs Σ̃δn = Graph(wδ
n)

whose boundary is transversal to the Killing field ∂x. Using the flow of the Killing field
∂x, we can prove that each Σ̃δn is above Σn−1, and then the limit surface Σn has to be
above Σn−1. In fact, Σn is strictly above Σn−1 in the interior, because as Σn and Σn−1 are
minimal surfaces, if they intersect at an interior point, there will be points of Σn under
Σn−1, and we already know that, by the property of Σ̃δn, this is not possible. �

C 4.3. There are uniform gradient estimates for {un} for points in α1 ∪ α3.

P. We will use the same idea as in Claim 3.4. For y0 > a and δ > 0 consider the
vertical strip bounded by β1 = {(x, y0, c0) : d ≤ x ≤ d + δ}, β2 = {(t, y0, c0/dt) : 0 ≤ t ≤
d}, β3 = {(t + δ, y0, c0/dt) : 0 ≤ t ≤ d} and β4 = {(x, y0, 0) : 0 ≤ x ≤ δ}. This is a minimal
surface transversal to the Killing field ∂y, hence any small perturbation of its boundary
gives a minimal surface with that perturbed boundary. Thus, if we consider a small
perturbation of the boundary of this vertical strip by just slightly perturbing β1 by a
curve contained in {y ≤ y0} joining the points (d, y0, c0) and (d + δ, y0, c0), we will get
a minimal surface S with this perturbed boundary. This minimal surface S will have
the property that the tangent planes at the interior points of β4 are not vertical, by the
maximum principle with boundary.

Applying translations along the x-axis and y-axis, we can use the translates of S to
show that Σn is under S in a neighborhood of α3, and then we have uniform gradient
estimates for points in α3. Analogously, constructing similar barriers, we can prove
that we have uniform gradient estimates in a neighborhood of α1. �

Observe that besides the gradient estimates, the translates of the minimal surface S
form a barrier for points in a neighborhood of α1 ∪ α3.

We have that Σn is a monotone increasing sequence of minimal graphs with uniform
gradient estimates in α1 ∪ α3, and it is a bounded graph for points in {x ≥ d} (because
of the barrier given by the annulusA). Therefore, there exists a subsequence of Σn that
converges to a minimal surface Σ̃ with α1 ∪ α3 in its boundary. As we already know
that Σn converges to the minimal surface Σ, we conclude that in fact Σ = Σ̃, and then Σ is
a minimal surface with α1 ∪ α3 ∪ α4 ∪ α6 in its boundary. Notice that we can assume
that Σ has P∞ as its boundary, with Σ being of class C1 up to P∞ \ {(0, 0, 0), (0, a, 0)}
and continuous up to P∞. The expected ‘singly periodic Scherk minimal surface’
is obtained by recursively rotating Σ by an angle π about the vertical and horizontal
geodesics in its boundary.

T 4.4. In any semidirect product R2 oA R, where A =
(0 b

c 0
)
, there exists a

periodic minimal surface similar to the singly periodic Scherk minimal surface in R3.
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