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When a blunt body impacts an air–water interface, large hydrodynamic forces often arise,
a phenomenon many of us have unfortunately experienced in a failed dive or ‘belly flop’.
Beyond assessing risk to biological divers, an understanding and methods for remediation
of such slamming forces are critical to the design of numerous engineered naval and
aerospace structures. Herein we systematically investigate the role of impactor elasticity on
the resultant structural loads in perhaps the simplest possible scenario: the water entry of
a simple harmonic oscillator. Contrary to conventional intuition, we find that ‘softening’
the impactor does not always reduce the peak impact force, but may also increase the
force as compared with a fully rigid counterpart. Through our combined experimental and
theoretical investigation, we demonstrate that the transition from force reduction to force
amplification is delineated by a critical ‘hydroelastic’ factor that relates the hydrodynamic
and elastic time scales of the problem.

Key words: interfacial flows (free surface), waves/free-surface flows

1. Introduction

Water entry of solid bodies has been a subject of intense investigation for over a century,
with rich multiscale physics revealed at all stages of the process. Progress in the field has
been principally driven by a need for understanding the hydrodynamic loading experienced
by impacting engineered naval structures such as ships, seaplanes or projectiles, directly
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motivating early theoretical developments in the area by von Kármán (1929) and Wagner
(1932). Other impactors such as aerospace structures (Seddon & Moatamedi 2006) or
amphibious autonomous vehicles (Siddall & Kovač 2014; Shi et al. 2019b) have benefited
from advancements in the area. Beyond informing engineering applications, such forces
can prove fatal for human divers if the hydrodynamics are not respected (Pandey et al.
2022).

For relatively blunt bodies such as shallow wedges or spheres, the highest impact forces
occur during the very early times of impact, in the so-called ‘slamming’ phase (Shiffman
& Spencer 1945b; May 1970; Moghisi & Squire 1981; Korobkin & Pukhnachov 1988;
Howison, Ockendon & Wilson 1991; Miloh 1991; Abrate 2011). It is well established that
the primary contribution to this initial hydrodynamic resistance stems from the added
mass effect of the fluid: an appreciable volume of fluid must be accelerated in a short
time frame to match the speed of the impinging body (Abrate 2011; Truscott, Epps &
Belden 2014; Jung 2021). High impact forces can result in structural damage, present risk
to sensitive onboard equipment, or be dangerous for passengers or biological divers. Thus
understanding the relationship between the impactor properties and the resultant impact
forces, and developing predictable and controllable ways to mediate such forces, are of
utmost importance.

With the motivation of force reduction in mind, many prior works have focused on
how the impact forces are influenced by impactor geometry. For instance, a finely tapered
impactor significantly reduces the initial impact forces as compared with more blunt
geometries (Baldwin 1971; Bodily, Carlson & Truscott 2014; Vincent et al. 2018), a
physical principle that biological divers such as seabirds evidently exploit to survive
high-speed impacts in pursuit of prey (Chang et al. 2016; Sharker et al. 2019). In many
cases, the impactor geometry cannot be suitably modified and other countermeasures must
be considered. For instance, by preceding a primary impactor with a fluid jet or small
solid object, some of the underlying liquid can be accelerated or displaced before impact
and impact forces of the trailing body notably reduced (Speirs et al. 2019a; Rabbi et al.
2021). In terms of modifications to the impactor, a sacrificial and permanently deformable
nose cap can be added to absorb some of the energy during impact (Shi, Gao & Pan
2019a; Li et al. 2021), but is only effective for a single impact. An alternative approach,
common to countless other examples, is to introduce elastic compliance to ‘cushion’ the
impact, thereby extending the time scale of the impulse and reducing peak forces. In
the current context, this manifests as a fluid–structure interaction problem wherein the
structural and hydrodynamic responses are intrinsically coupled. The role of impactor
elasticity in air–water entry has received some limited attention, primarily over the past
few decades.

The impact of elastic structures on fluid interfaces are often referred to as ‘hydroelastic’
problems. A key non-dimensional parameter that naturally emerges in many such
investigations is a ratio of time scales sometimes referred to as a hydroelastic factor (RF):
the time scale of the hydrodynamic loading to the free fundamental oscillation period of
the elastic structure (Kim et al. 1996; Faltinsen 1999; Ren, Javaherian & Gilbert 2021).
The vast majority of prior works have focused on the coupled response of continuously
deformable flexible wedges as a model for ship hulls (Faltinsen 1999; Abrate 2011; Maki
et al. 2011; Panciroli et al. 2012; Khabakhpasheva & Korobkin 2013; Shams, Zhao &
Porfiri 2017; Ren et al. 2021), although a few other continuous structures have been
studied as well such as elastic spheres (Hurd et al. 2017; Yang et al. 2021). Other
investigations have proposed simpler lumped mass models (reduced degrees of freedom)
of continuous elastic structures in an attempt to simplify the problem and better interpret
the consequences of elasticity on the resultant structural forces (Miller & Merten 1951;
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Water entry of a simple harmonic oscillator

Gollwitzer & Peterson 1995; Kim et al. 1996; Lafrati et al. 2000; Carcaterra & Ciappi
2004; Bogaert & Kaminski 2007). Despite these efforts, very few controlled experiments
on simplified structures have supported such studies, and none present a systematic
exploration of the parameter space.

The most similar experimental work to the present study was completed very recently
wherein the loading on an axisymmetric two degree-of-freedom (2DOF) (one elastic
mode) impactor was considered (Wu et al. 2020). The impactor was composed of a
rigid hemispherical nose and slender body connected by a coil-spring element. Only
one geometry and spring constant were explored in the work, and for that case, the
impact force on the body was reduced compared with a rigid counterpart over all impact
velocities tested. While the finding conforms to standard intuition one might associate
with a ‘cushioned’ impact, no predictive model was developed to quantify or generalize
the measured effect. As we demonstrate in the present work through combined experiment
and modelling, the impact force on the trailing body of a 2DOF elastic system is highly
sensitive to both the elastic and hydrodynamic parameters of the problem, and the force
can either decrease or increase as a consequence of the elasticity, in general.

In the present work, we design and test a 2DOF (corresponding to one axial elastic
mode) slender axisymmetric impactor with a hemispherical nose. By using a configuration
of custom flexures as the compliant elements interfacing the nose and body, a highly
linear elastic response is achieved without static or sliding friction and only very
weak material damping. Furthermore, the geometry of the overall structure is carefully
designed to separate the frequency of the fundamental (axial) mode from all other elastic
modes, ultimately rendering it an excellent approximation to a linear 2DOF system.
The deceleration of the body during water entry is directly measured using an onboard
untethered accelerometer at very high sampling rate. A range of impact velocities, spring
stiffnesses, nose radii and nose-to-body mass ratios are tested and the peak forces
measured in all experiments are collapsed along a single curve using inertial scaling
and an appropriately defined hydroelastic factor. A critical hydroelastic factor defines
the transition from a force decrease to increase as compared with the rigid counterpart.
We perform additional experiments with high stiffness flexible impactors that, despite
constituting a less robust representation of a linear 2DOF system, illustrate the behaviour
of the system in the limit of high hydroelastic factor. A predictive theory is simultaneously
developed that accounts for the added mass effect during the slamming stage, and is shown
to quantitatively capture the measurements. As we demonstrate by considering the case of
linear damping, the simple theory can be readily extended to other nose geometries or
structural elements and thus is anticipated to prove useful for the design and analysis of
more complex engineered structures.

2. Experimental methods

2.1. Experimental set-up
We perform experiments in which a slender impactor with a hemispherical nose (radius
R = 22.23 mm or 29.64 mm) enters a quiescent water bath with fluid density ρ, viscosity
μ and interfacial tension γ . Impacts are at normal incidence with impact speeds V
ranging from 2 to 6 m s−1. A schematic of the 2DOF impactor and bath is shown in
figure 1(b) and the range of parameters in our experiments is reported in table 1. The
typical Reynolds number ρVR/μ is O(105), the Weber number ρV2R/γ is O(104) and
the Froude number V2/(gR) is O(10). Hence the fluid resistance of the presently studied
impacts is dominated by fluid inertia, with additional resistances due to viscosity, surface
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Figure 1. (a) Photograph of the flexible impactor (k = 4.29 N mm−1) entering the water at 2 m s−1. An impact
filmed with similar lighting and camera angle may be seen in Supplementary movie 1 available at https://
doi.org/10.1017/jfm.2023.820. (b) Diagram of the flexible impactor with the main experimental parameters
labelled. The rigid nose and body are connected by a set of three elastic flexure springs in a triangular
configuration so the impactor system behaves like a simple harmonic oscillator. (c) Close-up of the flexure
spring design. (d) Plot of force versus displacement for the elastic impactor with three different stiffness
values. For each stiffness, we performed five trials whose standard deviation is smaller than the line width.
Linear regression fitting to the combined compression and extension data is used to extract the reported linear
stiffness values.

Parameter Symbol Definition Value

Impact speed V — 2 to 6 m s−1

Nose radius R — 22.23 or 29.64 mm
Flexible impactor stiffness k — (low stiffness) 4.29, 7.80, 13.98 N mm−1

(high stiffness) 760, 21 600 N mm−1

Total flexible impactor mass M — 0.592 to 0.716 kg
Nose mass ratio α — (3-D printed) 0.12

(aluminium) 0.24
Reynolds number Re ρVR/μ 44 300 to 177 000
Weber number We ρV2R/γ 1220 to 14 600
Froude number Fr V2/(gR) 14 to 165

Hydroelastic factor RF

√
k

Mα(1 − α)

R
V

0.68 to 185

Table 1. Relevant parameters and their range of values in our experimental study.

tension and hydrostatics as much weaker effects. The water bath is rectangular with length,
width and depth of approximately 1 m, in order to approximate an infinite domain and
avoid the influence of reflected surface waves during impact. The flexible impactor consists
of a rigid body and nose coupled by a set of elastic flexure spring elements. The body
contains an onboard accelerometer to measure the impact deceleration. A ferromagnetic
ball is embedded in the body which allows the impactor to be dropped into free fall from
an electromagnet at varying heights. Figure 1(c) shows the design of a typical flexure
spring element which we laser-cut out of acetal plastic. The flexure features four thin
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Water entry of a simple harmonic oscillator

beams which attach at the ends to a thick backbone and two mounting pads which are
bolted to the impactor nose and body. The nose and body are coupled by three flexure
spring elements in a rotationally symmetric pattern, as can be seen in figure 1(a). The
flexures may be modelled as a set of guided cantilever beams (Judy 1994) and hence
the overall axial stiffness k of the flexible impactor can be estimated by k = 3Ebh3/L3

where E is the elastic modulus of the material and b, h and L are the beam dimensions. In
practice, this equation overpredicts the impactor stiffness because it does not account for
compliance of the flexure backbone or mounting pads. Quasistatic compression testing of
the flexures reveals a linear response with minimal hysteresis, as illustrated in figure 1(d),
and we vary the flexure beam height h in order to achieve the experimental stiffness values
of k = 4.29, 7.80 and 13.98 N mm−1. Based on the results of preliminary experiments,
these stiffness values were chosen in order to observe both a peak force decrease and
increase as compared with the rigid case. Due to the flexure configuration and beam
geometry, the other bending and torsional modes of the impactor are much stiffer than
the axial mode; in addition to behaving like springs, the flexures also serve the purpose
of bearings which guide the relative motion of the nose and body. The key advantage
of the flexure design is that, due to the monolithic structure, the axial elastic mode of
the impactor experiences no static or sliding friction as it deflects. A photograph of
the impactor during water entry in figure 1(a) (or Supplementary movie 1) shows the
behaviour of the flexures as the impactor achieves a submergence depth of approximately
one radius and is enveloped in a crown splash. Despite the minimal deflection of the
flexure beams, we find that the elasticity has a profound effect on the impact dynamics.
Additional experiments are performed with high axial stiffness impactors by replacing the
lower stiffness flexures with flexures that are significantly shortened (k = 760 N mm−1) or
a solid plate of acetal plastic (k = 21 600 N mm−1). Although these configurations allow
us to explore significantly higher axial stiffnesses while keeping all other parameters fixed,
the axial mode is no longer the fundamental oscillation mode. Additional details regarding
the impactor fabrication and characterization may be found in Appendix A.

2.2. Experimental procedure and processing
The impactor is suspended from an electromagnet with the tip of the nose at a height
H = V2/(2g) above the air–water interface and allowed to rest for 5 min in order for any
minimal swinging motion to decay. The impactor is then dropped into free fall while the
onboard accelerometer (enDAQ S4) measures acceleration in three orthogonal axes (one
axial, two radial) with 20 kHz sampling rate. Impacts are illuminated with diffuse white
back light and filmed at 20 000 frames per second with a Phantom Veo camera equipped
with a 50 mm Nikon lens at the height of the air–water interface or slightly above. The
impact speed V is measured from the high-speed entry videos by dividing the difference
in the nose tip position at impact and 50 frames before impact by the appropriate time
difference (2.5 ms). The impactor diameter is used as the length reference to convert
from pixels to physical units. Because the field of view is centred on the impactor
nose at the moment of impact, lens distortions have a negligible effect on the velocity
measurements. Furthermore, we set the drop height H using a precisely marked plumb
line which results in a maximum impact velocity uncertainty of 2.5 % with respect to the
nominal value. In order to plot only the acceleration due to impact with the water surface
and not the contribution from gravity, the mean accelerometer reading during free fall is
subtracted from the acceleration data. When estimating the maximum impact acceleration,
the slamming phase peaks in acceleration signals from each trial are first aligned using
the cross-correlation method and t = 0 is selected as the point at which the acceleration
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Figure 2. (a) Plots of impact deceleration versus time for the rigid (M = 0.578 kg) and flexible (M = 0.592 kg
and k = 4.29, 7.80, 13.98 N mm−1) cases with V = 4 m s−1 and R = 22.23 mm. The results are averaged over
five trials and the shaded regions indicate the standard deviation between trials. The corresponding impactor
velocities are presented in Appendix B. (b) High-speed images of the flexible impactor (k = 4.29 N mm−1, V =
4 m s−1, R = 22.23 mm) as it enters the water. The time of each photograph corresponds to the time axis label
to the left of the image in (a). A video version is available as Supplementary movie 3. (c) Peak deceleration
of the flexible impactor body depends on both stiffness and impact speed, so it can experience either a peak
acceleration increase or decrease compared with the rigid case. The error bars show the standard deviation
between five trials. The inset log–log plot of the rigid data shows that the peak acceleration increases like the
square of the impact velocity.

readings noticeably depart from free-fall behaviour. Then a time window is defined which
encompasses the maximum readings in the raw data from each trial. Estimates for the
trial-averaged maximum acceleration and time of the peak use all of the data points
in this time window. This method allows both sensor noise and the deviation between
trials to be included in the uncertainty estimate on the peak. The error bars in subsequent
figures incorporate this peak uncertainty as well as, when appropriate, other measurement
uncertainty on values such as the impactor stiffness by use of the standard Taylor series
approximation for multivariable error propagation from uncorrelated variables.

3. Results

3.1. Peak deceleration of the flexible impactor
Figure 2(a) shows the impactor body deceleration as a function of time after the moment
of first impact for experiments with V = 4 m s−1 and R = 22.23 mm. As a baseline, we
conduct experiments with an equivalent rigid impactor which has the same total mass
(within 2.4 %) as the flexible impactor. The rigid impactor is created by omitting the
flexure assembly and rigidly fixing the nose to the impactor body. The rigid impactor
experiences a sharp peak force during early times in the slamming phase which occurs
up to a submergence depth of approximately one radius. However, despite the large forces
during the slamming phase, the speed of the rigid impactor decreases only minimally –
on average 1.6 % by t = R/V (one radius depth) – and it proceeds at a high rate into the
bath, forming a crown splash and eventually a trailing air cavity as it pierces deeper into
the water (Supplementary movie 2). The impactor speed is plotted directly against time for
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these experimental cases in Appendix B. The splash and cavity formation for the flexible
impactor, as seen in figure 2(b) or Supplementary movie 3, are similar to the rigid case
during the slamming phase, though the cases with the 3-D printed noses sometimes feature
larger splashes and enhanced cavity size, likely due to the higher surface roughness and
lower wettability compared with the machined aluminium noses (Duez et al. 2007; Aristoff
& Bush 2009; Speirs et al. 2019b; Watson et al. 2021). Increased hydrophobicity has also
been shown to increase the force of impact on a sphere throughout the cavity-forming
phase (Truscott, Epps & Techet 2012), though the effect is predominantly isolated to
larger depths than focused on in the present work. Although the interfacial physics of the
cavity-forming phase are certainly rich, the deceleration of the rigid impactor during the
time after the slamming phase in our experiments is relatively uninteresting, increasing
only slowly as the steady state drag develops. The acceleration profiles of the flexible
impactor body entering at 4 m s−1 with k = 4.29 N mm−1 and 7.80 N mm−1 (figure 2a)
follow the typical intuition for a ‘cushioned’ impact; the impulse from the water entry
‘shock’ is spread out over a longer time. Consequently, the maximum deceleration is
decreased compared with the rigid case and the peak occurs at a later time, around one
radius of submergence depth. The oscillations of the impactor persist for several cycles,
dissipating slightly due to damping as the impactor continues its descent. Like in the rigid
case, the mean of the flexible impactor deceleration curve increases gradually at later times
as the steady state drag develops. However, surprisingly, the peak deceleration for the
flexible impactor with k = 13.98 N mm−1 is higher than the rigid case, indicating that,
in general, the body acceleration during impact can either increase or decrease as a result
of adding elasticity. Furthermore, we find that whether the impact acceleration increases
or decreases for a given stiffness depends on the impact speed. The peak deceleration
of the rigid and flexible impactors is plotted against impact speed in figure 2(c). For all
experiments in this figure, the total impactor mass is held constant and, in the flexible
impacts, the nose contains 12 % of the total mass. The peak deceleration of the rigid
impactor increases like the square of the impact speed as shown in the inset in figure 2(c),
confirming the anticipated inertially dominated regime. At the highest speed, all of the
flexible impactors experience a peak deceleration reduction compared with the rigid case
but the opposite is true at the lowest speed, where all of the flexible impactors experience
a peak deceleration increase. This result portends an important subtlety in the design of
elastic force reduction mechanisms for applications. Namely, the stiffness of the impactor
must be carefully matched to the operating conditions or else the addition of elasticity
can have significant deleterious effects. In order to rationalize, interpret and synthesize
these observations, we develop a reduced mathematical model of the impact forces in
what follows.

3.2. Rigid added mass model
The hydrodynamic force during the slamming phase can be understood in the context of
the added mass effect, originally applied by von Kármán (1929) to the problem of water
entry. Since the impact is inertially dominated, the impact force may be thought of as the
rate at which the impactor must transfer momentum to a virtual quantity of fluid mass –
m(x) in figure 3(a) – in order to accelerate that added fluid mass to the current impactor
speed ẋ(t). Conservation of momentum on the impactor and added mass system dictates
that

d
dt

[(M + m)ẋ] = 0, (3.1)
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Figure 3. (a) Schematic of the rigid added mass model. The impinging body must accelerate an effective
mass m(x) of fluid as it enters the water; hence the impact force can be obtained from an expression of
momentum conservation for the outlined system. (b) The forces from rigid impact experiments at several
speeds with different nose radii (R = 22.23, M = 0.578 kg or R = 29.64, M = 0.537 kg) collapse onto a single
curve when using an inertial scaling. The Shiffman & Spencer CF curve (dashed line) agrees excellently
with the experiments. The shaded regions around the experimental curves indicate standard deviation of at
least three trials with the lower speed experiments exhibiting greater variation between trials due to the lower
signal-to-noise ratio. The nose used for the R = 29.64 mm rigid experiments is not a complete hemisphere so
the data is truncated accordingly (importantly, the peak force is captured accurately). (c) We extend the classic
added mass model to the case of a flexible impactor by introducing a trailing spring and mass. The outlined
system for which we write conservation of momentum now includes the external contribution from the spring.
(d) The deceleration of the flexible impactor body measured in experiments (solid coloured lines, V = 4 m s−1,
R = 22.23 mm, α = 0.12, M = 0.592 kg) is captured well by the flexible added mass model (dashed lines).
Furthermore, the model predicts that the deceleration of the impactor centre of mass (dotted lines) deviates
only slightly from the rigid theoretical CF curve (solid black line), suggesting that the elasticity does not have
a strong influence on the hydrodynamics in this regime. The shaded region around the experimental curves
indicates the standard deviation between five trials.

where M is the mass of the impactor. Integrating with the initial conditions that m(0) = 0
and ẋ(0) = V yields the following expression for the acceleration during impact (Abrate
2011):

ẍ = − (MV)2

(M + m)3
dm
dx

. (3.2)

Thus the impact force profile can be calculated given only the added mass m as a
function of depth x. The added mass function for a sphere was derived by Shiffman &
Spencer (1945a, 1947) from potential flow around an axisymmetric lens. By neglecting
deformation of the interface and higher-order velocity terms, the dynamic boundary
condition reduces to a statement of zero potential at x = 0, and hence the impact problem
is equivalent to uniform flow around the submerged portion of the body, mirrored about
the undisturbed interface. Shiffman & Spencer later refined the model with additional
theoretical and experimental corrections which account for the deformation of the interface
and wetting of the sphere (Shiffman & Spencer 1945b). This corrected added mass
function m(x) is used in the present work and is reproduced along with its derivative
dm/dx in the supporting datasets. Although the corrected curve is only available from
Shiffman & Spencer (1945b) up to a depth of x = R, we assume it smoothly tapers to
zero at x = 1.15R and remains zero thereafter. Whether the value of dm/dx for x > R
is left constant, set abruptly to zero or smoothly tapered to zero makes no significant
quantitative difference in our predictions presented here. These functions are the only
externally derived components of our model, which is otherwise self-contained and
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Water entry of a simple harmonic oscillator

described completely herein. Shiffman & Spencer also define a dimensionless number

σ = M
/(

4
3πR3ρ

)
(3.3)

which compares the impactor mass with the mass of an equivalent volume of fluid
assuming a spherical impactor. When σ is sufficiently large, as in the current experiments,
M � m (that is, the impactor mass is much larger than the peak added mass) and (3.2) can
be reduced to

F = −V2 dm
dx

, (3.4)

where F is the impact force on the body. As a consequence of large σ , the speed of the
body does not change appreciably during the slamming phase and the impact force reaches
a limiting curve (in practice, when σ = 3, the maximum impact force is already 96 % of
the infinite σ case). Hence, we can define an impact drag coefficient CF based on dm/dx
as

F(t) = 1
2 CF(t)ρV2πR2. (3.5)

Assuming a heavy impactor with a given nose shape, CF is a function of time (or,
interchangeably, depth) alone. The impact drag coefficient for the high σ limit reported
by Shiffman & Spencer (1945b) agrees excellently with rigid experiments performed
with V = 2 to 6 m s−1 and R = 22.23 mm or 29.64 mm, as shown in figure 3(b). The
experimental curves collapse with the inertial force scale 1

2ρV2πR2 and impact time scale
R/V , indicating that the added mass during the slamming phase is independent of both
the impactor speed and the size of the splash and air cavity, which vary throughout the
experimental range of impact speeds. Because the nose is not a complete hemisphere in the
R = 29.64 mm rigid experiments (it is a complete hemisphere in all other experiments),
the force curves in figure 3(b) are truncated at the point where the outer edge of the nose
would first contact the undisturbed free surface. However, the peak force, which is the
primary quantity of interest and used for comparison with the flexible experiments, is
still captured accurately. Furthermore, the rigid results for both radii agree well with the
numerous classic experimental studies for the force of impact on a rigid sphere in terms
of both scaling and peak impact drag coefficient (Watanabe 1934; May & Woodhull 1948,
1950; Richardson 1948; Moghisi & Squire 1981).

3.3. Flexible added mass model
We extend the added mass model to the case of an impacting simple harmonic oscillator
by considering an external spring force on the nose-plus-added-mass system, as illustrated
in figure 3(c). The parameter α is introduced which equals the ratio of the nose mass
to the total impactor mass, M. Hence conservation of momentum for the impactor
nose-plus-added-mass system is written as

d
dt

[(αM + m)ẋn] = k(xb − xn), (3.6)

where xb and xn are the positions of the impactor body and nose, respectively. Integrating
as before, the equation of motion for the nose is

ẍn = d
dt

[
1

αM + m

∫ t

0
k(xb − xn) dτ

]
− α2M2V2

(αM + m)3
dm
dxn

. (3.7)

The second term on the right-hand side is equivalent to the hydrodynamic resistance
from added mass as presented in (3.2), while the first term is new and accounts for an
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additional momentum exchange via the spring element. Since the only force felt by the
body comes from the spring, the equation of motion for the body is simply

ẍb = 1
(1 − α)M

k(xn − xb). (3.8)

Using the Shiffman & Spencer added mass function m, (3.7) and (3.8) are numerically
integrated with an RK4 scheme with trapezoidal rule for the integral terms and the
deceleration of the body is compared with experimental results at V = 4 m s−1 and
α = 0.12 in figure 3(d). The model agrees well with the experimental data and captures
the transition in the peak deceleration for experiments with k = 13.98 N mm−1 although
it tends to underpredict the peak deceleration, most significantly for the k = 4.29 N mm−1

experiments. In this case, the peak deceleration occurs after tV/R = 1 in the region where
Shiffman & Spencer’s potential flow theory predicts that CF goes to zero. Experimentally,
however, the contribution of form drag leads to non-zero impact force at late times as
seen in figures 2(a) and 3(b). When the peak deceleration occurs at later non-dimensional
times (such as with low stiffness or high speed), the accuracy of the model can be
improved by including the contribution of form drag – directly from the experimental
curves in figure 3(b), for instance, as shown in Appendix C – in the added mass function
m. Figure 3(d) also shows the prediction for the deceleration of the flexible impactor
centre of mass, ẍc = αẍn + (1 − α)ẍb, which is equal to the overall deceleration due to
the hydrodynamic force. Despite its simplicity, this model captures the two-way coupling
between the hydrodynamic force and impactor elasticity in the problem, with the added
mass force term varying both explicitly as a function of nose depth and implicitly based on
the nose and body velocities through the structural coupling. However, the hydrodynamic
force deviates only slightly from the rigid case, indicating that a further simplified one-way
coupled model may be adequate. By formally assuming αM � m (that is, the nose mass
is much larger than the peak added mass), (3.7) and (3.8) simplify to

(1 − α)Mẍb = k(xn − xb), (3.9)

αMẍn = k(xb − xn) + F(t), (3.10)

where F(t) is the hydrodynamic force in the rigid case given by (3.5). In our experiments,
the ratio αM/ max[m] takes values from 1.7 to 9.3. A solution to (3.9) and (3.10) essentially
comprises the structural response of the flexible impactor to the hydrodynamic forcing
associated with the impact of a rigid sphere at constant velocity.

3.4. Peak force transition
In order to understand the mechanism by which a high stiffness impactor can experience
increased force compared with the equivalent rigid impactor, (3.9) and (3.10) can be recast
in modal coordinates, resulting in equations of motion for the rigid body mode (centre of
mass) and elastic mode as

ẍc = F(t)
M

, (3.11)

δ̈ + k
α(1 − α)M

δ = −F(t)
αM

, (3.12)

where δ = xb − xn. When δ = 0, the spring is at its natural length. By combining (3.9)
and (3.12), the acceleration of the impactor body can be written as

ẍb = F(t)
M

+ αδ̈. (3.13)

974 A23-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

82
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.820


Water entry of a simple harmonic oscillator

Consequently, the acceleration of the impactor body (the quantity of interest, and
directly measured in experiment), can be understood as the sum of contributions from
the hydrodynamic force and the elastic mode. Furthermore, from (3.12), it can be seen
that δ̈ > 0 in very early times (as F(t) < 0), and thus the spring initially serves to isolate
the body from the hydrodynamic forcing. For all of the presently studied impacts, the
hydrodynamic force has the same characteristic shape with a sharp increase to the peak
followed by a slower decay (figure 3d solid black and dotted lines). For impacts with
low stiffness springs, the contribution from the elastic mode counteracts the peak in
hydrodynamic force throughout the slamming phase and, as a result, the body experiences
reduced peak deceleration. On the other hand, in the high stiffness case, the impactor
body experiences the high frequency oscillations of the elastic mode (with δ̈ < 0 earlier in
the slamming phase) on top of the hydrodynamic forcing and thus the peak deceleration
is increased. This interpretation suggests that the relationship between the hydrodynamic
time scale and the impactor oscillation frequency plays a key role in determining whether
the peak force will increase or decrease: if the elastic mode begins to oscillate before the
hydrodynamic force decays, the impactor body will experience increased force. This ratio
of time scales emerges directly when non-dimensionalizing the governing equations (3.12)
and (3.13) using the length scale R and the time scale R/V in order to reach

¨̃xb = 3
8

CF

σ
+ α

¨̃
δ, (3.14)

¨̃
δ + R2

F δ̃ = −3
8

CF

ασ
, (3.15)

where the non-dimensional variables are marked with tildes. The new non-dimensional
parameter RF is defined as

RF =
√

k
Mα(1 − α)

R
V

. (3.16)

This so-called hydroelastic factor is the ratio of the time scale of the hydrodynamic
loading to the free fundamental oscillation period of the elastic impactor. Since (3.15) has
the same form as an undamped simple harmonic oscillator subjected to external forcing,
the non-dimensional force on the impactor body may be predicted by computing the
convolution of the hydrodynamic forcing and the elastic unit impulse response as

Mẍb
1
2ρV2πR2

= RF

∫ t̃

0
CF(τ ) sin(RF(t̃ − τ)) dτ. (3.17)

Figures 4(a) and 4(b) show the non-dimensional maximum impact force M max[ẍb] =
M[ẍb]m and time of peak force tm as a function of RF for flexible impact experiments with
V = 2 to 6 m s−1, k = 4.29 to 13.98 N mm−1, α = 0.12 or 0.24 and R = 22.23 mm or
29.64 mm. The experiments collapse to a single curve which agrees excellently with the
model in (3.17). At some critical value near RF ≈ 2, the peak force on the flexible impactor
exceeds the non-dimensional peak force on the equivalent spherical rigid impactor which
is approximately 1.05. The results of the two-way coupled model in (3.7) and (3.8) are
plotted as well; as previously discussed, the two-way coupled model tends to underpredict
the maximum impact force but captures the time of peak force more accurately than the
convolution integral. Thus, we have shown that the force on the body depends only on
the impact drag coefficient CF for the equivalent rigid case, which is a consequence of the
nose geometry, and the hydroelastic factor RF, which depends on the design of the elastic
structure and impact velocity.
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Figure 4. The scaled maximum impact force (a) and the time of the peak force (b) collapse along a single
curve against the hydroelastic number RF for experiments in which the impact speed, stiffness, nose radius and
mass ratio are varied. The error bars, which are sometimes smaller than the marker size, show the standard
deviation between at least three trials. The simplified prediction from the convolution integral in (3.17) (solid
black lines) agrees well with the experiments (markers) and captures the critical hydroelastic factor near RF ≈ 2
at which the peak force in the flexible case equals the peak force in the equivalent rigid case (horizontal line).
The marker shape indicates the impactor mass ratio and nose radius in a given experiment while the colour and
opacity indicate the stiffness and impact speed, respectively. The two-way coupled added mass model from
(3.7) and (3.8) is also shown, which more accurately predicts the time of the peak force. The two-way model
line style (dashed, dotted, or dash–dotted) indicates the mass ratio and nose radius corresponding to a particular
predicted curve as shown in the legend.

Two notable comments remain. The first regards the data point which furthest deviates
from the theory in figure 4(a), corresponding to experiments with V = 2 m s−1, k =
4.29 N mm−1 and α = 0.24. The elastic mode of the flexible impactor is not constrained
during free fall but, in all other cases, the oscillations are so slight that they have no
noticeable effect on the peak acceleration. However, this data point represents the ‘worst’
case scenario with the heaviest nose, weakest spring and least time during free fall for the
oscillations to dissipate. As such, we observe that the phase of the free-fall oscillation at
impact significantly influences the force. In particular, δ(0) < 0 for these experiments – the
impactor is ‘prestretched’ – which increases the impact force compared with the δ(0) = 0
case. This effect can be captured by changing the initial conditions of the two-way coupled
model. Conversely, according to the model, a ‘precompressed’ (δ(0) > 0) impactor would
experience reduced force at these operating parameters. This point is explored in more
detail in Appendix D. The second comment is a reminder that only the slamming phase
of impact is considered in the present study; in some rare cases (particularly at low k or
low V), the maximum force during slamming is exceeded at much later times when the
trailing air cavity pinches off. Consequently, additional considerations must be made in
these cases if the goal is to predict the maximum force during the entire impact.

3.5. High stiffness limit
Intuitively, as the stiffness of the impactor increases to sufficiently large values
(corresponding to high RF), its behaviour should eventually return to the ‘rigid’ case.
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Figure 5. Additional experiments with two high stiffness impactors demonstrate that the scaled maximum
impact force (a) and the time of the peak force (b) approach the equivalent rigid case (horizontal line)
as RF becomes large. While the time of the peak effectively returns to the rigid case past RF ≈ 20, the
non-dimensional peak force still exceeds the rigid case by more than 30 % at RF ≈ 200. The simplified
prediction from the convolution integral (solid black line) accurately captures the impactor behaviour at large
RF . The error bars, which are sometimes smaller than the marker size, show the standard deviation between at
least three trials.

In order to observe this behaviour, we conducted experiments with two additional flexure
spring designs with high stiffness values of k = 760 N mm−1 and 21 600 N mm−1. Since
these values exceed the capabilities of our tensile testing machine, the stiffness values
were instead extracted from the impactor natural frequencies which were measured by
suspending the impactor from a low stiffness bungee and exciting the axial mode with
an impact hammer. As shown in figure 5, the high stiffness experiments performed
with V = 2 to 6 m s−1, R = 22.23 mm and α = 0.12 or 0.24 also collapse nicely
onto the theoretical curve predicted by (3.17) despite the fact that the axial mode no
longer represents the fundamental mode, with bending modes predicted to occur at lower
frequencies (Appendix A). By substantially increasing the impactor’s axial stiffness, it
is possible to extend our experimental RF values by more than an order of magnitude
while keeping other experimental parameters the same. For impacts near RF ≈ 10, the
non-dimensional peak force achieves values that are approximately double those in the
equivalent rigid case before steadily decreasing as RF is further increased. However,
despite spanning nearly four orders of magnitude in stiffness in our flexible experiments,
the peak of the equivalent rigid case was not recovered: even at RF ≈ 200, the measured
(and predicted) peak force exceeds the rigid case by more than 30 % as seen in figure 5(a).
In fact, according to the model, it is not until RF achieves a value near 4500 that the peak
force returns to within 5 % of the rigid case. Past RF ≈ 20, the time of the peak force is
essentially the same as in the equivalent rigid case as demonstrated in figure 5(b). Note
that the odd bumpiness in the theoretical curves at high RF is physical in origin – once RF
is high enough for several impactor oscillations to occur before the hydrodynamic force
reaches its peak, the time and magnitude of the peak force are highly sensitive to the
relative phase of the impactor oscillations and hydrodynamic force.
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3.6. Effect of damping
A final question of high practical relevance that can now be addressed with our validated
model is the influence of damping on the behaviours elucidated herein. The model
culminating in (3.17) can be readily extended to an impactor which is a linearly damped
harmonic oscillator. We replace the undamped unit impulse response function in the
convolution with the appropriate damped unit impulse response function g(t) and let

I =
∫ t̃

0
CF(τ )g(t̃ − τ) dτ. (3.18)

The unit impulse response functions g(t) for the damped impactor used in (3.18) are
solutions to

¨̃
δ + 2ζRF

˙̃
δ + R2

F δ̃ = 0 δ̃(0) = 0 ˙̃
δ(0) = 1 (3.19a–c)

which are given by

g(t̃) = 1
RF

sin(RFt̃) undamped (ζ = 0), (3.20)

g(t̃) = 1

RF
√

1 − ζ 2
exp(−ζRFt̃) sin

(
RF

√
1 − ζ 2 t̃

)
underdamped (ζ < 1), (3.21)

g(t̃) = t̃ exp(−RFt̃) crit. damped (ζ = 1), (3.22)

g(t̃) = 1

2RF
√

ζ 2 − 1

[
exp

(
RFt̃

(√
ζ 2 − 1 − ζ

))

− exp
(

−RFt̃
(√

ζ 2 − 1 + ζ

))]
overdamped (ζ > 1).

(3.23)

Then, the dimensionless impact force on the body is given by

Mẍb
1
2ρV2πR2

= R2
FI + 2ζRFİ. (3.24)

Here, ζ is the impactor damping ratio defined as

ζ = c
2
√

Mkα(1 − α)
(3.25)

where c is the damping coefficient. The theoretical maximum impact force versus RF is
plotted for several values of ζ in figure 6. For the impactors with stiffness values k = 4.29,
7.80 and 13.98 N mm−1, the damping ratio ζ is 0.007 ± 0.001 as measured from ring down
tests. Equation (3.24) predicts that damping tends to lower the peak force at high RF, but
increases the peak force at low RF. This general trend is consistent with the physics of
passive vibration isolation. As ζ increases, the critical RF where the peak force is equal to
the equivalent rigid case shifts in a non-monotonic way, first increasing and then starting
to decrease near critical damping. At high damping, the curve returns to the rigid case.
For an impactor with a fixed stiffness that must perform over a wide range of operating
conditions, an underdamped system could be designed to maintain significant peak force
reduction at high speeds (low RF) without incurring such a large penalty at low speeds
(high RF) as the undamped system.
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Figure 6. The theoretical prediction for the non-dimensional maximum impact force on a linearly damped
impactor is plotted as a function of hydroelastic number RF and compared with the undamped case (ζ = 0) and
the equivalent rigid impactor (dashed line). The ζ = 0.007 curve corresponds to the measured damping ratio of
the flexible impactor design and differs minimally from the undamped case. An underdamped impactor could
still experience substantial peak force reduction at low RF without incurring such a large peak force increase at
large RF as compared with the undamped case.

4. Discussion

In the present work, we have provided experimental and theoretical treatment of a
simplified hydroelastic problem involving the water entry of a 2DOF (one axial elastic
mode) impactor with a hemispherical nose. The impactor nose and body are coupled with
a set of compliant flexure springs in order to achieve a system that closely approximates
a simple harmonic oscillator. Using an onboard accelerometer, we directly measure the
deceleration of the body during water entry over a wide range of impact speeds, spring
stiffnesses, nose radii and nose to body mass ratios. We accompany these experiments
with a predictive theory based on the added mass effect and show that, in a certain
regime with high practical relevance, the peak slamming force only depends on two
dimensionless quantities. These quantities are the impact drag coefficient function CF,
which is prescribed by the nose geometry, and the hydroelastic factor RF, which relates
the hydrodynamic and impactor elastic mode time scales. At low RF, which corresponds
to low stiffness or high impact speed, the flexible impactor body experiences reduced force
as compared with an equivalent rigid impactor. However, flexibility can also increase the
force once RF exceeds a critical value. We use our validated model to make a prediction
for the damped case and show that, if an impactor must operate over a wide range of
RF values, an underdamped design could recover significant force reduction at low RF
without such a penalty at high RF. As reviewed in the introduction, the present work
is by no means the first to consider the role of impactor elasticity on the structural
loading during water entry. Throughout prior studies, some have demonstrated systematic
force reduction (Wu et al. 2020) or force increase (May 1970; Shi et al. 2019b), while
others have suggested both possibilities depending on the time scales of the problem
(Kim et al. 1996; Carcaterra & Ciappi 2004), as corroborated herein. However, despite
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the variety of reduced-order models available, very few experimental realizations
of equivalently simplified structures have been completed to date. Our integrated
experimental and theoretical study of what is arguably the simplest possible hydroelastic
problem has illuminated the essential fundamental physics while showcasing its richness,
and may potentially serve as a foundation for more advanced studies in the field.

In particular, the present work has focused on an undamped simple harmonic oscillator
with a hemispherical nose to minimize the total number of parameters in the problem.
However, both the one- and two-way coupled theoretical formulations presented can be
immediately applied to a much broader range of problems. For instance, the one-way
coupled model (3.17) can be easily extended to other nose geometries since it requires as
input only the knowledge of the rigid impactor dynamics. Given an arbitrary axisymmetric
nose geometry, one may perform experiments with a rigid impactor to obtain CF and
substitute the result into (3.17) to predict the peak force for an elastic design. While
we have used theoretical results available for rigid spherical impactors (Shiffman &
Spencer 1945b), equally good (or better) predictions can be made by directly using a fit
to the collapsed data presented in figure 3(b). Furthermore, by suitably adapting the more
general ordinary differential equation formulation presented in (3.7) and (3.8), one can
make predictions for nonlinear structural elements or explore cases outside of the ‘heavy’
nose limit where explicit two-way coupling plays a more prominent role. Continuous
structures may also be analysed in the present framework using standard lumped-mass
modelling approaches, and in many instances very few modes need to be resolved for
faithful representations of the dynamics of otherwise complex structures (Piro & Maki
2013). While significant progress has been made in high-fidelity coupled simulations of
hydroelastic problems over the past several years, the reduced-order models presented
herein are (in contrast) extraordinarily efficient to compute and may be particularly
valuable in early design phases and in interpreting experimental and computational results.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.820.
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Appendix A. Impactor details

A.1. Impactor fabrication
The slender flexible axisymmetric impactor is designed with an overall diameter of
44.45 mm and length of approximately 220 mm. All parts are machined from ASTM
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Water entry of a simple harmonic oscillator

6061-T6 aluminium except for the flexure spring elements which are laser-cut from
acetal plastic and the noses for experiments with α = 0.12, which are 3-D printed out
of photopolymer resin (Formlabs Clear Resin V4) on a Formlabs Form V2 machine.
All aluminium components are anodized black according to MIL 8625 except for the
parts which hold the flexure spring elements which are left uncoated to aid visualization.
The impactor body contains a cavity into which the accelerometer is rigidly mounted
using a threaded locking ring. An end cap with an O-ring ensures the body is water
tight and contains an embedded steel sphere for dropping from the electromagnet. The
flexure spring assembly features three flexure spring elements as shown in figure 1(c)
which are bolted to triangular aluminum components. For the experiments with k = 4.29,
7.80 and 13.98 N mm−1, the flexure beam length L is 18 mm, the material thickness b
is 6.78 mm and the beam height h is varied from approximately 0.5–1.5 mm to achieve
the different stiffness values. Fillets with 1 mm radius are applied at the beam connection
points in order to reduce the stress concentration and enable the flexures to survive the
large shock as the impactor collides with the bottom of the tank. For the high stiffness
experiments with k = 760 N mm−1, the flexure beams are significantly shortened with
h/L ≈ 1/3. For the k = 21 600 N mm−1 experiments, the flexure elements are simply
a solid plate of acetal plastic with the mounting holes cut out. The flexure spring
assembly threads into the impactor body at one end and bolts to the nose at the other
end. Hemispherical nose pieces weighing 0.029 kg are 3-D printed with R = 22.23 and
29.64 mm for the α = 0.12 experiments. An aluminium nose piece weighing 0.126 kg
with R = 22.23 mm is fabricated for the σ = 0.24 experiments. The nose pieces are
each attached to an aluminium carrier weighing 0.033 kg which features mounting holes
for the flexure elements. The fully assembled impactor body weighs 0.514 kg and the
flexure elements typically weigh 0.020 kg for the low stiffness experiments and 0.040 kg
for the high stiffness experiments, which we assume is split evenly between the body
and nose masses. The slight mass variations due to the flexure elements are taken into
account when calculating the RF value and non-dimensional maximum impact force for a
given experiment. For the equivalent rigid experiments, additional aluminium noses are
fabricated which thread directly into the impactor body in place of the flexure spring
assembly. When possible, the lengths of the rigid noses are chosen so that the total
impactor mass is the same as in the flexible experiments.

A.2. Characterization of impactor flexibility
The flexible impactors with k = 4.29, 7.80 and 13.98 N mm−1 are tested in an Instron 5924
tensile testing machine with a 500 N load cell at a displacement rate of 1 mm s−1 to a total
displacement of 4 mm. Force is measured during both the compression and subsequent
extension in order to observe the hysteresis of the structure. The stiffness values k are
determined by linear regression fitting of the force data. For the high stiffness cases with
k = 760 and 21 600 N mm−1, an accurate displacement curve cannot be directly obtained
from the Instron machine because the impactor stiffness is comparable to the machine
frame stiffness; instead the stiffness is estimated through experimental modal testing. The
impactor is hung from a weak bungee such that the vertical translation mode has a low
frequency (0.6 Hz) and the axial flexible mode of the impactor is excited by applying a
longitudinal impulse with a rubber-tipped hammer. The acceleration of the impactor body
is recorded and the natural frequency – from which the axial mode stiffness is calculated –
is extracted by fitting a damped sinusoid to the data. This set-up is also used with
the low stiffness impactors (k = 4.29, 7.80 and 13.98 N mm−1) and the decay rate of
the fit sinusoid is used to estimate the damping ratio: ζ = 0.007 ± 0.001. The natural
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Figure 7. Plots of impactor speed versus time for the rigid (M = 0.578 kg) and flexible (M = 0.592 kg; k =
4.29, 7.80, 13.98 N mm−1; α = 0.12) cases with V = 4 m s−1 and R = 22.23 mm obtained by integrating the
deceleration data reported in figure 2(a). The results are averaged over five experimental trials and the shaded
regions indicate the standard deviation between trials. Despite the large forces during the slamming phase, the
changes to the impactor speed are relatively small due to its short duration.

frequencies of the low stiffness impactors obtained from experimental modal testing
suggest slightly higher stiffness values than obtained via quasistatic testing, possibly due
to rate-dependent material behaviour, which would help to explain the underprediction of
the two-way coupled model in figure 4(a). However, we choose to report the values from
quasistatic testing since this is a more direct and independent measurement of the stiffness.
Computational modal analysis simulations are completed in Autodesk Fusion 360 and used
to inform the design of the low stiffness impactors so that only the axial mode is excited
during impact and they behave like simple harmonic oscillators. For the flexible impactors
with k = 4.29, 7.80 and 13.98 N mm−1, the simulations predict that the first harmonics
(bending of the flexure springs) always have at least 142 % higher natural frequency
than the axial fundamental mode. The simplified flexure beam theory model (Judy 1994)
supports this finding; the translational stiffness of the flexure element corresponding to
tension/compression of the beams is larger than the axial mode stiffness by a factor which
scales like L2/h2. Similarly, the translational stiffness of the flexure element corresponding
to the other bending mode of its beams is larger by a factor which scales like b2/h2. For
the high stiffness impactors (k = 760 and 21 600 N mm−1), the design is less rigorous as
the fundamental mode involves bending of the flexures. Nevertheless, the acceleration
data during impact confirms that the axial mode is primarily excited due to the axial
nature of the loading: the maximum off-axis vibrations during impact (measured in radial
directions) always remain less than 21 % of the maximum axial acceleration, although are
typically no more than 5 %.

Appendix B. Impactor speed

We report the impactor speed as a function of time in figure 7 for rigid and flexible
experiments with V = 4 m s−1 and R = 22.23 mm. For the flexible cases, k = 4.29,
7.80 and 13.98 N mm−1, and α = 0.12. The impactor speed is obtained by integrating
the acceleration data in figure 2(a) with a trapezoidal rule and the initial speeds from
the camera measurements. Since the acceleration data is quite repeatable, the variation
between trials in figure 7 is mainly attributed to the variation in measured impactor speed
at the moment of impact.
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Figure 8. The scaled maximum impact force (a) and the time of the peak force (b) are plotted against the
hydroelastic factor RF and compared with our model which is updated to include form drag. The error
bars, which are sometimes smaller than the marker size, show the standard deviation between at least three
experimental trials. The marker shape indicates the impactor mass ratio and nose radius in a given experiment
while the colour and opacity indicate the stiffness and impact speed, respectively. The simplified prediction
from the convolution integral in (3.17) is shown in the solid black lines and the two-way coupled added mass
model from (3.7) and (3.8) is also shown. The two-way model line style (dashed, dotted, or dash–dotted)
indicates the mass ratio and nose radius corresponding to a particular predicted curve as shown in the legend.
The agreement with the theory improves compared with figure 4 when we update the added mass function
dm/dx to include the contribution of form drag as shown in the inset plot in (b).

Appendix C. Influence of form drag

We modify the Shiffman & Spencer added mass function dm/dx as shown in the inset plot
in figure 8(b) in order to match the experimental impact force profile for the rigid impactor
(figure 3b) at later non-dimensional times and hence account for the contribution of form
drag. This change improves the agreement between the predicted and experimentally
measured peak impact acceleration as shown in figure 8(a), particularly at low RF. The
change in the prediction for the time of the peak acceleration is less pronounced, as shown
in figure 8(b).

Appendix D. Influence of impactor preload

Since the elastic mode of the impactor is not constrained during free fall, the impactor
can experience a preloaded impact in cases where the free-fall oscillations persist at the
moment of impact such that δ(0) /= 0. Although we cannot reliably measure the nose
displacement in our current experimental set-up, we expect that at the moment of impact,
the nose may be stretched or compressed by a maximum distance associated with its initial
gravitational extension

δgrav = αMg
k

. (D1)

Additional compression that might arise from aerodynamic effects during free fall are
negligible for our experimental parameters. For the experimental case in which we observe
the most significant effects due to the oscillation phase at impact (V = 2 m s−1, α =
0.24, k = 4.29 N mm−1), the displacement due to the nose weight is δgrav = 0.39 mm.
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Figure 9. The experimental acceleration curve (solid blue line) with α = 0.24, V = 2 m s−1 and k =
4.29 N mm−1 is compared with the theoretical prediction of the two-way flexible added mass model (dashed
lines). The shaded region represents the standard deviation of three experimental trials. The natural length curve
corresponds to the impact model with no preload while the prestretched or precompressed curves are generated
by modifying the initial conditions of the model with δ(0) = ±0.39 mm and δ̇(0) = 0. This initial displacement
corresponds to the estimated free-fall oscillation amplitude based on the weight of the hanging nose and spring
stiffness. The experimental curve closely matches the prestretched case suggesting that δ(0) < 0 for these
experiments. The peak deceleration is notably increased for this case compared with the theoretical curve with
no preload.

Hence, assuming no damping during the free fall, in the most ‘extreme’ cases the nose
would have a positive or negative displacement of 0.39 mm at the moment of impact, with
zero nose velocity relative to the body. By appropriately modifying the initial conditions
based on δ(0) = ±0.39 mm and δ̇(0) = 0, we use the flexible added mass model in (3.7)
and (3.8) to predict the impact acceleration and compare with the experimental data for
the case of α = 0.24, V = 2 m s−1 and k = 4.29 N mm−1. The resulting acceleration
curves in figure 9 successfully bound the experimental data, and demonstrate that the
predicted peak deceleration depends on the preload. For these parameters, the prestretched
case experiences increased deceleration during impact while the precompressed case
experiences reduced deceleration. The experimental curve more closely matches the
prestretched case suggesting that δ(0) < 0 for these experiments.
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