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1. Introduction and definitions. The aim of this note is to generalize to an arbitrary
partially ordered set (poset) (/>, ^ ) the standard lattice results on the Jordan-Dedekind Chain
Condition (abbreviated hereafter to J.D.C.C.). Birkhoff [1] defines semimodularity for a
lattice L by

(£,) if x, y cover a and x # y, then x v y covers x and y.

The additional assumption that L is of finite length is heavily relied upon in proving that the
J.D.C.C. holds [1, Theorem 3, p. 68].

The semimodularity condition (£) has a natural generalization to an arbitrary poset P by

(<T) if x, y cover a and x J= y, then there exists a deP which covers x and y.

For a lattice the conditions (£) and (a) coincide and the following is true. If P is a semi-
modular poset of finite length, then the J.D.C.C. holds.

In [2], Rhodes has given a definition of semimodularity for a lower semilattice S. His
result is that, if S satisfies a strong semimodularity condition, then S satisfies a strong chain
condition.

Let (/*, ^ ) be a poset, and let a, be P. Then b covers a (b >- a, a -< b) if and only if a < b
and {xeP: a ^ x ^ b) = {a,b}. Also, if x,yeP, then xAy and xvj> mean, respectively, the
greatest lower bound and least upper bound of {x,y) if they exist. Thus x A y = a means that
XAy exists and equals a. A similar statement holds for xvy.

DEFINITION 1.1. Let P be a poset. Then P is called

(i) strongly upper semimodular if and only if, whenever a A b, avb exist and a >- a A b,
then avb>-b;

(ii) weakly upper semimodular if and only if, whenever aAb exists and a, b >- a A b, then
av b exists and avb>-a,b.

DEFINITION 1.2. Let P be a poset. Then P satisfies

(i) the strong chain condition if and only if, whenever a < b and there is a finite maximal
chain from a to b, then all maximal chains from a to b are finite and have the same length;

{Note. The Axiom of Choice implies that, if this condition is satisfied, then every chain
from a to b is finite.)

(ii) the weak chain condition if and only if, whenever a < b and there is a finite maximal
chain from a to b, all finite maximal chains from a to b have the same length.

It will be shown that, if P is a poset which is strongly (weakly) upper semimodular, then P

•fThis paper is part of the first author's M.S. thesis, written at the University of South Carolina under the
direction of the second author.
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satisfies the strong (weak) chain condition. An example will show that the semimodularity
conditions and chain conditions are not the same, even in a lattice. A further example will
show that the weak semimodularity condition cannot be further relaxed and still imply the
weak chain condition.

2. The chain conditions. Let P be a partially ordered set and let a,x,beP with a < x < b.
The reader is asked to use Zorn's Lemma to show that there is a chain C from a to b which
contains x and which is maximal in the collection of all chains from a to b.

Throughout, M will denote the set of positive integers. Whenever C is a finite chain in a
poset P, then L{C) will denote the length of C.

THEOREM 2.1. Let P be a strongly upper semimodular poset. Then P satisfies the strong
chain condition.

Proof. (By induction). Let K = {n e N: if a, b e P with a < b and C1 is a finite maximal
chain from a to b of length n and C2 is a finite chain from a to b, then L(C2) ^ «}• It is enough
to show that K=N.

Certainly \eK. Assume now that neN, \<n, and teK whenever 1 ^ t < n. Let
a = o0 «< at -<...«< an = b be a maximal chain from a to b, and let C be a finite chain from
a to b.

Case (i). There exist xeC— {a,b} and te[l,n — 1] such that a, ^ x.
If a, = x, then, since a = ao-<al^...-<at = x and x = a,-<at+j « < . . . - < a n — b are

maximal chains from a to x and from x to b of lengths t, n — teK, then

L(C) = L{yeC:y g x}+L{yeC: x^y}^ *+(«-*) = n.
Assume now that a, < x. Since a, -< at+j -< . . . -< an = b is a maximal chain from a, to

6 of length n — tsK, there is a maximal chain from a, to 6 of length n — t which contains x, say
«r = J< <yt+i <••• <yt+s = x<y,+s+1 < .. .<yn = b. Now, since a = a0 •< Qj -< . . . •< a, =
7»-<yi+i -<•••-<yt+s = x and x = j ( + s - < > ' r + s + 1 - < . . . ^ ^ ) I = i are maximal of lengths
t+s, n-(t+s)eK, then

L(Q = L{yeC:y ^ x}+L{yeC: x^y}^ (t+s)+ [n-(t+s)] = n.

Case (ii). For each xeC—{a,b} and for each te[l,n— I], a, $ x . Then, for each
x e C - { a , & } , «! ^ x and so at AX = a0.

(iia). For each xeC— {a,b},flx v x = b. Then, since i5 is strongly upper semimodular,
x < b for each x e C - {a, 6}. It follows that L(C) ^ 2 <; n.

(iib). For each xeC— {a,6}, either x v a t does not exist or xva± exists but is not equal
to b. In either case choose ueP such that x,al <u <b.

Since a± «< a2 -< • • • ~< fl
n
 = b is maximal from at to 6 of length «— 1 eK, there is a maximal

chain from at to b of length « - 1 which contains u, say a t =>>!-<... -< yr = w < yr+1 -< ...
-<yn = b. Since a = a0 -< av — y± -<... -< yr = u is maximal from a to M of length re/sf, there
is a maximal chain from a to u of length r which contains x, say a = a0 = z0 -< zx < . . . <C zs =
x < z s + 1 -<. . . -< zr = M. Now, since a = ao = zo<,z1<...<zs = x&nd x = zs<zs+1<...
-<.zr = u~<,yr+1...yn = b are maximal of lengths s, n—s e K, it follows that L(C) ^ s+(n—s) =
n.
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In any event, neKand so K= N.

LEMMA 2.2. Let P be a weakly upper semimodular poset. Let a,beP with a <b and let
a = a0 -< Oj -<...-< an = b be a finite maximal chain from atob. Let xePbe such that x ^ at

for each ie[l,n— 1] anda^x < b. Then xvat ^xv a^^^ifor each ie[l,n— 1].

Proof. (By induction). Let K— {/e[l,w —1]: xv at>xv a^^a^.
Since alfx >- a, it follows that XA a^ = a. Since P is weakly upper semimodular, then

exists and xvat >-x,a±. But x = xva 0 and so xval ^xyao,av ThusleAT.
Assume now that ie[\,n—2] and ieK. Then xva,>-flj and ai+1 >-at. Notice that

ai+i since otherwise x^ai+1, contradicting the hypothesis. Since ai+l>ai, it
follows that (ivfl|)Aa,+ , = at. Since P is weakly upper semimodular, then (x v a,) v al+1 >-
xva{,a1+1; that is, xvai+1 >-jcvaf,aj+1. ThusZ+le/sT.

THEOREM 2.3. Let P be a weakly upper semimodular poset. Then P satisfies the weak
chain condition.

Proof. (By induction). Let K = {neN:ifa,beP with a < b and there is a finite maximal
chain from a to b of length n, then all finite maximal chains from a to b have length n).

Certainly IeK. Assume now that neK,a < b, and that a = o0 -<at -<...-<an+1 =6 ,
a = 60 -< Z>j -<...-< 6m+j = b are finite maximal chains from a to 6 of lengths « +1 and m +1,
respectively. Consider Z>t and choosey minimal with respect to b^ ̂  ay Ify = 1, then bt = at

since aj >- a. It follows immediately that « = m and hence «+1 = m+1. Assume y ̂  1.
Then b^Kaj, since Aj^a,,. By Lemma 2.2, bl=b1va0<b1vai<...<blvaJ-l =
Oj -< o^+ ,-<. . .-< an+1 = bis maximal of length n. Thus n = m and again « + l = m + l . In
any event, n + leK and hence K= N.

EXAMPLE 2.4. LetL= {(^,0):xeR,0^ *<; l}u{(l,y):yeM,0 £y £ l}u{(0,1)},where
IR is the set of real numbers. Let L be ordered by the usual cartesian ordering. Then L is a
lattice which is weakly upper semimodular, but L does not satisfy the strong chain condition.

Definition 1.1.2 might be considered to be a bit disappointing in the light of Definition
1.1.1. One might hope that 1.1.2 would read that whenever a/\b, avb exist and a,b~>-a/\b,
then a v b>-a,b. The next example is to illustrate that even for a lower semilattice S, the
weakened definition need not imply the weak chain condition.

EXAMPLE 2.5. Let S = {(0,0), (0,}), (*, 1), (1,0), (1,0), (1,*), (1, l)}u{(*,*): xeU and
1 < JC < 1}. Let S be ordered by the usual cartesian ordering. Then S is a lower semilattice
such that, whenever aAb,avb exist and a,b>-aAb, then av b>a,b. However, there are
maximal chains from (0,0) to (1,1) of lengths 3 and 4.
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