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Summary

A novel selection algorithm for maximizing genetic response while constraining the rate of

inbreeding is presented. It is shown that the proposed method controls the rate of inbreeding by

maintaining the sum of squared genetic contributions at a constant value and represents an

improvement on previous procedures. To maintain a constant rate of inbreeding the contributions

from all generations are weighted equally and this is facilitated by modifying the numerator

relationship matrix. By considering the optimization of the contributions of many generations the

initial mating proportions (the genetic contributions to the next generation) are not equal to their

long-term values, but are set equal to the expected long-term contributions given the current

information. This is confirmed by the regression of the long-term contributions on the assigned

mating proportions being close to one. The gain obtained from the selection algorithm is

compared with the maximum theoretical genetic gain under constrained inbreeding. It is concluded

that this theoretical upper bound is in general unattainable, but from this a concept of genetic

efficiency in terms of resources and constraints is derived.

1. Introduction

The problem of optimizing genetic progress with

constrained rates of inbreeding has only recently been

explored, following the development of a coherent

underpinning theory for predicting rates of inbreeding

under selection (Wray & Thompson, 1990). Optimal

designs for maximizing gain with constrained in-

breeding have been developed with mass selection

(Villanueva et al., 1996), and with sib-indices (Villa-

nueva & Woolliams, 1997). However, there are

limitations: (i) these designs are special cases, and do

not, for example, cover selection using BLUP; and (ii)

they are tools for designing schemes a priori, but do

not offer guidance for selection decisions in practice

that involve a particular given set of candidates with

performance and pedigree records.
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Unlike the advances in the deterministic predictions

for genetic gain and inbreeding, the development of

dynamic selection algorithms for designing schemes a

posteriori (Woolliams & Meuwissen, 1993; Wray &

Goddard, 1994; Brisbane & Gibson, 1995) has

proceeded largely without the application of genetic

contribution theory (Woolliams & Thompson, 1994).

The approach employed in the design of these

algorithms is to describe the problem of a constrained

maximum gain as a quadratic programming problem.

The gain is maximized step by step, optimizing

progress one generation in the future. Where the

constraint has been on the rate of inbreeding the

selection decision has involved consideration of the

relationships between successful candidates, and has

allowed different mating proportions for selected

individuals. Meuwissen (1997) developed an algorithm

that showed how to obtain explicit solutions for this

problem, which are near-optimal using the numerator

relationship matrix (A). The shortfalls of these

procedures are that : (i) they do not achieve a constant

rate of inbreeding over several generations of selec-

tion; and (ii) because of a lack of accompanying
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theory it is unclear whether consideration of only the

next generation provides the optimal, feasible solution

to the long-term problem.

An approach to understanding the theoretical

problem is provided by the concept of long-term

genetic contributions (James & McBride, 1958).

Woolliams & Thompson (1994) developed this ap-

proach to show that the long-term rates of gain and

inbreeding that were attributable to a generation

could be described in a unified way by contributions.

Furthermore, they showed that the recurrent selection

problem constrained by rates of inbreeding could be

recast in a form that was analogous to a previously

solved problem of optimal allocation of clones in one

generation (Bondesson, 1989).

This paper has four objectives. First, it seeks to

improve existing methods for maximizing gain while

restricting the rate of inbreeding by introducing

modifications to existing algorithms (using an aug-

mented numerator relationship matrix (A*) and an

associated constraint). Secondly, it examines the

relationship of the optimal mating proportions in

dynamic selection procedures with long-term con-

tributions in order to describe the process by which

individual contributions influence the way the pedigree

develops. Thirdly, it extends the results of Woolliams

& Thompson (1994) for deriving explicitly a theor-

etical upper bound to genetic progress as a function of

the constraints imposed and the resources available.

Finally, it develops a concept of genetic efficiency by

comparing the results of applying the modified

dynamic algorithm with the theoretical upper bound.

2. Methods

(i) Simulation models

Stochastic computer simulations were used to model

the effects of dynamic selection routines on the way

the pedigree develops and to compare rates of gain

and inbreeding from using different selection algo-

rithms. Populations with discrete generations were

evaluated over 20 generations. An additive infinitesi-

mal model (Bulmer, 1971) was considered. The trait

under selection was assumed to be of known heri-

tability (h#) and the genetic evaluation was carried out

using an animal model BLUP. True breeding values

of unrelated individuals in the base population (t¯ 0)

were obtained from a normal distribution with mean

zero and variance h#. Phenotypic values were obtained

by adding a normally distributed environmental

component with mean zero and variance (1®h#). In

each subsequent generation, the optimum number of

sires and dams were selected as described below. The

number of offspring born per generation was 100 (50

males and 50 females). True breeding values of the

offspring were generated as half the sum of the

true breeding values of the animal’s sire and dam

plus a Mendelian sampling term taken from a

normal distribution with mean zero and variance

("
#
)[1®"

#
(F

s
­F

d
)] h#, where F

s
and F

d
are the inbreeding

coefficients of the sire and the dam, respectively. The

rates of inbreeding and response were calculated for

each generation.

Three different dynamic selection algorithms were

employed, all based upon the algorithm presented by

Meuwissen (1997). For each algorithm, the number of

sires and dams and their contributions were optimized

each generation of selection in order to maximize the

rate of gain subject to a constraint on the rate of

inbreeding.

(a) Algorithm I

Algorithm I was as described by Meuwissen (1997). In

brief, the algorithm uses the estimated breeding values

and the numerator relationship matrix (A) to identify

an optimum mating proportion for each individual i

at generation t (c
i,t

), where c
i,t

¯ 0 implies that the

individual is not required for breeding. It achieves this

by maximizing

f (c)¯ cT

t
g
t
®λcT

t
A

t
c
t
,

where c
t

is the vector of mating proportions of

selection candidates at generation t (i.e. genetic

contributions to the next generation), g
t
is the vector

of estimated breeding values, A
t
is the numerator re-

lationship matrix of candidates, and λ is a Lagrangian

multiplier. Constraints are imposed so that mating

proportions are positive (i.e. c
i,t

& 0) and sum to 1

(i.e. Σ
i
c
i,t

¯1). The Lagrangian multiplier is chosen

to achieve the constraint cT

t
A

t
c
t
% 2t∆F, where ∆F is

the intended rate of inbreeding and t is the generation

number.

For an individual with mating proportion c
i,t

the

desired number of offspring was 200c
i,t

(since 100 was

the total number of candidates per generation and the

contributions sum to a half for each sex). The actual

number was achieved through a process of : (i)

reducing the desired real number to the largest integer

below it and then allocating a mate at random to

produce a single offspring per mating; and (ii) adding

further offspring to parentswith the greatest deviations

from the desired number until the numbers of offspring

sum to 100, again allocating mates at random. The sex

of the offspring was randomly determined.

(b) Algorithm II

Algorithm I controls the increase in average co-

ancestry and hence it constrains the absolute increase

in inbreeding coefficient from time t®1 (F
t−"

) to time

t (F
t
), rather than the rate of inbreeding. This increase
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in the inbreeding coefficient approximates ∆F only

when F
t−"

is small. In Algorithm II a straightforward

modification of Algorithm I to achieve the restriction

on ∆F was applied by setting the constraint, C
t
¯

1®(1®2∆F )t.

(c) Algorithm III

In contrast to the previous algorithms, Algorithm III

controls the total increase in squared genetic con-

tributions each generation to constrain ∆F. This was

achieved by modifying Algorithm I by replacing A

with an augmented matrix A*. The augmented matrix

for individuals in the generation t­1 was calculated

as

A$
t+"

¯Z
t
A$

t
ZT

t
­D,

where D is diagonal with elements equal to "

#
and Z

t
is

a gene flow matrix (Hill, 1974) identifying parents of

generation t­1. With the offspring in rows and

parents in columns, the elements of Z
t

are either "

#

(parents) or 0 (otherwise) (Thompson, 1977; Wray &

Thompson,1990).For t¯ 0 (basepopulation),A$

!
¯ I.

By augmenting A the diagonal terms are no longer

scaled by one minus the average inbreeding of the

parents and hence the base is in effect re-defined each

generation. Therefore, each generation can be used to

constrain ∆F to a constant value as the differential

treatment of generations arising from this dependence

on the average inbreeding of the parents is removed.

A proof that cT

t
A$

t
c
t
can be used to constrain the rate

of inbreeding is presented in Appendix A.

The constraint applied in this algorithm is cT

t
A$

t
c
t

% t∆C, where ∆C is set to 2∆F [1®3∆F­12(∆F )#] ;

this is approximately equal to ∆F for small values of

∆F but is marginally greater than ∆F for larger ∆F,

due to second-order effects (see Appendix B). Hence-

forth A$
t
, A

t
and c

t
will be abbreviated as A*, A and c,

respectively.

(d) Relationship between mating proportions and

long-term contributions

The total number of parents selected each generation

was obtained along with the ‘effective ’ number (N ) of

each sex which was derived from (4cTc)−" (Robertson,

1965). For each replicate using A*, the long-term

contributions (r) were calculated using the program

used by Woolliams & Ma$ ntysaari (1995) for indi-

viduals born at generation 15. The long-term con-

tribution of an individual i was defined as the

proportion of genes in generation 20 that derived

from that ancestor. The regression of r
i

on c
i

was

calculated for each replicate using only those indi-

viduals for which c
i
" 0. In addition, rTr, cTc and their

ratio were calculated for ancestors in generation 15.

Generation 15 was chosen since this is the last

generation whose contributions are near convergence

by the end of the simulation (t¯ 20).

To obtain the regression of r on c, the results for

generation 15 were subdivided by sex, replicate and

the number of parents selected. The regression

coefficients and their associated standard errors were

calculated within each category and were pooled using

weights inversely proportional to the sampling vari-

ance. An analysis of variance found no significant

differences in slope due to number of parents.

(e) Parameters

The schemes were run for a range of heritabilities

(0±01, 0±25 and 0±99) and constraints on the rate of

inbreeding (0±00625, 0±025 and 0±05). A minimum of

100 replicates were run for each combination and

results presented are averages over replicates.

(ii) Upper bounds for rate of progress and efficiency

Bondesson (1989) solved an allocation problem

concerning the planting of optimal proportions (k
i
) of

clones with known genetic values (A
i
) to maximize

gain (Σk
i
A

i
) in a single crop with a constraint on

genetic diversity (namely Σk#
i
%γ−"). Here γ has a

lower bound of one attained when only one clone is

planted throughout the crop. This problem is equi-

valent to a recurrent selection problem with con-

strained inbreeding if we consider Mendelian sampling

terms (a
i
) rather than genetic values and long-term

contributions (r
i
) rather than clonal proportions. For

infinite populations (Bondesson, 1989) the solution to

the problem of obtaining maximum genetic gain

under constrained diversity was obtained by maxi-

mizing

& ar(a)φ(a) da,

where the integration is bounded by ®¢ and ­¢,

subject to the constraints :

(i) r(a)& 0 (i.e. all contributions are non-

negative),

(ii) ! r(a)φ(a) da¯1 (i.e. the total contribution

over all individuals is one),

(iii) ! [r(a)]#φ(a) da¯γ−" (i.e. the diversity is

constrained),

5

6
7

8

(1)

where φ(a) is the density function for the Mendelian

sampling terms and r(a) is the total long-term

contribution in the population for individuals with

Mendelian sampling term a.

When finite population sizes and constraints on

rates of inbreeding are considered then the number of

individuals in an interval a to a­δa is 2Tφ(a)δa

(where T is total number of candidates per sex, and
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the 2 arises from considering both sexes). The problem

can be recast to provide the optimum solution to the

recurrent selection problem considered here of maxi-

mizing ∆G with a constraint on ∆F as ∆G¯ 2TE[r
i
a
i
]

and ∆F¯ 2TE[r#
i
] (Woolliams & Thompson, 1994).

Here we will assume ∆F¯ "

#
∆C, as for the majority of

cases the difference between the two is small. Thus the

solution to the constrained maximization problem is

obtained by maximizing

∆G¯& 2Tar(a)φ(a) da

subject to the constraints

(i) r(a)& 0;

(ii) ! 2Tr(a)φ(a) da¯1 ;

(iii) ! 2T[r(a)]#φ(a) da¯ 4∆F.

Multiplying through the third constraint by 2T and

substituting r*(a)¯ 2Tr(a) we recover the form of

constraint equations from (1) with γ−"¯ 8T∆F. Since

the minimum rate of inbreeding with T candidates per

sex is (8T )−", the constraint that γ%1 is satisfied.

Therefore, the maximum ∆G is identical to the solution

of Bondesson (1989) with γ replaced by (8T∆F )−".

Assuming a normally distributed Mendelian sam-

pling term, and expressing gain in terms of i (mean

deviation of individuals with values exceeding the

truncation point) and x (deviation of the truncation

point from the mean), the expression of Bondesson

(1989) for the maximum theoretical (ideal) gain

(∆G
ideal

) can be rewritten for recurrent selection as

∆G
ideal

¯ (i®x)−"

and the values for i and x are such that γ is the

solution of

γ¯ 2p(i®x)# (1­x#®ix)−",

where p is the proportion selected. The solution for x

can be found by using the Newton–Raphson method.

The above expression for ∆G
ideal

assumes a standard

deviation of Mendelian sampling terms of one.

Making this expression more general the maximum

theoretical genetic gain per unit time can be expressed

in terms of base phenotypic standard deviation,

resources available (i.e. number of candidates) and

risk (i.e. rate of inbreeding) as

∆G
ideal

¯ i(k)−"o"

#
h#,

where k¯ i(i®x). This equation can be used to check

whether the proposed method (Algorithm III) not

only constrains ∆F but also maximizes ∆G. The

genetic response (∆G
obs

), averaged over replicates, was

estimated from the sum of the products of the

Mendelian terms and the long-term contributions of

the candidates in generation 3 (i.e. ∆G
obs

¯Σr
i,$

a
i,$

).

Generation 3 was chosen for this evaluation as the

impact of the Bulmer effect has largely taken place

and yet the reduction in genetic variance associated

with the mean level of inbreeding is negligible. The

ratio of ∆G
obs

to ∆G
ideal

can be considered as a

measure of relative genetic efficiency.

(iii) Relati�e efficiencies of other selection procedures

Under the same constraints on resources and the rate

of inbreeding, the rates of gain obtained using

Algorithm III were compared with deterministic

predictions of maximum gain with optimized mass

selection and with optimized sib-indices. These deter-

ministic predictions used the methods of Villanueva &

Woolliams (1997), but with one exception in that the

Mendelian sampling variance was not reduced due

to inbreeding. The models for mass and sib-index

selection assumed equal full- and half-sub family sizes

and constant numbers selected per generation with

hierarchical mating where appropriate (i.e. when the

optimum mating ratio was greater than one).

3. Results

(i) Augmented relationship matrix

A comparison of rates of inbreeding and response

obtained with Algorithm I (using A), Algorithm II

(using A and a modified constraint) and Algorithm III

(using A* and a modified constraint) is shown in

Table 1 for a heritability of 0±25 and a desired rate of

inbreeding of 0±025. The sum of the squared contri-

butions (rTr) and consequently the rate of inbreeding

("
%
rTr¯∆C ) were maintained at their predefined levels

throughout the period of selection with Algorithm II

and Algorithm III, but increased over time with the

standard A when the constraint was not modified

(Algorithm I). The optimal numbers selected were the

same for both sexes and were also constant with A*

and the standard A with modified constraint, but

declined over time when Algorithm I was used.

Despite the inability to constrain the rate of inbreeding

when using Algorithm I, there was little difference in

the rate of response achieved by generation 20 amongst

the three methods.

Different schemes that covered a broad range of

heritabilities (0±01, 0±25 and 0±99) and possible

constraints (given the number of candidates available

for selection) on ∆F (0±05, 0±025 and 0±00625) were

simulated with Algorithm III. In all these cases the

desired ∆F was achieved.

(ii) Relationship of r with c

The regression of the long-term contributions from

animals born in generation 15 to generation 20 on the

original mating proportions assigned to animals born
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Table 1. Rates of inbreeding (∆F ) per generation (t), sum of squared contributions (rTr), effecti�e numbers of

parents of each sex (N ), and rates of genetic gain (∆G, phenotypic standard de�iation units) when using

Algorithm I (with standard A), Algorithm II (with standard A and modified constraint) or Algorithm III (with

the augmented A and modified constraint)a

Algorithm I Algorithm II Algorithm III

t ∆F rTr}4b N ∆G ∆F rTr}4 N ∆G ∆F rTr}4 N ∆G

0 — 0±024 10±1 — — 0±021 10±1 — — 0±021 10±9 —
4 0±026 0±025 8±8 0±310 0±024 0±021 9±2 0±309 0±023 0±023 9±6 0±303
8 0±030 0±028 8±1 0±295 0±026 0±023 9±2 0±283 0±025 0±023 9±6 0±291

12 0±033 0±032 7±3 0±273 0±025 0±023 9±3 0±258 0±024 0±023 9±7 0±268
16 0±036 0±036 6±7 0±253 0±025 0±023 9±3 0±239 0±024 0±023 9±5 0±242
20 0±044 — 6±0 0±241 0±025 — 9±3 0±220 0±025 — 9±8 0±220

The rate of inbreeding per generation was constrained to 0±025.
a Standard errors were 0±011 for ∆G, 0±001 for ∆F and 0±2 for N.
b The long-term contributions were calculated as the contributions from individuals born in generation t to generation t­5.

Table 2. The regression coefficient of long-term

contributions on mating proportions for different

constraints on the rate of inbreeding (∆F ) and

heritabilities (h#)a

∆F

h# 0±05 0±025 0±00625

0±01 0±93 0±96 0±98
0±25 0±94 0±97 0±98
0±99 1±05 1±04 1±02

a Standard errors ranged from 0±01 to 0±05.

Table 3. The ratio of the sum of squared

contributions to the sum of squared mating

proportions for different constraints on the rate of

inbreeding (∆F ) and heritabilities (h#)a

∆F

h# 0±05 0±025 0±00625

0±01 2±33 1±89 1±41

0±25 1±92 1±72 1±35
0±99 1±30 1±27 1±19

a Standard errors were less than 0±0002 for the sum of the
squared long-term contributions and 0±0004 for the sum of
the squared mating proportions.

in generation 15 is shown in Table 2 for a range of

heritabilities and constraints on the rate of inbreeding.

The regression of r
i
on c

i
was close to one for all the

cases considered. As heritability decreases so the

regression coefficients became smaller.

(iii) Relationship of rTr with cTc

The ratio of rTr to cTc is presented in Table 3. The

ratio decreased with increased heritability and in-

Table 4. The efficiency (%) of the obser�ed genetic

response relati�e to the predicted ideal

(∆G
obs

}∆G
ideal

) for different constraints on the rate of

inbreeding (∆F ) and heritabilities (h#)a

∆F

h# 0±05 0±025 0±00625

0±01 10±6 13±4 10±8
0±25 45±7 44±5 44±2
0±99 87±4 87±3 81±4

∆G
obs

was calculated as the sum of products of the long-term
contributions and Mendelian sampling terms of individuals
born at generation 3.
a Standard errors for ∆G

obs
ranged from 0±05 to 0±005.

creased severity of the restriction on the rate of

inbreeding. As heritability tended to one, and as the

restriction on the rate of inbreeding became more

severe, so the ratio tended to one.

(iv) Efficiency of genetic gain

Table 4 shows the efficiency of the genetic response

obtained with Algorithm III (∆G
obs

) relative to the

deterministic predictions of the ideal genetic response

(∆G
ideal

). When the heritability is close to unity (h#¯
0±99) the responses obtained with Algorithm III as a

proportion of the ideal ranged between 81% and

87%. As the heritability decreased, there was a

dramatic drop in efficiency, approximately related to

oh#, with little variation across the different con-

straints on the rate of inbreeding.

There was variation in efficiency over replicates,

and in some replicates the gain exceeded the upper

bound (∆G
ideal

) (i.e. the efficiency was greater than

one). For example when the heritability is close to one

(h#¯ 0±99) the gain derived from the ideal solution

was exceeded in 3%, 12% and 16% of the replicates,
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Table 5. Asymptotic genetic responses obtained with

Algorithm III, constrained sib-index and mass

selection for different constraints on the rate of

inbreeding (∆F ) and heritabilities (h#)a

∆F

Selection h# 0±05 0±025 0±00625

Algorithm III 0±01 0±019 0±015 0±009
0±25 0±350 0±309 0±167
0±99 1±772 1±147 0±633

Sib-index 0±01 1±00 1±00 0±77
0±25 0±93 0±87 0±81

0±99 0±71 0±91 0±83

Mass 0±01 0±79 0±87 0±77
0±25 0±91 0±84 0±81

0±99 0±65 0±84 0±73

The responses sib-index and mass selection are expressed as
a proportion of those with Algorithm III.
a Standard errors for ∆G obtained with Algorithm III
ranged from 0±05 to 0±005.

for rates of inbreeding of 0±00625, 0±025 and 0±05,

respectively. Therefore it is possible for a particular

generation within a replicate to produce more gain

than the upper bound, but this is due to the random

sampling of matings (even though the average

relationship cT

t
A$

t
c
t
is %C

t
), an effect that is more

prominent when the number of mates is small (e.g.

∆F¯ 0±05). However, a persistent breaking of the

upper bound cannot be sustained over several gener-

ations as these matings also yield more inbreeding.

(v) Comparison of Algorithm III with other selection

procedures

Deterministic predictions for the maximum predicted

gains with constrained inbreeding with mass (Villa-

nueva et al., 1996) and sib-indices (Villanueva &

Woolliams, 1997) selection were calculated for a range

of constraints on the rate of inbreeding and herit-

abilities. The models were slightly modified to produce

an asymptotic rate of response (i.e. Bulmer equi-

librium) by ignoring the reduction in Mendelian

sampling variance by inbreeding. The asymptotic

responses obtained from Algorithm III (which uses

BLUP), mass and sib-index selection are presented in

Table 5. The efficiencies of constrained mass selection

with respect to Algorithm III were always lower than

one, ranging from 0±65 to 0±91. Sib-indices were more

efficient than mass selection, with efficiencies with

respect to Algorithm III ranging from 0±71 to 1.

4. Discussion

It has been shown that the rate of inbreeding can be

restricted at a predefined level for successive gener-

ations of selection. This constant rate is achieved by

setting the mating proportions (c) to values consistent

with the expectations of their long-term contributions

(r) at the time of selection, which in turn is indicated

by the regression of long-term contributions on mating

proportions being close to one. However, even when

the heritability is close to one, cTc does not equal rTr.

This can be interpreted as an inability to achieve the

ideal solution where c equals r and cTc equals rTr. The

impact of this failure to achieve the ideal solution was

shown to be primarily dependent on heritability and

largely independent of the constraint on inbreeding. A

theoretical response associated with the ideal solution

was derived and hence the loss of response was

quantified as an efficiency, defined as the ratio of the

observed response to the ideal theoretical response.

(i) The use of A* to control pedigree de�elopment

Rates of inbreeding are determined by the contri-

butions of the current generation and the contributions

of ancestral generations that have yet to converge. In

this respect all generations have equal importance in

controlling rates of inbreeding and contributions from

all these generations need to be given equal weight.

With Algorithm I, the weighting factor associated

with each generation in A is unequal since the

contributions of later generations are down-weighted

by a term that is approximately "

#
(1®F

t−"
), where F

t−"

is the average inbreeding coefficient of the preceding

generation. As a result the sum of the squared

contributions (rTr) of later generations is allowed to

inflate, thereby increasing ∆F (as observed in Meu-

wissen, 1997). Removal of the terms containing F
t−"

in

the augmented A* is a natural approach to the

problem arising from consideration of genetic contri-

butions and avoids the problems of Meuwissen (1997).

The weighting factor for the contributions at any

generation remains stable over time with the value "

#
.

An alternative approach using the standard A was

examined using Algorithm II where C
t
¯1®(1®2

∆F )t. This continuous modification to the increment

applied to the constraint over time ensures that the

value of the constraint is consistent with the predicted

course of ∆F over time. With this correction to the

method of Meuwissen (1997) a constant rate of

inbreeding was achieved. However, although for the

cases studied the results were similar to those obtained

with Algorithm III there is a fundamental difference

between these algorithms. In Algorithm II animals are

weighted through A according to their known re-

lationship with the base, whereas in Algorithm III this

information relating to the absolute level of inbreeding

(F ) is not used. The ability to control the rate of

inbreeding without reference to the base generation,

and thus F, reinforces the distinction that the rate of

inbreeding is an expression of the rate of dispersion (a
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process constrained through cT

t
A$

t
c
t
), whereas the

inbreeding coefficient is the cumulated effect of

random drift (Falconer & Mackay, 1996).

(ii) Genetic efficiency

Although Algorithm III is able to constrain the rate of

inbreeding to a predefined level, the question arises

as to whether maximization of the function f (c)¯
cT

t
g
t
®λcT

t
A$

t
c
t
yields the maximum possible genetic

gain. The ideal response under constrained inbreeding

(∆G
ideal

) was derived assuming that (i) the genes from

the current generation can be completely mixed

throughout all individuals in the next generation and

(ii) that breeding values are known without error.

Even when the accuracy is one, with a dioecious

population and within a single generation this mixing

process can not be achieved, as parental genes are

present only in their offspring. Hence, the selection of

the current generation is not independent of previous

generations with contributions still converging. Fur-

thermore, this dependence is increased when the

accuracy is less than one. However, the selection

decisions obtained from Algorithm III are not

achieved by considering only the current generation

but by the simultaneous optimization of the contri-

butions from the current and previous generations

(Appendix C).

Therefore Algorithm III may be viewed as an

empirical upper bound to response (∆G
ub

), in contrast

to the over-prediction of the ideal response of ∆G
ideal

.

The deviation of ∆G
ideal

from ∆G
ub

is dependent on

the population structure, and for the case where both

sexes are measured once before selection (Table 4 and

results not shown for h#¯ 0±5), ∆G
ub

E ρ∆G
max

where

ρ is the accuracy of the Mendelian sampling term for

a selected individual. We have described in Appendix

D an improved prediction that was within 0±01 for all

schemes in Table 4.

As an aside, since c¯ r represents an ideal outcome,

it is possible to view (cTc) (rTr)−" as a measure of the

efficiency of the scheme or the efficiency of the

dispersal of genes throughout the population. The

results of this study show that contrary to the

speculation of Woolliams & Thompson (1994), this

ideal appears unattainable even with a heritability of

one, except in the special case of the extreme lower

bound for inbreeding (0±0025 in this example). In this

special case there is no selection and each parent is

required to be replaced by two offspring (there is no

variation in family size), and hence c is identical to r

(results not shown). The results shown by Meuwissen

(1997) tend to obscure the lack of correspondence

between cTc and rTr since the apparent close re-

lationship between cTc and rTr in his results arises

from the bias produced by using A in which

contributions from later generations are inflated and,

consequently, failing to constrain ∆F to be constant

over multiple generations.

(iii) The use of selected indi�iduals

With Algorithm III the degree of relationship between

the mating proportions (c) and breeding values (g),

termed the usage solution, is dependent on the

constraint imposed on∆F. The form of the distribution

of mating proportions is summarized by the linear

regression of c on g, which is a perfect linear regression

for the ideal genetic gain (Bondesson, 1989). The

general form of the solution with Algorithm III with

regard to the constraint on ∆F is that as a less severe

constraint is imposed there is : (i) an increase in the

value of the intercept as fewer individuals are used; (ii)

an increase in the slope of the line as usage of selected

individuals becomes more unequal and; (iii) an

increase in the goodness of fit of the regression line as

more emphasis is placed on breeding value.

The general form of this distribution of mating

proportions differs from those solutions obtained with

truncation selection where all individuals with breed-

ing values (g) above the truncation point are used

uniformly. Comparison of these two forms of solution

indicates that truncation selection is less efficient (i.e.

yields less response) than Algorithm III when schemes

are compared at the same rate of inbreeding (Toro &

Nieto, 1984).

(iv) Comparison with other studies

In recent years several selection methods have been

developed to control inbreeding by placing a direct

constraint on either the cumulative inbreeding (Wray

& Goddard, 1994; Brisbane & Gibson, 1995) or the

rate of inbreeding (Meuwissen, 1997; Villanueva &

Woolliams, 1997). These procedures are more efficient

than standard truncation selection. The procedure of

Villanueva & Woolliams (1997) was for sib-indices

that yielded empirical efficiencies lower than those

obtained with Algorithm III, as might be expected

given the lower accuracy of sib-index selection.

However, in addition, their scheme is static, with

constant numbers selected and equal full-sub family

sizes, which reduces the possible response as all

selected individuals are assigned the same mating

proportions.

Dynamic procedures have also been proposed

(Wray & Goddard, 1994; Brisbane & Gibson, 1995;

Meuwissen, 1997) that are based on optimizing the

number and usage of parents each generation, an idea

first proposed by Toro & Nieto (1984). The procedure

of Wray & Goddard (1994) was aimed at maximizing

the long-term selection response, which was obtained
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by weighting the rate of inbreeding against the

selection differential. Their algorithm was sub-optimal

although the contribution of the parents given their

selection was determined optimally. Wray & Goddard

(1994) demonstrate an advantage of their procedure

over standard BLUP of 7% by generation 30, h#¯
0±4, and selection only on males. Meuwissen (1997)

reported a greater advantage in response over BLUP

(up to 60%) at the same rate of inbreeding. The

results presented here (Table 1) indicate that similar

increases in response will be achieved with Algorithm

III.

For the practical application of the method in

animal breeding, a model that includes reproductive

limits and overlapping generations needs to be

considered. An extension to include reproductive

limits can be accommodated within the optimization

by the inclusion of additional constraints and achieved

either by considering fixed contributions (Meuwissen,

1997) or through the use of an Evolutionary Algorithm

(Grundy et al., 1997b). Additional constraints can

also be used within the procedures to account for

overlapping generation structure (Grundy et al.,

1997a ; Meuwissen, 1998) and as shown by Meuwissen

(1998) yield extra benefit compared to truncation

selection.
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II. This work was funded by the BBSRC and the EU. The
Scottish Agricultural College also receives funds from the
Scottish Office, Agriculture, Environment and Fisheries
Department. Work at the Roslin Institute receives funds
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Appendix A. A proof that cT
t A$t ct can be used to

constrain ∆F

Wray & Thompson (1990) show that the asymptotic

rate of inbreeding is approximately "

%
rTr, where r is the

long-term contribution vector of individuals in gen-

eration one. An examination of the proof reveals that

this result is independent of the structure of the base.

The proof is derived from the relationship that "

#
r¯

D
"
RT

",t
1, as tU¢, where D

"
is "

#
I, R

j,t
¯Πt−"

k=j
Z

k
is the

matrix of contributions relating descendants at gen-

eration t to ancestors from generation j (j! t) with the

Z matrix defined as in Materials and Methods and 1

is a column vector with elements of one. ∆F is

assumed to be a property of the breeding scheme and

as such is invariant to the precise choice of the base

generation, i.e. which individuals are assumed to be

unrelated. Hence any generation can be considered as

a base and all generations (other than 0) can thus be

considered as being one generation removed from the

base. Therefore, the rTr of any generation can be used

for the estimation of ∆F if the D
t
component in A is set

to "

#
I each generation.

The total contribution to generation t­1 of

ancestors born at generation j is r
j,t+"

¯ cT

t
R

j,t
, where

c
t
is the vector of mating proportions at generation t.

Following Wray & Thompson (1990) and substituting

A* for A, the squared contributions for candidates in

generation t can be expressed as:

cT

t
A*c

t
¯ cT

t
("
#
R

t,t
RT

t,t
­"

#
R

t−",t
RT

t−",t
­I­R

!,t
RT

!,t
) c

t

¯
1

2
3
t

j=!

cT

t
R

j,t
RT

j,t
c
t
­"

#
cT

t
R

!,t
RT

!,t
c
t

¯
1

2
3
t

j=!

rT
j,t+"

r
j,t+"

­"

#
rT
!,t+"

r
!,t+"

.

Note that R
t,t

RT

t,t
¯ I and the R

!,t
RT

!,t
has been split

into two terms. Similarly for generation t­1,

cT

t+"
A*c

t+"
¯

1

2
3
t+"

j=!

rT
j,t+#

­"

#
rT
!,t+#

r
!,t+#

.

Let ∆C¯ cT

t+"
A*c

t+"
®cT

t
A*c

t
(which is held constant

over generations), ∆r#
j
(t­1)¯ rT

j,t+#
r
j,t+#

®rT
j,t+"

r
j,t+"

and ∆r#
t+"

(t­1)¯ rT
t+",t+#

r
t+",t+#

¯ cT

t+"
c
t+"

, then the

increment in the constraint can be considered as a set

of increments in the squared contributions :

∆C¯
1

2
3
t+"

j=!

∆r#
j
(t­1)­"

#
∆r#

!
(t­1). (A 1)

Under near-equilibrium conditions that hold over the

period of convergence, the contributions converge

(∆r#
j
(t)U 0 as t increases) at an approximately constant

rate and hence ∆r#
j
(t)E∆r#

j+"
(t­1)¯∆

t−j
, i.e. each of

the increments in contributions from an ancestral

generation to successive generations of descendants

depends only on the number of generations that

separate the ancestral generation from their descen-

dants. Convergence implies that (i) ∆
t−j

decreases to

zero as t®j increases and (ii) Σ¢

t−j=s
∆

t−j
tends to zero as

t®j increases for sufficiently large s. Hence ∆C¯
"

#
Σt+"

k=!
∆

k
­"

#
∆

t+"
, which converges to half the total

increment in squared contributions for a single

generation, i.e. from (A 1)

∆C¯ "

#
(∆r#

t+"
(t­1)­I­∆r#

!
(t­1))­"

#
∆r#

!
(t­1)

E "

#
(∆r#

t
(t)­∆r#

t
(t­1)­I­∆r#

t
(t­s))¯ "

#
rT
t,¢

r
t,¢

,

where s is sufficiently large and r
t,¢

is the long-term

contribution vector of individuals in generation t.

Therefore from Wray & Thompson (1990), ∆CE2∆F.

This equivalence is refined in Appendix B.

Appendix B. Calculation of ∆C

Following Woolliams & Thompson (1994) the asymp-

totic rate of inbreeding can be expressed as

∆F¯ (1®α)X
"
(2®X

!
)−",

where α is the extent of non-random mating as defined

by Kimura & Crow (1963) and X
!

and X
"

are the
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mean of the diagonal elements of the contribution

matrices (Wray & Thompson, 1990) of the base and

first generation, respectively. The rate of inbreeding

can also be expressed as a function of the increment

applied to the constraint (∆C ) by using the following

relationships:

α¯®"

#
∆C since αE®∆F for random mating

(Robertson, 1965),

X
"
¯∆C (Appendix A),

X
!
¯ 2∆C since X

!
refers to the base generation and

the base generation has twice the contribution of any

other generation (Wray & Thompson, 1990). Thus

∆F¯ (1­∆C}2)∆C[2(1®∆C)]−",

which leads to

∆C¯ 2∆F [1®3∆F­12(∆F )#].

Appendix C. A proof that the constrained

maximization of genetic response using estimated

breeding values of the current generation is identical

to the simultaneous constrained maximization of

genetic contributions using Mendelian sampling terms

from the current and all ancestral generations

Woolliams & Thompson (1994) decomposed the

estimated breeding value of an individual into the

weighted sum of estimated Mendelian sampling terms

of itself plus all its ancestors. Given that these

ancestors are not all distinct the coefficients relating

the descendant and a particular ancestor can be

defined as the genetic contributions of those ancestors.

Thus at generation t, the vector of estimated breeding

values of the current generation (g
t
) is

g
t
¯ a

t
­3

t−"

j=!

R
j,t

a
j
,

where a
t
and a

j
are the vectors of estimated Mendelian

sampling terms of the candidates and the ancestors

born in generation j, respectively and R
j,t

is defined in

Appendix A. Furthermore, the total contribution in

generation t­1 from ancestors born at generation j

can be expressed as r
j,t+"

¯ cT

t
R

j,t
, where c

t
is the

vector of mating proportions at generation t. Thus

cTg¯Σt

j=!
rT
j,t+"

a
j
.

Following Appendix A the squared contributions

for candidates in any generation can be expressed as

cTA*c¯
1

2
3
t

j=!

rT
j,t+"

r
j,t+"

­"

#
rT
!,t+"

r
!,t+"

.

After several generations "

#
rT
j,t+"

r
j,t+"

becomes constant

and increments in "

#
ΣrT

j,t+"
r
j,t+"

tend to "

#
rT
j,¢

r
j,¢

for any

generation j, and "

#
rT
!,t+"

r
!,t+"

also tends to a constant.

Hence after convergence of the base generation

contributions, maximizing cTg®λcTA*c is equivalent

to maximizing

3
t

j=!

rT
j,t+"

a
j
®"

#
λ 3

t

j=!

rT
j,t+"

r
j,t+"

¯ 3
t

j=!

(rT
j,t+"

a
j
®"

#
λrT

t,t+"
r
j,t+"

).

Thus the problem is attempting to maximize the same

function simultaneously for multiple generations. The

opportunity for doing so increases as j increases since

the contributions converge over time and these earlier

generations contribute very little to the variation in

cTg for feasible c. There is no separate constraint on

each generation; only the aggregate rate of inbreeding

is subject to constraint.

In the linear function the Lagrangian multiplier λ is

the weighting factor between the two components for

all generations. When a fixed overall rate of inbreeding

is imposed there is a slight departure from this

simultaneous optimization, since the value of λ

required for each generation in isolation to achieve

the target rate of inbreeding is related to the standard

deviation of the estimated breeding values, which

slowly changes with inbreeding (unpublished results).

However, the importance of this change is limited

since the variation among possible solutions at any

given time arises from the small number of generations

for which contributions are converging rapidly and λ

will vary very little for those generations. It may

therefore be concluded that the procedure has only a

small departure from optimality in the problem of

maximizing gain with constrained inbreeding.

Appendix D. An empirical upper bound for response

Assume a population is propagated from "

#
N

c
males

and "

#
N

c
females [N

c
¯ (cTc)−"] and with each parent

having a family size S¯T("
#
N

c
)−", where T is the

number of candidates. The selection proportion

assuming an infinite population size is (TcTc)−".

In order to maintain individual contributions over

generations two offspring fromeach family are selected

to replace each parent. The selection intensity will be

lower than that assuming optimality between and

within family selection and this would imply a loss in

response. An estimate of this loss scaled by the

accuracy of selection is i
w
(i

p
)−", where i

w
is the within-

family selection intensity, i
p

is the proportionate

selection intensity and ρ is the accuracy of the

Mendelian sampling terms when the contributions

converge. Let N
r

be the numbers of males still

represented at convergence [(rTr)−"]. Some of the

initial loss associated with within-family selection can

be recovered by the thinning out over generations of

the numbers of individuals before the fixation of their

contributions. Let i
b

be the increase in intensity

associated with the change in the numbers represented

from N
c
and N

r
. This thinning out is more pronounced

with lower heritability since the increase in accuracy
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of the Mendelian sampling terms (δρ) over time is

higher and so there is greater opportunity for reducing

the numbers selected.

Thus the expected upper bound to response (∆G
ub

)

accounting for both accuracy and dispersion of genes

can be expressed as

∆G
ub

¯ (i
w
ρ­i

b
δρ) (i

p
)−"∆G

ideal
,

where ∆G
ideal

is the idealized response.
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