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On the classification and description
of quantum lens spaces as graph algebras
Thomas Gotfredsen and Sophie Emma Zegers
Abstract. We investigate quantum lens spaces, C(L2n+1

q (r; m)), introduced by Brzeziński and
Szymański as graph C∗-algebras. We give a new description of C(L2n+1

q (r; m)) as graph C∗-algebras
amending an error in the original paper by Brzeziński and Szymański. Furthermore, for n ≤ 3, we
give a number-theoretic invariant, when all but one weight are coprime to the order of the acting
group r. This builds upon the work of Eilers, Restorff, Ruiz, and Sørensen.

1 Introduction

In the study of noncommutative geometry, many classical spaces have been given a
quantum analogue. Due to Gelfand duality, there exists an equivalence between the
categories of commutative C∗-algebras and locally compact Hausdorff spaces. Hence,
when studying quantum analogues of classical spaces, one often thinks of them as
algebras of continuous functions on a nonexisting virtual space.

A well-studied example is the quantum sphere by Vaksman and Soibelman [28],
from which we define quantum lens spaces as fixed point algebras under the action
of finite cyclic groups. In noncommutative geometry, quantum lens spaces are objects
of increasing interest (see, e.g., [2, 7, 10]), where noncommutative line bundles with
quantum lens spaces as total spaces are investigated.

In [20], Hong and Szymański gave a description of quantum lens spaces as graph
C∗-algebras. This description was extended in [8] by Brzeziński and Szymański to also
include weights that are not necessarily coprime with the order of the acting finite
cyclic group. Unfortunately, the general description is incorrect, which was recently
pointed out by Efren Ruiz.

In the present paper, we first describe a new graph which is a modified version of
the one given by Brzeziński and Szymański and prove that quantum lens spaces are
indeed graph C∗-algebras. Then we deal with classification of quantum lens spaces
of dimension at most 7, with certain conditions on their weights. We remark that the
work on classification has already been presented in an earlier preprint, unpublished,
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available on arXiv [18] by the present authors. After the submission of the preprint
to arXiv, it was pointed out by Efren Ruiz that the graph C∗-algebraic description
of quantum lens spaces is incorrect in some cases. This affects to some extent the
classification results presented in the first preprint. The present paper serves as an
extension of the previous one, containing both the modified graph C∗-algebraic
description and the adjusted classification results.

For the determination of isomorphism of quantum lens spaces, it is not sufficient
only considering their K-groups and the order [13, Remark 7.10]. In [13], Eilers,
Restorff, Ruiz, and Sørensen came with an important classification result of finite
graph C∗-algebras using the reduced filtered K-theory. As opposed to the classification
of Cuntz–Krieger algebras given by Restorff in [25], which the result in [13] is based
on, quantum lens spaces fall within the scope of this classification. As an application
of the classification result, Eilers, Restorff, Ruiz, and Sørensen investigated seven-
dimensional quantum lens spaces for which all the weights are coprime with the
order of the acting cyclic group Zr . They managed to reduce the classification result
to elementary matrix algebras using SLP-equivalence and to prove that the lowest
dimension for which we get different quantum lens spaces is dimension 7. Here, they
showed that there exist two different quantum lens spaces when r is a multiple of 3,
and precisely one when this is not the case.

Further investigation of quantum lens spaces, as defined in [20], was conducted
in [21] by Jensen, Klausen, and Rasmussen using SLP-equivalence. For a fixed r, they
showed how large the dimension of the quantum lens space C(L2n+1

q (r; m0 , . . . , mn))
must be to obtain nonisomorphic quantum lens spaces. The work is based on com-
puter experiments by Eilers, who came up with a suggestion for a number s such that
for n < s, the quantum lens spaces are all isomorphic.

In this paper, we will extend the result by Eilers, Restorff, Ruiz, and Sørensen to
quantum lens spaces of dimension less than or equal to 7 for which gcd(m i , r) ≠ 1
for one and only one i. The work builds on computer experiments, which were made
in collaboration with Søren Eilers. We use a program written by Eilers in Maple
2019,1 which has been optimized slightly by the present authors. Concretely, the
program computes the adjacency matrices and isomorphism classes given the order
r and the set {gcd(m i , r)∶ i = 0, . . . , 3}. We then came up with a suggestion for an
invariant, depending on which weight that is not coprime with r, by considering
various combinations of the values of r and the weights. In this way, experiments have
played a crucial role in determining the statement of the presented theorems.

The structure of the paper is as follows: In Section 2, we present the classification
result by Eilers, Restorff, Ruiz, and Sørensen in the case of type I graph C∗-algebras.
Section 3 contains a counterexample proving that the description of quantum lens
spaces as graph C∗-algebras by Brzeziński and Szymański is incorrect. Moreover, it
contains a new proof that quantum lens spaces are indeed graph C∗-algebras. We
emphasize that the content in this section has already been presented in the same
format in [23, Chapter 2]. In Section 4, we describe the classification result by Eilers,
Restorff, Ruiz, and Sørensen in the setting of quantum lens spaces and present the

1Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario.
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classification for quantum lens spaces for which all the weights are coprime to the
order of the acting group.

The procedure to classify quantum lens spaces follows by first constructing the
adjacency matrices, which are presented in Section 6. Afterward, we calculate an
invariant using SLP-equivalence, which involves some long calculations. Therefore,
the proofs are postponed to Section 7, and the main theorems (Theorems 5.1 and 5.3)
are stated in Section 5.

2 Preliminaries

We recall first some concepts of graph C∗-algebras, which are needed in this paper.
A directed graph E = (E0 , E1 , r, s) consists of a countable set E0 of vertices, a countable
set E1 of edges, and two maps r, s ∶ E1 → E0 called the range map and the source map,
respectively. For an edge e ∈ E1 from v to w, we have s(e) = v and r(e) = w. For a
directed graph E, we let AE = [A(v , w)]v ,w∈E0 , where A(v , w) is the number of edges
with source v and range w. AE is called the adjacency matrix for E. Moreover, we let
BE ∶= AE − I.

A graph is called finite if it has finitely many edges and vertices. For a directed
graph E, we recall that a vertex is regular if s−1(v) = {e ∈ E1∣ s(e) = v} is finite and
nonempty, and it is called singular if this is not the case. In the case where we have too
many edges between two vertices to make a good drawing, we only draw one edge and

indicate the number of edges as follows: ● (m)�→ ● if the number of edges is m.
A path α in a graph is a finite sequence α = e1e2⋅⋅⋅en of edges satisfying r(e i) =

s(e i+1) for i = 1, . . . , n − 1. A path α is called a cycle if s(α) = r(α) and a loop if α is a
cycle of length 1. It is called a return path if α is a cycle and r(e i) ≠ r(α) for i < n.

Let v , w ∈ E0, if there is a path from v to w in the graph, then we write v ≥ w.
A subset H ∈ E0 is called hereditary if v ∈ H and w ∈ E0 is such that v ≥ w, then w ∈ H.

The graph C∗-algebra of a directed graph is defined as follows (see, e.g., [5, 16]).

Definition 2.1 Let E = (E0 , E1 , r, s) be a directed graph. The graph C∗-algebra
C∗(E) is the universal C∗-algebra generated by families of orthogonal projections
{pv ∣ v ∈ E0} and partial isometries {se ∣ e ∈ E1} with mutually orthogonal ranges (i.e.,
s∗e s f = 0, e ≠ f ) subject to the relations:

(CK1) s∗e se = pr(e).
(CK2) se s∗e ≤ ps(e).
(CK3) pv = ∑

s(e)=v
se s∗e , if {e ∈ E1∣ s(e) = v} is finite and nonempty.

For at path α = e1e2⋅⋅⋅en , we let sα = se1 se2 ⋅⋅⋅sen .
We can by universality define a circle action, called the gauge action, γ ∶ U(1) →

Aut(C∗(E)) for which γz(pv) = pv and γz(se) = zse for all v ∈ E0 , e ∈ E1, and
z ∈ U(1).

If the graph has finitely many vertices, we say that a nonempty subset S ⊆ E0 is
strongly connected if for any pair of vertices v , w ∈ S, there exists a path from v to w.
It is called a strongly connected component if it is a maximal strongly connected subset.
We let ΓE be the set of all strongly connected components and all singletons of singular
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vertices which are not the base of a cycle. Moreover, a strongly connected component
is called a cyclic component if one of its vertices has exactly one return path.

Let Primeγ(C∗(E)) be the set of all proper ideals of C∗(E) which are prime and
gauge-invariant. For at finite graph E, it follows by [13, Lemma 3.16] that there exists a
homeomorphism νE ∶ ΓE → Primeγ(C∗(E)) such that γ1 ≥ γ2 if and only if νE(γ1) ⊇
νE(γ2) for γ1 , γ2 ∈ ΓE .

The structure of Primeγ(C∗(E)), and hence of ΓE , will become crucial in the
application of SLP-equivalence.

2.1 Classification of graph C∗-algebras over finite graphs

In this section, we briefly describe the classification result of finite graphs by Eilers,
Restorff, Ruiz, and Sørensen in [13]. We restrict to the case of type I/postliminal
C∗-algebras. By [13, Lemma 4.20] and [11], a graph C∗-algebra C∗(E) is of type I if
and only if no vertices support two distinct return paths.

In [13, Theorem 6.1], finite graphs are classified up to stable isomorphism by their
ordered reduced filtered K-theory, in which the main idea is to consider the K-theory
of specific ideals, the corresponding quotients, and the maps between them. We will
not describe this further. Instead, we consider type I graph C∗-algebras for which
the classification result is reduced to a question of SLP-equivalence as presented in
[13, 14]. SLP-equivalence boils down to elementary matrix algebras, which makes it a
very useful tool in applications.

We describe the definition of SLP-equivalence; for this, we let n = (n i)N
i=1 ,

m = (m i)N
i=1 ∈ NN be multi-indices and ∣n∣ = n1 + ⋅⋅⋅ + nN . We denote by 1 the multi-

index with 1 on every entry.
Definition 2.2 Let P = {1, 2, 3, . . . , N} with N ∈ N be a partially ordered set with
order denoted ⪯. Let m, n ∈ NN be multi-indices such that ∣m∣ > 0 and ∣n∣ > 0. Then
MP(m × n,Z) is the set of block matrices

B =
⎛
⎜
⎝

B{1, 1} ⋅⋅⋅ B{1, N}
⋮ ⋮

B{N , 1} ⋅⋅⋅ B{N , N}

⎞
⎟
⎠

for which

B{i , j} ≠ 0 ⇒ i ⪯ j,(2.1)

where B{i , j} ∈ M(m i × n i ,Z). If m i = n i = 0, then B{i , j} is the empty matrix.
Moreover, we denote B{i , i} by B{i}. Note that condition (2.1) implies that the
matrices in MP(m × n,Z) are upper triangular block matrices.

Let MP(n,Z) denote MP(n × n,Z). We define SLP(n,Z) to be the matrices in
MP(n,Z) such that all the nonempty diagonal blocks have determinant 1.
Definition 2.3 Let A, B ∈MP(m × n,Z), and we say that A and B are SLP-equivalent
if there exist U ∈ SLP(m,Z) and V ∈ SLP(n,Z) such that UAV = B.

The block structure of BE for a finite graph E is given by the conditions in [13,
Definition 4.15]. Here, a partial ordered set P is defined such that there is an order-
reversing isomorphism from P to ΓE and hence encodes the ideal structure.
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Let E be a finite graph which has no vertices supporting two distinct return paths.
From [13, Definition 4.15] and the following remark, it follows that BE can be assumed
to have a 1 × 1 block structure, i.e., BE ∈M○

P(1,Z) (see [13, Definition 4.15]). SLP(1,Z)
is in this case given as the set of upper triangular matrices, A = (a i j), with 1 on the
diagonal and which satisfies a i j ≠ 0 ⇒ i ⪯ j.

SLP-equivalence simplifies in this case since the block structure consists of 1 × 1
matrices. Hence, working with SLP-equivalence becomes a linear problem. Note that
SLP(1,Z) is a group under matrix multiplication.

Let E⋏ be the graph which is obtained from E by adding a loop to all sinks in E. For
two finite graphs E and F, we say that (BE , BF) is in standard form if the adjacency
matrices for E and F have the same size and block structure; moreover, they must also
have the same temperatures, i.e., the same types of gauge simple subquotients (see [13,
Definition 4.22] for a precise definition). The partial ordered set P is defined such that
there is an order-reversing isomorphism from P to ΓE and ΓF .

Type I graph C∗-algebras are classified by the following result.

Theorem 2.1 ([13, Theorem 7.1] and [14, Proposition 14.8]) Let E and F be finite
graphs which have no vertices supporting two distinct return paths. If (BE , BF) is in
standard form, then C∗(E) and C∗(F) are isomorphic if and only if there exist matrices
U , V ∈ SLP(1,Z) such that UBE⋏V = BF⋏.

3 Quantum Lens spaces as graph C∗-algebras

The quantum (2n + 1)-sphere by Vaksman and Soibelman, denoted C(S2n+1
q ), is the

universal C∗-algebra generated by z0 , z1 , . . . , zn with the following relations:

z jz i = qz i z j , for i < j, z i z∗j = qz∗j z i , for i ≠ j,

z∗i z i = z i z∗i + (1 − q2)
n
∑

j=i+1
z jz∗j , for i = 0, . . . , n,

n
∑
j=0

z jz∗j = 1,

where q ∈ (0, 1) (see [28]). It was shown in [19] that C(S2n+1
q ) ≅ C∗(L2n+1) where

the graph L2n+1 has vertices v i , i = 0, . . . , n, with edges e i j , 0 ≤ i ≤ j ≤ n, and
s(e i j) = v i , r(e i j) = v j .

Let m = (m0 , m1 , . . . , mn) be a sequence of positive integers. The C∗-algebra
C(S2n+1

q ) admits, by universality, an action of Zr for any r ∈ N, given by

ρr
m ∶ z i ↦ θm i z i ,

where θ is a generator of Zr . The quantum lens space C(L2n+1
q (r; m)) is defined as the

fixed point algebra of C(S2n+1
q ) under this action.

The action ρr
m on C(S2n+1

q ) translates under the isomorphism with C∗(L2n+1), to
the following action:

se i j ↦ θm i se i j , pv i ↦ pv i .
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We also denote this action by ρr
m . It then follows by [9, Theorem 4.6] that

C(L2n+1
q (r; m)) ≅ C(L2n+1)ρr

m ≅ (
n
∑
i=0

p(v i ,0))C∗(L2n+1 ×c Zr)(
n
∑
i=0

p(v i ,0)) .(3.1)

The graph L2n+1 ×c Zr , called the skew product graph labeled by c ∶ e i j →
m i (mod r), has vertices (v i , k), i = 0, . . . , n, k = 0, . . . , r − 1, and edges (e i j , k), i ,
j = 0, . . . , n, i ≤ j, k = 0, . . . , r − 1. The source and range maps are given as follows:

s((e i j , k)) = (v i , k − m i (mod r)), r((e i j , k)) = (v j , k).

In [8, Theorem 2.2], it is stated that C(L2n+1
q (r; m)) is isomorphic to the graph

C∗-algebra C∗(Lr;m
2n+1). To define the graph Lr;m

2n+1, we need the notion of an admissible
path.

Definition 3.1 [8] A path from (v i , s) to (v j , t) in L2n+1×c Zr is called admissible if it
does not pass through any (v� , k) for which �= i , . . . , j and k =0, . . . , gcd(m� , r) − 1.

Remark 3.1 Comparing with the notion of 0-simple paths from [13, Definition 7.4],
it is clear that the 0-simple paths are exactly the admissible paths when all weights are
coprime to the order of the acting group.

Definition 3.2 [8] The graph Lr;m
2n+1 has vertices vb

i , i = 0, . . . , n, b =
0, . . . , gcd(m i , r) − 1 and edges est

i j;a , a = 1, . . . , nst
i j where

nst
i j = the number of admissible paths from (v i , s) to (v j , t).

The source and range maps are given by

s(est
i j;a) = vs

i , r(est
i j;a) = v t

j .

The following example, which was pointed out by Efren Ruiz, shows that it is not
in general true that C(L2n+1

q (r; m)) is isomorphic to the graph C∗-algebra C∗(Lr;m
2n+1)

as stated in [8, Theorem 2.2].

Example 3.2 Counterexample of [8, Theorem 2.2] Let n = 1, r = 4, and m = (2, 1),
then the skew product graph consists of two levels, both of which consist of four
vertices, and the first level consists of two cycles as follows:

L3 ×c Z4

(v0 , 0) (v0 , 1) (v0 , 2) (v0 , 3)

(v1 , 0) (v1 , 1) (v1 , 2) (v1 , 3)

https://doi.org/10.4153/S0008414X23000044 Published online by Cambridge University Press
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We have
C(L3

q(4; (2, 1))) ≅ (p(v0 ,0) + p(v1 ,0))C∗(L3 ×c Z4)(p(v0 ,0) + p(v1 ,0))
= span{sμs∗ν ∣ r(μ) = r(ν), s(μ), s(ν) ∈ {(v0 , 0), (v1 , 0)}}
= (p(v0 ,0) + p(v1 ,0))C∗(G)(p(v0 ,0) + p(v1 ,0)),

where G is the subgraph of L3 ×c Z4 for which

G0 = {(v0 , i), (v1 , j)∣ i = 0, 2, j = 0, 1, 2, 3}, G1 = s−1(E0) ∩ r−1(E0).

The range and source maps are the ones from L3 ×c Z4 restricted to G. The graph G is
defined as above since we have no paths from (v0 , 0) or (v1 , 0) to (v0 , 1) and (v0 , 3).
Hence, we can remove the vertices (v0 , i), i = 1, 3, and their outgoing edges. Note that
G0 is the smallest hereditary subset of (L3 ×c Z4)0, which contains (v0 , 0) and (v1 , 0).

Since G is a Cuntz–Krieger algebra, it follows by [3, Corollary 4.10] that the corner
is indeed a Cuntz–Krieger algebra, hence a graph C∗-algebra.

The projection p(v0 ,0) + p(v1 ,0) is full in C∗(G). Indeed, let I be the ideal generated
by p(v0 ,0) + p(v1 ,0). By the Cuntz–Krieger relations, we have

p(v0 ,2) = s∗(e00 ,2)s(e00 ,2) , s(e00 ,2)s∗(e00 ,2) ≤ p(v0 ,0) .

Hence,

s∗(e00 ,2) = s∗(e00 ,2)s(e00 ,2)s∗(e00 ,2) = s∗(e00 ,2)s(e00 ,2)s∗(e00 ,2)pv0 ,0 ∈ I.

Then p(v0 ,2) ∈ I. Similarly, we can show that p(v1 ,1) ∈ I using that p(v1 ,0) ∈ I and so on.
We obtain that pw ∈ I for all w ∈ G0; hence, I = C∗(G) and p(v0 ,0) + p(v1 ,0) is a full
projection. By [6, Corollary 2.6], (p(v0 ,0) + p(v1 ,0))C∗(G)(p(v0 ,0) + p(v1 ,0)) is stably
isomorphic to C∗(G).

We apply the collapse move defined in [26] a number of times until we obtain a
finite graph with no sinks and sources such that every vertex is the base of at least one
loop. The graphs below indicate how to obtain such a graph, and the vertex indicated
with ∗ is the one we collapse in each step. The graph we obtain in the last step is
denoted by E.

∗
G

∗

∗ ∗

E
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By [26, Lemma 5.1], we obtain C∗(G) ⊗K ≅ C∗(E) ⊗K and hence

C(L3
q(4; (2, 1))) ⊗K ≅ C∗(E) ⊗K.(3.2)

It is a consequence of the claim [8, Theorem 2.2] made by Brzeziński and Szymański
that C(L3

q(4; (2, 1))) is isomorphic to the graph C∗-algebra of the following graph:

L4;(2,1)
3

By considering the strongly connected components, we have ∣PrimeγC∗(E)∣ = 2 and
∣PrimeγC∗(L4;(2,1)

3 )∣ = 3. Since K is central and simple, it follows that the ideal
structure of the tensor product with K is completely determined by C∗(E) or
C(L3

q(4; (2, 1))) (see, e.g., [12, Theorem 4.3.1]). Then C(L3
q(4; (2, 1))) cannot be

isomorphic to C∗(L4;(2,1)
3 ) since it contradicts (3.2).

We will in Theorem 3.4 prove that the quantum lens spaces are indeed graph C∗-
algebras of a modified graph from which it follows that C(L3

q(4; (2, 1))) ≅ C∗(E).
Remark 3.3 The proof of [8, Theorem 2.2] follows by constructing an explicit
isomorphism. The problem with the isomorphism is that pvb

i
is mapped to p(v i ,b) for

i = 0, 1, . . . , n, b = 0, 1, . . . , gcd(m i , r) − 1. However, p(v i ,b) for b ≠ 0 is not contained
in the corner in (3.1) by orthogonality of the projections.

3.1 A modified graph

We now define a graph for which the main idea behind the construction is similar to
the one for Lr;m

2n+1. The main difference is that we restrict the set of vertices further.
Definition 3.3 Let n ≥ 1 be an integer, let r ∈ N, and let m = (m0 , . . . , mn) be a
sequence of positive integers. Let Hr;m be the smallest hereditary subset of (L2n+1 ×c
Zr)0 containing {(v i , 0)∣i = 0, . . . , n}. For each i = 0, . . . , n, let

S i ∶= {k ∈ {0, . . . , gcd(m i , r) − 1}∣ (v i , k) ∈ Hr;m}.

Note that S0 = {0}. The graph Lr;m
2n+1 is defined as follows:

(Lr;m
2n+1)0 ∶= {vk

i ∣ i = 0, . . . , n, k ∈ S i},

(Lr;m
2n+1)1 ∶= {est

i j;a ∣0 ≤ i ≤ j ≤ n, s ∈ S i , t ∈ S j , a = 1, . . . , nst
i j},

where nst
i j is the number of admissible paths from (v i , s) to (v j , t). The range and

source maps are given by

s(est
i j;a) = vs

i , r(est
i j;a) = v t

j .
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v0
0Level 0

v0
1Level 1 v1

1 v∣S1 ∣−1
1

Level n v0
n v1

n v∣Sn ∣−1
n

Figure 1: Illustration of (Lr;m
2n+1) 0 .

The graph Lr;m
2n+1 then consists of∑n

i=0 ∣S i ∣ vertices, which we divide into n + 1 levels.
The levels are denoted by level 0 to level n, where level i consists of the vertices vk

i , k ∈
S i . There only exist edges from a lower indexed level to a higher one, and each vertex
is the base of precisely one loop. The graph is illustrated in Figure 1 without indicating
any edges.

The difference between the definition of Lr;m
2n+1 and Lr;m

2n+1 is that we restrict the
vertices to the ones in the smallest hereditary subset of (L2n+1 ×c Zr)0. In this way,
we avoid the problem in Example 3.2 since we remove the vertices that are not in the
hereditary subset, i.e., the vertices (v0 , 1) and (v0 , 3).

The purpose of this section is to prove the following theorem.

Theorem 3.4 As C∗-algebras, we have

C(L2n+1
q (r; m)) ≅ C∗(Lr;m

2n+1).

Remark 3.5 If gcd(m0 , r) = 1, then one can always find a path from (v0 , 0) to any
given vertex in the skew-product graph, and hence L(r;m)

2n+1 is the same as L(r;m)
2n+1 . It

follows, in this particular case, that our description of quantum lens spaces as graph
C∗-algebras agrees with the one given in [8]. Consequently, all of the examples given
in that paper as well as the work done in [13, 20] are still valid under the description
given in Theorem 3.4

To show that C(L2n+1
q (r; m)) is isomorphic to C∗(Lr;m

2n+1), we need a couple of
lemmas. With [8, Theorem 2.2] in mind, we will show the following.

Lemma 3.6 There exists a ∗-isomorphism

ψ ∶ C∗(Lr;m
2n+1) →

⎛
⎜⎜⎜
⎝

∑
(v i ,k)

i=0,.. . ,n , k∈S i

p(v i ,k)

⎞
⎟⎟⎟
⎠

C∗(L2n+1 ×c Zr)
⎛
⎜⎜⎜
⎝

∑
(v i ,k)

i=0,.. . ,n , k∈S i

p(v i ,k)

⎞
⎟⎟⎟
⎠

(3.3)

such that

ψ(pv k
i
) = p(v i ,k) , i = 0, . . . , n, k ∈ S i .

For an admissible path α = (e i i1 , k + m i)(e i1 , i2 , k1)⋅⋅⋅(e im im+1 , km)(e im+1 j , t) from
(v i , k) to (v j , t) with i , j = 0, . . . , n, k ∈ S i and t ∈ S j , we let

ψ(sα) = s(e i i1 ,k+m i)s(e i1 , i2 ,k1)⋅⋅⋅s(e im im+1 ,km)s(e im+1 j ,t).

We denote from now on the corner in (3.3) by Cr ,m .
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Proof Let α and β be two admissible paths between vertices in the set {(v i , k)∣ i =
0, . . . , n, k ∈ S i}. Then s∗α sβ = 0 if α ≠ β since the partial isometries in C∗(Lr;m

2n+1) have
mutually orthogonal range projections. We then have to show that ψ(s∗α)ψ(sβ) = 0 if
α ≠ β. It follows that ψ(s∗α)ψ(sβ) equals sβ′ if β = αβ′ and s∗α′ if α = βα′; otherwise, it
equals zero (see, e.g., [24, Corollary 1.14]). Since α and β are admissible paths and αβ′
and βα′ are not, the two first cases cannot happen. Hence, ψ(s∗α)ψ(sβ) equals zero if
α ≠ β.

We will now show that the image of pv k
i

and sα satisfies the defining relations
in Definition 2.1 for Lr;m

2n+1. Then, by universality, ψ is a ∗-homomorphism. Using
the defining relations for graph C∗-algebras, it follows by an easy calculation that
ψ(s∗α)ψ(sα) = pr(α) and ψ(sα)ψ(s∗α) ≤ ps(α), and hence conditions (CK1) and (CK2)

are satisfied. For condition (CK3), we fix a vk
i in (Lr;m

2n+1)
0
. Let A be the collection of all

admissible paths from (v i , k) to a (v j , t) with j = 0, . . . , n, t ∈ S j . Since each outgoing
edge of vk

i to a v t
j corresponds to an admissible path from (v i , k) to (v j , t), we wish to

show that

p(v i ,k) = ∑
α∈A

sα s∗α .(3.4)

By condition (CK3) on L2n+1 ×c Zr and the identity se = se pr(e) = ps(e)se , we have

p(v i ,k) =
n
∑
i1=i

s(e i i1 ,m i+k)s∗(e i i1 ,m i+k)

=
n
∑
i1=i

s(e i i1 ,m i+k)pr((e i i1 m i+k))s∗(e i i1 ,m i+k)

=
n
∑
i1=i

s(e i i1 ,m i+k)p(v i1 ,m i+k)s∗(e i i1 ,m i+k).

(3.5)

For each i1 ∈ {i , . . . , n}, if e(i i1 ,m i+k) is not in A, then we substitute

p(v i1 ,m i+k) =
n
∑

i2=i1

s(e i1 i2 ,m i+m i1+k)s∗(e i1 i2 ,m i+m i1+k)

in (3.5). Let A1 be the set of all (e i i1 , m i + k), i1 = i , . . . , n, for which (e i i1 , m i + k) is
inside A. Moreover, let I1 be the set of all i1 for which (e i i1 , m i + k) ∈ A1. Note that A1
is finite since the paths have to be admissible. Then

p(vi ,k) =
n
∑
i1=i
i1∉I1

⎛
⎝

s(ei i1 ,mi+k)
⎛
⎝

n
∑

i2=i1

s(ei1 i2 ,mi+mi1+k)p(vi2 ,mi+mi1+k)s∗(ei1 i2 ,mi+mi1+k)
⎞
⎠

s∗(ei i1 ,mi+k)
⎞
⎠

+ ∑
α∈A1

sα s∗α .

Similarly, let A2 contain all paths (e i i1 , m i + k)(e i1 i2 , m i + m i1 + k), which are con-
tained in A. Let I2 be the set of all (i1 , i2) for which (e i i1 , m i + k)(e i1 i2 , m i + m i1 + k) ∈
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A2. Then

p(v i ,k) =
n
∑
i1=i
i1∉I1

n
∑

i2=i1
(i1 , i2)∉I2

s(e i i1 ,m i+k)s(e i1 i2 ,m i+m i1+k)

⋅
⎛
⎝

n
∑

i3=i2

s(e i2 i3 ,m i+m i1+m i2+k)s∗(e i2 i3 ,m i+m i1+m i2+k)
⎞
⎠

s∗(e i1 i2 ,m i+m i1+k)s
∗
(e i i1 ,m i+k)

+ ∑
α∈A1∪A2

sα s∗α .

Proceeding inductively, let As contain the set of all paths

(e i i1 , m i + k)(e i1 i2 , m i + m i1 + k)(e i2 i3 , m i + m i1 + m i2 + k)
⋅⋅⋅ (e is−1 is , m i + m i1 + m i2 + ⋅⋅⋅ + m is−1 + k),

(3.6)

which are contained in A. Let Is contain all (i1 , i2 , . . . , is) for which the path in (3.6)
is contained in As . Note that As consists of admissible paths of length s.

Continuing as above, we will at some point obtain that all the paths are admissible;
hence, the procedure terminates. This happens since we do not have any edges from a
higher level to a lower one in the finite graph L2n+1 ×c Zr . Hence, there exists an m ∈ N
such that (i1 , i2 , . . . , im) are all contained in Im . Then

p(v i ,k) = ∑
α∈A1∪A2∪⋅⋅⋅∪Am

sα s∗α .

Furthermore, since we in each step consider all the outgoing edges of a vertex, we
construct indeed all admissible paths by this procedure. Hence, A = A1 ∪ A2 ∪ ⋅⋅⋅ ∪
Am , and we obtain (3.4).

For surjectivity, we observe that

Cr ,m = span{sμs∗ν ∣ r(μ) = r(ν), s(μ), s(ν) ∈ {(v i , k), i = 0, . . . , n, k ∈ S i}},

which follows by the fact that

⎛
⎜⎜⎜
⎝

∑
(v i ,k)

i=0,.. . ,n , k∈S i

P(v i ,k)

⎞
⎟⎟⎟
⎠

sμs∗ν

⎛
⎜⎜⎜
⎝

∑
(v i ,k)

i=0,.. . ,n , k∈S i

P(v i ,k)

⎞
⎟⎟⎟
⎠

is nonzero if and only if s(μ), s(ν) ∈ {(v i , k), i = 0, . . . , n, k ∈ S i}.
Let μ and ν be paths such that sμs∗ν ∈ Cr ,m and for which the ranges of μ and ν are in

{(v i , k), i = 0, . . . , n, k ∈ S i}. Then we see immediately that μ = μ1⋅⋅⋅μs and ν = ν1⋅⋅⋅νt
for some admissible paths μ j , ν j , i.e., μ i , ν i corresponds to edges in C∗(Lr;m

2n+1). Then

ψ(sμ1⋅⋅⋅μs s
∗
ν1⋅⋅⋅ν t

) = sμs∗ν .

Hence, sμs∗ν is in the image of ψ.
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Let now μ and ν be paths with range not in {(v i , k), i = 0, . . . , n, k ∈ S i} such that
sμs∗ν ∈ Cr ,m . By using that

sμs∗ν = sμ

⎛
⎜⎜⎜
⎝

∑
e∈(L2n+1×cZr)1

s(e)=r(μ)

se s∗e

⎞
⎟⎟⎟
⎠

s∗ν

a number of times, as in the proof of condition (CK3), we obtain that

sμs∗ν =
m
∑
i=1

sμα i s
∗
να i

,

where α i , i = 1, . . . , m, are paths from r(μ) to a vertex in {(v i , k), i = 0, . . . , n, k ∈ S i}.
Then, for i = 1, . . . , m, μα i and να i represent a path in C∗(Lr;m

2n+1) and sμs∗ν is then in
the image of ψ.

Finally, to prove that ψ is injective, we apply the generalized Cuntz–Krieger
uniqueness theorem presented in [27, Theorem 1.2]. We have that ψ(pv k

i
) is nonzero

for all i = 0, . . . , n, k ∈ S i . By [27, Theorem 1.2], we obtain that ψ is injective if the
spectrum of

ψ(se kk
nn;1

) = s(enn ,k+mn)s(enn ,k+2mn)⋅⋅⋅s(enn ,k+( r
gcd(mn ,r)−1)mn)

s(enn ,k)

for each k ∈ Sn contains the entire unit circle. By the last part of the proof of Theorem
2.4 in [22], it follows that this is indeed the case. Hence, ψ is injective. ∎

Lemma 3.7 For each vk
i , i = 0, . . . , n, k ∈ S i , there is a path from v0

0 to vk
i in Lr;m

2n+1.

Proof Let vk
i , i = 0, . . . , n, k ∈ S i , then (v i , k) ∈ Hr;m by definition. Hence, there

exists a path α from (v j , 0) for at least one j = 0, . . . , n to (v i , k). If the path is not
admissible, we divide it into admissible subpaths. Furthermore, there is always an
admissible path from (v�−1 , 0) to (v� , 0) for any � = 0, . . . , n as follows:

(e(�−1)(�−1) , m l−1)(e(�−1)(�−1) , 2m�−1)⋅⋅⋅ (e(�−1)(�−1) ,(
r

gcd(m�−1 , r)
− 1)m�−1)(e(�−1)l , 0).

Combining these paths, we obtain a path from (v0 , 0) to a (v j , 0) with j = 0, . . . , n,
call the path β. Then we obtain a path βα from (v0 , 0) to (v i , k) which consists of
admissible subpaths. Hence, there is indeed a path from v0

0 to vk
i . ∎

Lemma 3.8 The projection ∑n
i=0 pv0

i
is full in C∗(Lr;m

2n+1).

Proof Let I be the ideal generated by ∑n
i=0 pv0

i
. Note that we clearly have pv0

i
∈ I, for

i = 0, . . . , n. We wish to show that for any vk
i , i = 0, . . . , n, k ∈ S i , we have pv k

i
∈ I, since

then I = C∗(Lr;m
2n+1) and ∑n

i=0 pv0
i

is full.
Let α = f1 f2⋅⋅⋅ fm with f j ∈ (Lr;m

2n+1)1, for j = 1, . . . , m, be a path from v0
0 to a vk

i
with i ∈ {0, . . . , n}, k ∈ S i which we know exists by Lemma 3.7. By the Cuntz–Krieger
relations, we have

s f1 s
∗
f1
≤ pv0

0
, s∗f1

s f1 = pr( f1).
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v

w

vav

waw

v2

w2

E

F

Figure 2: Illustration of the graph F.

E
u

vw

G
(au − 1)

(av − 1)

Figure 3: Illustration of the graph G.

Then s f1 s∗f1
= s f1 s∗f1

pv0
0
∈ I and we obtain s∗f1

∈ I, which implies that pr( f1) ∈ I. We can
apply the same argument as above to show pr( f2) ∈ I if we replace pv0

0
with pr( f1) and

pr( f1) with pr( f2). By continuing this argument, we obtain that pv k
i
= pr( fm) ∈ I. ∎

Lemma 3.9 Let E = (E0 , E1 , r, s) be a directed graph. For each v ∈ E0, choose an
av ≥ 1. Define F (Figure 2) to be the graph such that for each v ∈ E0 we add a head
of av − 1 vertices to v.

Define another graph G (Figure 3) as follows:

G0 = E0 ⊔ {w}, G1 = E1 ⊔ {ev , i ∣ i = 1, . . . , av − 1, v ∈ E0 , av ≥ 2}.

The range and source maps extend from E to G for the edges in E1 and

s(ev , i) = w , r(ev , i) = v .

Then, as C∗-algebras, C∗(F) ≅ C∗(G).

Proof Consider first the graph F, and we apply the R+-move, presented in [15,
Definition 3.9], on the regular vertices v i , i = 2, . . . , av , one by one for each v ∈ F.
We then obtain a graph F (Figure 4) defined as follows:

F0 = E0 ⊔ {ṽ i ∣ v ∈ E0 , i = 2, . . . , av}, F 1 = E1 ⊔ {ẽv
i ∣ v ∈ E0 , i = 2, . . . , av},

where s(ẽv
i ) = ṽ i and r(ẽv

i ) = v.
By [15, Theorem 3.10], C∗(F) ≅ C∗(F).
For the graph G, we perform an out-split [4] (see also [15, Definition 3.1]) of

the vertex w by partition s−1(w) into singleton sets. Then the out-split graph GO is
precisely the graph F. By [4, Theorem 3.2], C∗(G) ≅ C∗(GO), and hence C∗(G) ≅
C∗(F). ∎

We are now ready to prove Theorem 3.4.
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v

ṽ2

ṽ3

ṽav

E
F

Figure 4: Illustration of the graph F.

E SE

Figure 5: The stabilization when E = L4;(2,1)
3 .

Proof of Theorem 3.4 By Lemma 3.6 and (3.1), we obtain

C(L2n+1
q (r; m)) ≅ (

n
∑
i=0

p(v i ,0))C∗(L2n+1 ×c Zr)(
n
∑
i=0

p(v i ,0))

= (
n
∑
i=0

p(v i ,0))
⎛
⎜⎜⎜
⎝

∑
(v i ,k)

i=0,.. . ,n , k∈S i

p(v i ,k)

⎞
⎟⎟⎟
⎠

C∗(L2n+1 ×c Zr)
⎛
⎜⎜⎜
⎝

∑
(v i ,k)

i=0,.. . ,n , k∈S i

P(v i ,k)

⎞
⎟⎟⎟
⎠
(

n
∑
i=0

p(v i ,0))

≅ (
n
∑
i=0

pv0
i
)C∗(Lr;m

2n+1)(
n
∑
i=0

pv0
i
) .

Hence, it suffices to prove that

(
n
∑
i=0

pv0
i
)C∗(Lr;m

2n+1)(
n
∑
i=0

pv0
i
) ≅ C∗(Lr;m

2n+1).(3.7)

We will follow the procedure in the proof of [3, Theorem 4.8(1)] to construct a graph
for which the corner in (3.7) is isomorphic to its graph C∗-algebra. For proofs of the
statement used in the construction, we refer to [3, Theorem 4.8(1)].

For simplicity, we let E ∶= Lr;m
2n+1 and P ∶= ∑n

i=0 pv0
i
. Let SE be the graph for which

an infinite head has been added to each vertex. SE is called the stabilization of E
(Figure 5).

There exists an isomorphism ϕ ∶ C∗ (E) ⊗K→ C∗(SE) such that

K0(ϕ)([pw ⊗ e11]) = [pw]
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for all w ∈ E0, where {e i j} is a set of matrix units in K [1, Proposition 9.8]. Then

PC∗(E)P ≅ (P ⊗ e11)(C∗(E) ⊗K)(P ⊗ e11) ≅ ϕ(P ⊗ e11)C∗(SE)ϕ(P ⊗ e11).

Since P is full by Lemma 3.8, it follows by the proof of Proposition 4.7 in [3] that there
exists a finite hereditary subset T of (SE)0, which contains E0, such that ϕ(P ⊗ e11) is
Murray–von Neumann equivalent to

PT ∶= ∑
v∈T

pv .

We obtain T as follows: By an application of [3, Lemma 4.3], there exist integers av ≥ 1
such that

[P] = ∑
v∈E0

av[pv],

which follows since there is a path from v0
0 to any vk

i by Lemma 3.7. For a vertex v ∈ E0,
we denote the first av − 1 vertices in the infinite head added to v as follows:

v

v2

v3 vav−1

vav

E

Let v1 = v and denote by ek the edge from vk to vk−1 for k = 2, . . . , av . By the Cuntz–
Krieger relations, it follows that

pvk = sek s∗ek
, pvk−1 = s∗ek

sek ,

for k = 2, . . . , av . Hence, [pvk ] = [pvk−1] for k = 2, . . . , av from which it follows that
[pv j] = [pv] for j = 2, . . . , av and

av[pv] = [pv] +
av

∑
i=2

[pv i ].

Let

T ∶= E0 ⊔ {vk ∣ v ∈ E0 , av ≥ 2, k = 2, . . . , av},

then we obtain

[ϕ(P ⊗ e11)] = [P] = ∑
v∈E0

av[pv] = ∑
v∈E0

([pv] +
av

∑
i=2

[pv i ]) = [PT].

Then

ϕ(P ⊗ e11)C∗(SE)ϕ(P ⊗ e11) ≅ PT C∗(SE)PT .
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v1
Level 0

v2
Level 1 v3 v∣S1 ∣+1

Level 2 v∣S1 ∣+2 v∣S1 ∣+2 v∣S1 ∣+∣S2 ∣+1

Figure 6: Renaming of the vertices in Lr;m
2n+1 .

By [3, Theorem 3.15] , PT C∗(SE)PT ≅ C∗(F), where F = (T , s−1
SE(T), rSE , sSE). The

graph F consists then of the graph E where for each v ∈ E0 there is added a head
consisting of av − 1 vertices (see Figure 2). We obtain by Lemma 3.9 that C∗(F) is
isomorphic to C∗(G). Hence, it remains to show that C∗(G) ≅ C∗(E) = C∗(Lr;m

2n+1).
For this, we apply [14, Theorem 14.6] on the graphs E and G. First, note that E =

Ẽ = G̃, xE is the zero vector of size ∣E0∣ and xG is a vector of size ∣E0∣, which indicates
the number of edges from w to each vertex in E0. Note that the first entry is 0 since
there are no edges from w to v0

0 .
The components of E consist of singleton sets. They are all cyclic since every vertex

is the base of precisely one loop. Recall that the graph E = Lr;m
2n+1 consists of n + 1 levels

for which we in level k have ∣Sk ∣ vertices. We denote the vertices in E0 as indicated in
Figure 6.

A partial order on the setP = {1, 2, . . . , N}with N ∶= ∑n
i=0 ∣S i ∣ is defined as follows:

For i , j ∈ P, we let i ⪯ j if there is a path from v i to v j . Let γ i ∶= {v i} ∈ ΓE , then the map
i ↦ γ i is clearly an order-reversing isomorphism from P to ΓE . Furthermore, if i ⪯ j,
then i ≤ j, which is required. Then BE = BẼ = BG̃ are contained in M○○○

P (1,Z) (see
Definition in [13, p. 321]) and

Vc2 , . . . ,c∣E0 ∣
=
⎛
⎜⎜⎜
⎝

1 c2 ⋅⋅⋅ c∣E0 ∣
0
⋮ I
0

⎞
⎟⎟⎟
⎠

lies inside SLP(1,Z) for any c j ∈ Z since there is a path from v0
0 to every

other vertex by Lemma 3.7. Moreover, we have BẼ Vc2 , . . . ,c∣E0 ∣
= BG̃ and xG =

(0 k2 ⋅⋅⋅ k∣E0 ∣)
T with k i = av i − 1. Then

V T
k2 , . . . ,k∣E0 ∣

(1 + xE) =
⎛
⎜⎜⎜
⎝

1
k2 + 1

⋮
k∣E0 ∣ + 1

⎞
⎟⎟⎟
⎠
= 1 + xG .

Hence, V T
k2 , . . . ,k∣E0 ∣

(1 + xE) − (1 + xG) = 0, which is clearly in the image of BT
F̃ . Then, by

letting U = P = I in [14, Theorem 14.6], we obtain C∗(G) ≅ C∗(E).
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γ1
↓

γ2
↓

γ3
↓

γ4

γ1
↙ ↓ ↘

γ2 γ3 ⋅⋅⋅ γK+1
↘ ↓ ↙

γK+2
↓

γK+3

γ1
↓

γ2
↙ ↓ ↘

γ3 γ4 ⋅⋅⋅ γK+2
↘ ↓ ↙

γK+3

γ1
↓

γ2
↓

γ3
↙ ↓ ↘

γ4 γ5 ⋅⋅⋅ γK+3

gcd(m0 ,r)=K gcd(m1 ,r)=K gcd(m2 ,r)=K gcd(m3 ,r)=K

Figure 7: Component graphs of seven-dimensional quantum lens spaces.

To summarize, we have shown

C∗(Lr;m
2n+1) ≅ C∗(G) ≅ C∗(F) ≅ PT C∗(SE)PT

≅ ϕ(P ⊗ e11)C∗(SE)ϕ(P ⊗ e11)
≅ PC∗(Lr;m

2n+1)P ≅ C(L2n+1
q (r; m)),

which proves the theorem. ∎

4 A classification result of quantum lens spaces

We will in this section investigate quantum lens spaces C(L7
q(r, m)) for which

gcd(m� , r) = K for a single � ∈ {0, 1, 2, 3} and the remaining weights are coprime to r.
In the process of finding an invariant for seven-dimensional quantum lens spaces, we
will also be able to calculate one for quantum lens spaces of dimension 5. We will in
the following therefore have our focus on seven-dimensional quantum lens spaces.

Under the above assumptions on the weights, the skew product graph L7 ×c Zr
consists of four levels, labeled by levels 0,1,2, and 3, with edges going from level i to
j if i < j. At the level on which gcd(m� , r) = K, we have K cycles based on each of
the vertices (v� , k), k = 0, 1, . . . , K − 1. The graph Lr;m

7 consists of four levels as before
with four vertices when gcd(m0 , r) = K and K + 3 vertices when gcd(m i , r) = K , i ≠
0, which are all the base of a loop. There is one vertex in each level except for level
i where gcd(m i , r) = K ≠ 1, i ≠ 0; here, we have K vertices. When i = 0, we have one
vertex in each level. There is at least one edge going from a lower level to a higher one,
but there are no edges between vertices at the same level. We will denote the vertices
by v i , i = 1, . . . , K + 3 as indicated in Figure 6.

The partial order on ΓLr;m
7

is given as follows: Let γ i ∶= {v i}, then γ j ≤ γ i if there is
a path from v i to v j . The set ΓLr;m

7
can be illustrated by its component graphs, which

are depicted in Figure 7. In these graphs, an arrow from γ i to γ j indicates that γ i ≥ γ j .
For gcd(m0 , r) = K, we let P = {1, 2, 3, 4} and the partial ordering is linear. When

gcd(m i , r) = K , i ≠ 0, we letP = {1, 2, . . . , K + 3} and let � be such that gcd(m�−1 , r) =
K. We define a partial order, ⪯, on P by:

• � − 1 ⪰ ⋅⋅⋅ ⪰ 1,
• i ⪰ � − 1 for i = �, . . . , K + � − 1,
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• K + � ⪰ i for i = �, . . . , K + � − 1,
• K + 3 ⪰ ⋅⋅⋅ ⪰ K + �.
The partial order satisfies that if i ⪯ j, then i ≤ j, which is the required assumption [13,
Assumption 4.3]. It can easily be seen that there exists an order-reversing isomorphism
γB

L
r;m
7

∶ P→ ΓLr;m
7

mapping i to γ i .

Let gcd(m i , r) = K for one i. It follows immediately that ∣Primeγ(C∗(Lr;m
7 ))∣ = K +

3 when i ≠ 0 and ∣Primeγ(C∗(Lr;m
7 ))∣ = 4 if i = 0. By this result, we obtain nonisomor-

phic quantum lens spaces for different values of K when i ≠ 0. Moreover, by Remark
6.9, it follows that K must also be the same in order to obtain isomorphic quantum
lens spaces when i = 0 even though this is not immediately clear by considering the
ideal structure.

Fix a K > 1, and by considering the ideal structure, we obtain four different
isomorphism classes of quantum lens spaces, one for each i = 0, 1, 2, 3 for which
gcd(m i , r) = K. We will in this section determine when two quantum lens spaces
inside each of these four classes are isomorphic. Similarly, we have three different
classes of quantum lens spaces of dimension 5 to investigate.

To determine whether two quantum lens spaces in the same class are isomorphic,
we will make use of [13, Theorem 7.1]. For the quantum lens spaces we are investigating,
the block structure consists of 1 × 1-matrices and (BLr;m

7
, BLr;n

7
) is in standard form for

two quantum lens spaces in the same class when we order the vertices in the adjacency
matrix as described above. Since Lr;m

2n+1 contains no sinks, Theorem 2.1 boils down to
the following result.

Corollary 4.1 Let m = (m0 , m1 , m2 , m3) and n = (n0 , n1 , n2 , n3) be in N
4. If

gcd(m i , r) = gcd(n i , r), for each i = 0, 1, 2, 3, then C∗(Lr;m
7 ) and C∗(Lr;n

7 ) are isomor-
phic if and only if there exist matrices U , V ∈ SLP(1,Z) such that UBLr;m

7
V = BLr;n

7
.

We remark that the natural generalization of Corollary 4.1 to quantum lens spaces
of other dimensions is true if one defines the partial order in the obvious way. In
particular, for dimension 5, we have a similar result by letting P = {1, 2, . . . , K + 2}
and defining the order in a similar way as the one for dimension 7.

Eilers, Restorff, Ruiz, and Sørensen used Corollary 4.1, with P = {1, 2, 3, 4} ordered
linearly to completely classify the simplest case.

Theorem 4.2 [13, Theorem 7.8] Let r ∈ N, r ≥ 2, and let m = (m0 , m1 , m2 , m3) and
n = (n0 , n1 , n2 , n3) be in N

4 such that gcd(m i , r) = gcd(n i , r) = 1 for all i. Then
C∗ (L(r ,m)

7 ) ≅ C∗ (L(r ,n)
7 ) if and only if

(n−1
2 n1 − m−1

2 m1)
r(r − 1)(r − 2)

3
≡ 0 (mod r).

From the above, they concluded the following corollary.

Corollary 4.3 [13, Corollary 7.9] If 3 does not divide r, then

C∗ (L(r ,m)
7 ) ≅ C∗ (L(r ,(1,1,1,1))

7 )

https://doi.org/10.4153/S0008414X23000044 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000044


264 T. Gotfredsen and S. E. Zegers

for all m ∈ N4 with gcd(m i , r) = 1.
If 3 divides r and m = (m0 , m1 , m2 , m3) ∈ N4 with gcd(m i , r) = 1, then

(i) C∗ (L(r ,m)
7 ) ≅ C∗ ((L(r ,(1,1,1,1))

7 ) if and only if m1 ≡ m2 (mod 3),

(ii) C∗ (L(r ,m)
7 ) ≅ C∗ (L(r ,(1,1,r−1,1))

7 ) if and only if m1 /≡ m2 (mod 3).

For dimension less than 7, Eilers, Restorff, Ruiz, and Sørensen observed that the
adjacency matrices are independent of the weights; hence, all quantum lens spaces are
isomorphic. We will see that this is not always the case when one of the weights is not
coprime with r.

5 Classification of C (L2n+1(r; m)) , n ≤ 3

In this section, we fix the value of the order of the acting group, r, even though, as we
will show later in Remark 6.9, r is in fact an invariant in most of the cases considered.
Also, note that for the remainder of this paper, we will use the notation Z

×
k to denote

the subgroup of multiplicative units of the ring Zk , and we will use ϕ to denote Euler’s
totient function, that is, ϕ(k) ∶= ∣Z×k ∣.

Quantum lens spaces of dimension 3, with one and only one weight coprime with
r, will be the same for any choice of weights. See Remark 6.4. For dimension 5. we
obtain the following theorem.

Theorem 5.1 Let r ∈ N, r ≥ 2, and let m = (m0 , m1 , m2) and n = (n0 , n1 , n2) be in N
3

such that gcd(m� , r) = gcd(n� , r) = K for one 0 ≤ � ≤ 2, and gcd(m i , r) = gcd(n i , r) =
1 whenever i ≠ �. Then:

(i) C∗ (L(r ,m)
5 ) ≅ C∗ (L(r ,n)

5 ) if � ∈ {0, 1} and

(ii) C∗ (L(r ,m)
5 ) ≅ C∗ (L(r ,n)

5 ) if and only if m1 ≡ n1 (mod K) if � = 2.

The proof of Theorem 5.1 follows by a similar, but much easier, approach as the
corresponding results in the seven-dimensional case, which is presented in Theorem
5.3. Therefore, we will not present the proof in the present paper.

Corollary 5.2 Let gcd(m2 , r) = K and gcd(m i , r) = 1 for i = 0, 1, then

C∗ (L(r;(m0 ,m1 ,m2))
5 ) ≅ C∗ (L(r;(1,k1 ,K))

5 ) ,

where m1 ≡ k1 (mod K) with k1 ∈ Z×r , and there are exactly ϕ(K) isomorphism classes
of quantum lens spaces.

We will now state our main theorem for quantum lens spaces of dimension 7, which
is an extension of Theorem 4.2.

Theorem 5.3 Let r ∈ N, r ≥ 2, and let m = (m0 , m1 , m2 , m3) and n = (n0 , n1 , n2 , n3)
be in N

4 such that gcd(m� , r) = gcd(n� , r) = K for one 0 ≤ � ≤ 3, and gcd(m i , r) =
gcd(n i , r) = 1 whenever i ≠ �. Then C∗ (L(r ,m)

7 ) is isomorphic to C∗ (L(r ,n)
7 ) if and

only if:
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(0) (m−1
2 m1 − n−1

2 n1) r(r−1)(r−2)
3 ≡ 0 (mod r) if � = 0 and 3 ∤ K. If 3 ∣ K, then they are

always isomorphic.
(1) (n−1

2 n1 − m−1
2 m1) r(r−1)(r−2)

3 ≡ 0 (mod r) and m2 ≡ n2 (mod K) if � = 1,
(2) (n−1

1 n2 − m−1
1 m2) r(r−1)(r−2)

3 ≡ 0 (mod r) and m1 ≡ n1 (mod K) if � = 2,
(3) (n−1

2 n1 − m−1
2 m1) r(r−1)(r−2)

3 ≡ 0 (mod r) and m j ≡ n j (mod K), j = 1, 2 if � = 3.

The proof is postponed to Section 7. From Theorem 5.3, we may derive the
following results. They are in particular interesting for computational purposes, and
it gives a precise determination of how many different spaces we obtain of each type.
It also shows that the first case is somewhat degenerate.

Corollary 5.4 Let r ∈ N, m = (m0 , m1 , m2 , m3) ∈ N4, and gcd(m i , r) = K for pre-
cisely one i and gcd(m j , r) = 1 when j ≠ i. Furthermore, let k1 , k2 ∈ N be such that
0 < k1 , k2 < K and gcd(k1 , K) = gcd(k2 , K) = 1.

If 3 ∣ K or 3 ∤ r, then C(Lq(r; m)) is isomorphic to a quantum lens space with
precisely one of the following sets of weights:

(K , 1, 1, 1), (1, K , k2 , 1), (1, k1 , K , 1), (1, k1 , k2 , K).

If 3 ∤ K, then C(Lq(r; m)) is isomorphic to a quantum lens space with one of the
following set of weights:

(K , 1, 1, 1), (1, K , k2 , 1), (1, k1 , K , 1), (1, k1 , k2 , K)
if m1 ≡ m2 (mod 3) and

(K , 1, r − 1, 1), (1, K , k2(r − 1), 1), (1, k1(r − 1), K , 1), (1, k1 , k2(r − 1), K)
if m1 /≡ m2 (mod 3).

Proof First, note that in the case where gcd(m0 , r) = K and 3 ∤ r, the invariant
coincides with the analogous invariant in [13, Corollary 7.9], and we may make the
same conclusion.

We now address the proof in the case where gcd(m3 , r) = K since the remaining
follow by a similar approach. If 3 does not divide r, we notice that we by Theorem 5.3
only need to consider the condition m i ≡ n i (mod K). It is clear that if gcd(m i , r) = 1,
then also gcd(m i , K) = 1. Thus, it suffices to show that if [k]K ∈ Z×K , then [k]K contains
an element, k′, such that gcd(k′ , r) = 1, since then each isomorphism class may be
determined by a pair of units in ZK . Indeed, let [k]K ∈ Z×K be arbitrary. We set p to
be the product of 1 and all prime factors of r which are factors of neither k nor K.
Now, set k′ ∶= K p + k ≡ k (mod K) and assume that gcd(k′ , r) ≠ 1. Then there exists
a common prime factor q of r and k′. Since q divides k′ but only divides exactly one
of K p and k by construction, we have a contradiction, and gcd(k′ , r) = 1 as desired.

If 3 divides r, then we also need to consider the first part of the invariant. We observe
the congruence

r(r − 1)(r − 2)
3

≡ 2r
3

(mod r).

If m i ≡ �i (mod K) for i = 1, 2 with 0 < �i < K and gcd(�i , K) = 1, then 3 must divide
�−1

2 �1 − m−1
2 m1 to get isomorphic quantum lens spaces. Also, notice that it follows by a
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3 /∣r 3∣r and 3 /∣K 3∣r and 3∣K

gcd(m0 , r) = K 1 2 1

gcd(m1 , r) = K ϕ(K) 2ϕ(K) ϕ(K)
gcd(m2 , r) = K ϕ(K) 2ϕ(K) ϕ(K)
gcd(m3 , r) = K ϕ(K)2 2ϕ(K)2 ϕ(K)2

Table 1: The number of isomorphism classes.

computation that m1 ≡ m2 (mod 3) if and only if �1 ≡ �2 (mod 3). Hence, C(Lq(r; m))
is isomorphic to C(Lq(r; (1, �1 , �2 , K))) where m1 ≡ m2 (mod 3) if and only if �1 ≡
�2 (mod 3).

Let �1 /≡ �2 (mod 3), and we claim that there exist k1 , k2 with 0 < k i < K and
gcd(k i , K) = 1 for i = 1, 2 such that

�2 ≡ k2(r − 1) (mod K), �1 ≡ k1 (mod K), k1 ≡ k2 (mod 3).

Let k1 ∶= �1. Assume first that k1 ∈ [1]3, then �2 ∈ [2]3. Let k2 = 1, then

k2(r − 1) ≡ −k2 (mod 3) ≡ 2 (mod 3) ≡ �2 (mod 3),

and clearly k2 ≡ k1 (mod 3). If k1 ∈ [2]3, then �2 ∈ [1]3, and since 3∣r, we can by the first
part of the proof (by letting K = 3) find k2 ∈ [2]3 such that gcd(k2 , r) = 1 and hence
gcd(k2 , K) = 1. Then

k2(r − 1) ≡ −k2 (mod 3) ≡ 1 (mod 3) ≡ k2 (mod 3),

and we have proved the claim. Hence, C(Lq(r; (1, �1 , �2 , K))) is isomorphic to
C(Lq(r; (1, k1 , k2(r − 1), K))) for k1 , k2 such that 0 < k i < K, gcd(k i , K) = 1 and k1 ≡
k2 (mod 3).

We will end the proof by showing that there is no overlap between the classes, i.e.,
we have to show that

k2 ≡ k1 (mod 3) ⇔ k2(r − 1) /≡ k1 (mod 3)

when 0 < k i < K and gcd(k i , K) = 1 for i=1,2. Assume that k2 ≡ k1 (mod 3), then
k2(r − 1) ≡ −k1 (mod 3), but k1 /≡ −k1 (mod 3) since 3 ∤ k1. The converse follows from
a similar line of reasoning. ∎

From Corollary 5.4, it follows immediately that we can count the number of
isomorphism classes as given in Table 1.

6 Adjacency matrices

For each i = 0, . . . , n, let (L2n+1 ×c Zr) ⟨i⟩ be the subgraph of L2n+1 ×c Zr with vertex
set {v i} ×Zr and edges {e i i} ×Zr .
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Definition 6.1 [13, Definition 7.4] We call an admissible path (e i1 , j1 , h1)⋅⋅⋅(e i� , j� , h�)
in L2n+1 ×c Zr k-step if there exist integers 0 < t1 < t2 < ⋅⋅⋅ < tk+1 such that t1 = i1 and
tk+1 = j�, and for each 2 ≤ α ≤ k, we have

{r((e is , js , hs))∣1 ≤ s ≤ �} ∩ ((L2n+1 ×c Zr) ⟨tα⟩)0 ≠ ∅,

and

{r((e is , js , hs))∣1 ≤ s ≤ �} ⊆
k+1
⋃
i=1

((L2n+1 ×c Zr) ⟨t i⟩)0 .

Intuitively, an admissible path is k-step if it touches vertices from precisely k − 1
different levels not including the level the path starts at and ends in. Below, we give
formulae for the number of 1-step, 2-step, and 3-step admissible paths in each relevant
case. For paths that only touch levels for which the corresponding weights are coprime
to the order of the acting group, we refer to [13, Lemma 7.6], which describes this case
to completion.

Lemma 6.1 1-step admissible paths Let r ∈ N, r ≥ 2, and let m = (m0 , m1 , m2 , m3) ∈
N

4 be such that for a single � ∈ {0, 1, 2, 3}, gcd(m� , r) = K and gcd(m i , r) = 1 for i ≠ �.
Let t ∈ {0, . . . , K − 1}, then:
(1) For i < �, there are r

K 1-step admissible paths from (v i , 0) to (v� , t).
(2) For i > �, there are r

K 1-step admissible paths from (v� , t) to (v i , 0).

Proof This follows since at the �th level we have K loops each going through only
one of the (v� , i), i = 0, 1, . . . , K − 1. ∎
Notation 6.2 Consider a quantum lens space with set of weights m =
(m0 , m1 , m2 , m3). We will in the following, if gcd(m i , r) = 1, let m−1

i denote the fixed
representative of the equivalence class [m i]−1

r in Z
×
r for which 0 < m−1

i ≤ r − 1, and if
K∣r for some K ∈ Z, we denote by a i a fixed representative of [m i]−1

K in Z
×
K for which

0 < a i ≤ K − 1.

Lemma 6.3 2-step admissible paths Let r ∈ N, r ≥ 2, and let m = (m0 , m1 , m2 , m3) ∈
N

4 be such that for a single � ∈ {0, 1, 2, 3}, gcd(m� , r) = K and gcd(m i , r) = 1 for i ≠ �.
Let t ∈ {0, . . . , K − 1}.
(1) If i < k < � − 1, there are r(r−K)

2K + (ak ⋅ t − 1 + qt K) r
K 2-step admissible paths from

(v i , 0) to (v� , t) passing through the kth level if t ≠ 0 and r(r+K−2)
2K if t = 0.

(2) If i > k > � − 1, there are r(r−K)
2K − (ak ⋅ t − 1 + qt K) r

K 2-step admissible paths from
(v� , t) to (v i , 0) passing through the kth level if t ≠ 0 and r(r−K)

2K if t = 0.
(3) If i < � < j, there are r(r−K)

2K paths from (v i , 0) to (v j , 0) passing through the �th
level,

where ak is defined in Notation 6.2 and qt ∈ Z is such that ak t − 1 + qt K is an integer
between 0 and K − 1.

Proof (1) First, note that there is only one path from (v i , 0) to (vk , smk) for s =
1, 2, . . . , r − 1 not coming back to (v i , 0) and not going through any vertices at the kth
level. We have an edge from (vk , smk) into the cycle containing (v� , t) if and only
if mk(s + 1) ≡ t (mod K). Equivalently, s ≡ ak t − 1 (mod K). Let qt ∈ Z be such that
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st ∶= ak t − 1 + qt K is an integer between 0 and K − 1. Hence, (vk , st mk) is the first
vertex in level k which has a path ending in the cycle containing (v� , t). The number
of paths from (vk , smk) for s = 1, 2, . . . , r − 1 to (v� , t) is then

r − (s − h)
K

, if s ≡ h = 0, . . . , st (mod K),

r − (s − h)
K

− 1, if s ≡ h = st + 1, . . . , K − 1 (mod K).

The number of 2-step admissible paths then becomes

s t

∑
h=0

r−1
∑
s=1,

s≡h (mod K)

r − (s − h)
K

+
K−1
∑

h=s t+1

r−1
∑
s=1,

s≡h (mod K)

( r − (s − h)
K

− 1)

=
K−1
∑
h=0

r−1
∑
s=1,

s≡h (mod K)

r − (s − h)
K

−
K−1
∑

h=s t+1

r−1
∑
s=1,

s≡h (mod K)

1

=
r−K

K

∑
j=1

n r − jK
K

+ (K − 1) r
K

− (K − 1 − st)
r
K

= r(r − K)
2K

+ (ak t − 1 + qt K) r
K

.

If t = 0, then q0 = 1; hence, the number of 2-step admissible paths becomes

r(r − K)
2K

+ (K − 1) r
K

= r2 − rK + 2Kr − 2r
2K

= r(r + K − 2)
2K

.

(2) Let t > 0. First, we have precisely one path from (v� , t) to (vk , mk h) whose first
vertex in the kth level is (vk , mk h) if and only if mk h ≡ t (mod K) for h = 1, 2, . . . , r −
1. The number of paths from (vk , mk h) to (v i , 0) is r − h. Hence, the total number of
admissible 2-step paths is

r−1
∑
h=1,

h≡ak t (mod K)

(r − h) =
r−K

K

∑
j=0
(r − (ak t + qt K + jK)) = r(r + K)

2K
− (ak t + qt K)

r
K

= r(r − K)
2K

+ r
K
− (ak t + qt K)

r
K
= r(r − K)

2K
− (ak t − 1 + qt K)

r
K

,

where qt ∈ Z is such that 0 < ak t + qt K < K. If t = 0, then the number of 2-step
admissible paths becomes

r−K
K

∑
j=1

(r − jK) = r(r − K)
2K

.

(3) Note that for each t ∈ {1, . . . , K − 1} and for each h ∈ {1, . . . , r
K − 1}, there is

precisely one edge from (v i , 0) to (v� , t + m�h), and the number of admissible paths
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Case Lemma Page

gcd(m0 , r) = K 6.6 27

gcd(m1 , r) = K 6.8 29

gcd(m2 , r) = K 6.7 29

gcd(m3 , r) = K 6.5 26

Table 2: Reference table for adjacency matrices of seven-dimensional spaces.

from (v� , t + m�h) to (v j , 0) is r
K − h. Thus, the number of admissible 2-step paths is

K−1
∑
t=0

r
K −1

∑
h=1

r
K

− h = r(r − K)
2K

.
∎

Remark 6.4 For quantum lens spaces of dimension 3 (that is, n = 1), we see imme-
diately by Lemma 6.3 that the adjacency matrices for a fixed r and K will all be the
same. For quantum lens spaces of dimension 5, the adjacency matrices are given by the
following, which are obtained by adding the number of 1-step and 2-step admissible
paths as found in Lemmas 6.1 and 6.3 and [13, Lemma 7.6]:

gcd(m0 , r) = K gcd(m1 , r) = K gcd(m2 , r) = K

⎛
⎜
⎝

1 r
K

r
K + r(r−K)

2K
0 1 r
0 0 1

⎞
⎟
⎠

⎛
⎜⎜⎜
⎝

1 r
K

r
K . . . r

K
r(r+K)

2K
0 r

K
0 r

K
0 In ⋮
⋮ r

K
0 0 0 ... 0 1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜
⎝

1 r z0 ⋅⋅⋅ ⋅⋅⋅ zK−1
0 1 r/K ⋅⋅⋅ ⋅⋅⋅ r/K
0 0
⋮ ⋮ In
0 0
0 0

⎞
⎟⎟
⎠

,

where z0 = r(r+K)
2K , zt = r(r−K)

2K + r
K a1 t + qtr for t = 1, . . . , K − 1, and a1 is defined in

Notation 6.2 .

We will now calculate the adjacency matrices for seven-dimensional quantum lens
spaces. Since the following pages are rather heavy on similarly looking matrices and
formulae, we provide in Table 2 an overview of where the adjacency matrix of each of
our four cases may be found in the following pages, both in terms of page numbering
and lemma numbering.

Lemma 6.5 Let r ∈ N, r ≥ 2, and let m = (m0 , m1 , m2 , m3) be such that gcd(m3 , r) =
K and gcd(m i , r) = 1, i ≠ 3. Then we may for each 0 ≤ � < r − 1 and each 0 ≤ t ≤ K − 1
find k� , st ∈ Z such that

AL7
q(r;m) =

⎛
⎜⎜⎜⎜
⎝

1 r r(r+1)
2 x0 ⋅⋅⋅ ⋅⋅⋅ xK−1

0 1 r y0 ⋅⋅⋅ ⋅⋅⋅ yK−1
0 0 1 r/K ⋅⋅⋅ ⋅⋅⋅ r/K
0 0 0
⋮ ⋮ ⋮ IK
0 0 0
0 0 0

⎞
⎟⎟⎟⎟
⎠

,
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where

y0 = r(r + K)
2K

and

x0 ≡ −m−1
2 m1

r(r − 2)(r − 1)
3K

+
r−2
∑
�=1

�
r(1 − k�)

K
+

K−1
∑
h=0

r−2
∑
�=1

�≡m2 a1 h−1 (mod K)

�h
K

− r
K

(mod r).

For t ≥ 1, we have

yt =
r(r − K)

2K
+ a2 t r

K
+ rqt

and

xt ≡ −m−1
2 m1

r(r − 2)(r − 1)
3K

+
r−2
∑
�=1

�
r(1 − k�)

K

+
K−1
∑
h=0

r−2
∑
�=1

�≡m2 a1 h−1 (mod K)

�h
K

−
K−1
∑

h=s t+1

r−2
∑
�=1

�≡m2 a1 h−1 (mod K)

� + r
K
(a2 t + a1 t − 1) (mod r),

where ai is defined in Notation 6.2.

Proof We will now calculate the number of 3-step admissible paths from (v0 , 0)
to (v3 , t) for t = 0, 1, 2, 3. First, notice that there are exactly � paths from (v0 , 0)
to (v1 , �m1) not coming back to (v0 , 0), and exactly one edge from (v1 , �m1) to
(v2 , (� + 1)m1); hence, we wish to find the number of paths from (v2 , (� + 1)m1) to
(v3 , t), denoted P�. Then the total number of 3-step admissible paths will be ∑r−2

�=1 �P�.
We can express (v2 , (� + 1)m1) as (v2 , sm2), where 0 < s ≤ r satisfies m2s ≡

(� + 1)m1 (mod r). As in the proof of Lemma 6.3(1), we let st denote a representative
of the class [a2 t − 1]K which lies between 0 and K − 1, and let k� be an integer such
that 0 < m−1

2 m1(� + 1) + rk� < r. By reasoning as in Lemma 6.3 (1), we have

P� =
r − (m−1

2 m1(� + 1) + rk� − h)
K

if s ≡ h = 0, . . . , st (mod K), i.e., � ≡ m2a1h − 1 (mod K) and

P� =
r − (m−1

2 m1(� + 1) + rk� − h)
K

− 1

if s ≡ h = st + 1, . . . , K − 1 (mod K). The number of 3-step admissible paths becomes

r−2
∑
�=1

�P� =
st

∑
h=0

r−2
∑
�=1

�≡m2 a1 h−1 (mod K)

�
r − (m−1

2 m1(� + 1) + k�r − h)
K

+
K−1
∑

h=st+1

r−2
∑
�=1

�≡m2 a1 h−1 (mod K)

�( r − (m−1
2 m1(� + 1) + k�r − h)

K
− 1)

=
K−1
∑
h=0

r−2
∑
�=1

�≡m2 a1 h−1 (mod K)

�
r − (m−1

2 m1(� + 1) + k�r − h)
K

−
K−1
∑

h=st+1

r−2
∑
�=1

�≡m2 a1 h−1 (mod K)

�
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= −
K−1
∑
h=0

r−2
∑
�=1

�≡m2 a1 h−1 (mod K)

m−1
2 m1(� + 1)l

K
+

K−1
∑
h=0

r−2
∑
�=1

�≡m2 a1 h−1 (mod K)

�
r(1 − k�)

K
+

n−1
∑
h=0

r−2
∑
�=1

�≡m2 a1 h−1 (mod K)

�h
K
−

K−1
∑

h=st+1

r−2
∑
�=1

�≡m2 a1 h−1 (mod K)

�

= −
r−2
∑
�=1

m−1
2 m1(� + 1)l

K
+

r−2
∑
�=1

�
r(1 − k�)

K
+

K−1
∑
h=0

r−2
∑
�=1

�≡m2 a1 h−1 (mod K)

�h
K
−

K−1
∑

h=st+1

r−2
∑
�=1

�≡m2 a1 h−1 (mod K)

�

= −m−1
2 m1

r(r − 2)(r − 1)
3K

+
r−2
∑
�=1

�
r(1 − k�)

K
+

K−1
∑
h=0

r−2
∑
�=1

�≡m2 a1 h−1 (mod K)

�h
K
−

K−1
∑

h=st+1

r−2
∑
�=1

�≡m2 a1 h−1 (mod K)

�.

Adding up the 1-step, 2-step, and 3-step admissible paths, we arrive at the above
adjacency matrix; here, we also make use of [13, Lemma 7.6(i) and (ii)]. ∎

Lemma 6.6 Let r ∈ N, r ≥ 2, and let m = (m0 , m1 , m2 , m3) be such that gcd(m0 , r) =
K and gcd(m i , r) = 1, i ≠ 0. Then we may for each 0 ≤ l < r − 1 find k� , ∈ Z such that

AL7
q(r;m) =

⎛
⎝

1 r
K y0 x0

0 1 r r(r+1)
2

0 0 1 r
0 0 0 1

⎞
⎠

,

where

y0 = r(r − K)
2K

+ r
K

and

x0 ≡ −m−1
2 m1

r(r − 2)(r − 1)
3K

+
r−2
∑
�=0

�
r(1 − k�)

K

−
K−1
∑
h=0

r−2
∑
�=1

�≡a1 h (mod K)

a1h + Kqh

K
(r − m−1

2 m1(� + 1) − rk�) (mod r),

where a1 is defined in Notation 6.2.

Proof Notice that we only need to calculate the number of 3-step admissible paths
from (v0 , t) to (v3 , 0), where t = 0, but for the sake of completeness, we will count the
remaining paths as well.

For each 0 ≤ t ≤ K − 1 and 1 ≤ � ≤ r − 1, there is a path from (v0 , t) to (v1 , m1�) for
which the latter is the first vertex in the first level, which is reached by the path, if and
only if m1� ≡ t (mod K). Consequently, the total number of paths from (v0 , t) to a
general (v1 , m1�) not passing through (v1 , 0) is the same as the number of 1 ≤ l̃ ≤ �
for which m1 �̃ ≡ t (mod K). Let q� be the integer such that 0 < a1h + q�K ≤ K, then
ct ∶= a1 t + qt K is the least value, �, for which there is an edge from the cycle starting at
(v0 , t) to (v1 , m1�). The number of paths from (v0 , t) to (v1 , m1�) not passing through
(v1 , 0) is then given as follows:

l − (a1h + Kqh)
K
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if �m1 ≡ h (mod K) for 0 ≤ h < ct and

l − (a1h + Kqh)
K

+ 1

if �m1 ≡ h (mod K) for ct ≤ h < K. There is precisely one edge from (v1 , �m1)
to (v2 , m1(� + 1)). We can express (v2 , l(m1 + 1)) as (v2 , sm2), i.e., m1(� + 1) ≡
sm2 (mod r). Let k� be such that 0 < m−1

2 m1(� + 1) + rk� < K. Then the number of
paths from (v1 , �m1) to (v3 , 0) is r − (m−1

2 m1(� + 1) + rk�). The total number of 3-
step admissible paths becomes

c t−1
∑
h=0

r−2
∑
�=1

�≡a1 h (mod K)

l − (a1h + Kqh)
K

(r − m−1
2 m1(� + 1) − rk�)

+
K−1
∑
h=c t

r−2
∑
�=1

�≡a1 h (mod K)

(� − (a1h + Kqh)
K

+ 1)(r − m−1
2 m1(� + 1) − rk�)

= −m−1
2 m1

r(r − 2)(r − 1)
3K

+
r−2
∑
�=0

�
r(1 − k�)

K

−
K−1
∑
h=0

r−2
∑
�=1

�≡a1 h (mod K)

a1h + Kqh

K
(r − m−1

2 m1(� + 1) − rk�) +
K−1
∑
h=c t

r−2
∑
�=1

�≡a1 h (mod K)

(r − m−1
2 m1(� + 1) − rk�) .

For t = 0, we have ct = K; hence, the number of 3-step admissible paths is

−m−1
2 m1

r(r − 2)(r − 1)
3K

+
r−2
∑
�=0

�
r(1 − k�)

K
−

K−1
∑
h=0

r−2
∑
�=1

�≡a1 h (mod K)

a1h + Kqh

K
(r −m−1

2 m1(� + 1) − rk�) .

∎

Lemma 6.7 Let r ∈ N, r ≥ 2, and let m = (m0 , m1 , m2 , m3) be such that gcd(m2 , r) =
K and gcd(m i , r) = 1, i ≠ 2. Then

AL7
q(r;m) =

⎛
⎜⎜⎜⎜
⎝

1 r r(r+n)
2K

r(r−n)
2K +a1

r
K . . . r(r−K)

2K +a1(K−1) r
K x

0 1 r
K

r
K . . . r

K
r(r+K)

2K
0 0 r

K
⋮ ⋮ IK ⋮
0 0 r

K
0 0 0 0 ⋅⋅⋅ 0 1

⎞
⎟⎟⎟⎟
⎠

,

where

x ≡ −m−1
1 m2

r(2r − K)(r − K)
6K2 + m−1

1
r(r − K)(K − 1)

4K
+ r(r − 1)

2
(mod r)

and a1 is defined in Notation 6.2.

Proof We will now calculate the number of 3-step admissible paths from (v0 , 0) to
(v0 , 3). First, we have m−1

1 m2� − 1 + tm−1
1 + rst paths from (v0 , 0) to each (v1 , �m2 −

m1 + t) for t = 0, . . . , K − 1, where s� is such that 0 < m−1
1 m2� − 1 + tm−1

1 + rs� < r. The
vertex (v1 , �m2 − m1 + t) is connected to (v2 , �m2 + t) by a single edge, and there are
r
K − � paths from (v2 , �m2 + t) to (v3 , 0). The total number of 3-step admissible paths

https://doi.org/10.4153/S0008414X23000044 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000044


On the classification and description of quantum lens spaces as graph algebras 273

becomes
K−1
∑
t=0

r−K
K

∑
�=1

(m−1
1 m2� − 1 + tm−1

1 + rs�)(
r
K

− �)

≡ K
r−K

K

∑
�=1

−� (m−1
1 m2� − 1) +

K−1
∑
t=0

r−K
K

∑
�=1

tm−1
1 ( r

K
− �) (mod r)

≡ −m−1
1 m2

r(2r − K)(r − K)
6K2 + r(r − K)

2K
+

K−1
∑
t=0

tm−1
1

r(r − K)
2K2 (mod r)

≡ −m−1
1 m2

r(2r − K)(r − K)
6K2 + r(r − K)

2K
+ m−1

1
r(r − K)(K − 1)

4K
(mod r).

∎

We state the final case without proof, as the proof is similar to that of Lemma 6.7.

Lemma 6.8 Let r ∈ N, r ≥ 2, and let m = (m0 , m1 , m2 , m3) be such that gcd(m1 , r) =
K and gcd(m i , r) = 1, i ≠ 1. Then

AL7
q(r;m) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 r
K

r
K . . . r

K
r(r+K)

2K x
0 r

K
r(r−n)

2K + r
K

0 r
K

r(r−K)
2K − r

K a2+ r
K

0 IK ⋮ ⋮
⋮ r

K
r(r−n)

2K − r
K a2(K−1)+ r

K
0 0 0 ... 0 1 r
0 0 0 0 ⋅⋅⋅ 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

where

x ≡ −m−1
2 m1

r(2r − K)(r − K)
6K2 + m−1

2
r(r − K)(K − 1)

4K
+ r(r − 1)

2
(mod r)

and a2 is defined in Notation 6.2.

Remark 6.9 It follows directly from the adjacency matrices and Lemma 6.1 that
r is an invariant for n > 1 whenever two quantum lens spaces share the same ideal
structure and at most one of the weights is not coprime to the order of the acting group.
To see this, note that it follows from a simple computation that SLP-equivalence
preserves the elements directly above the main diagonal. Let now C(L2n+1

q (r; m))
and C(L2n+1

q (r′; n)) be two isomorphic quantum lens spaces for which only a single
weight, say m i and n i , i ∈ {0, . . . , n} is coprime to the order of the acting group. If
i > 0, the ideal structure guarantees that gcd(m i , r) = gcd(n i , r′), and by the structure
of the adjacency matrices, we obtain directly that r = r′. If i = 0, then we obtain from
the adjacency matrix that r

gcd(m0 ,r) =
r′

gcd(n0 ,r′) and r = r′. From which it follows that
gcd(m0 , r) = gcd(n0 , r′). Hence, r and the greatest common divisor are invariant
whenever n > 1. If n = 1 and i = 1, we obtain that r is an invariant by the same argument
as for n > 1 and i ≠ 0. If n = 1 and i = 0, then something else happens. Let gcd(m0 , r) =
K in this case

ALr;(m0 ,m1)
3

= (1 r
K

0 1 ) .

https://doi.org/10.4153/S0008414X23000044 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000044


274 T. Gotfredsen and S. E. Zegers

We can then obtain the same C∗-algebra for different values of the order of the acting
group and the greatest common divisor. For example, we have that AL4,(2,1)

3
= AL2,(1,1)

3

and hence C∗(L(2,(1,1))
3 ) = C∗(L(4,(2,1))

3 ).

7 The invariant

We are now ready to prove Theorem 5.3.

Proof of Theorem 5.3 (0). Assume that the quantum lens spaces coming from the
weights m = (m0 , m1 , m2 , m3) and n = (n0 , n1 , n2 , n3) are isomorphic. We denote by
x0 , y0 , a1 and x′0 , y′0 , a′1 the elements coming from Lemma 6.6 corresponding to the
system of weights m and n, respectively. See Notation 6.2 for the definition of a1.

Consider the following expression:

Kx0 ≡ −m−1
2 m1

r(r − 1)(r − 2)
3

+
K−1
∑
h=0

r−2
∑
�=1

�≡a1 h (mod K)

(a1h + Kqh) (m−1
2 m1(� + 1)) (mod r).

Let bh be such that 1 ≤ a1h + bh K ≤ K. Then

K−1
∑
h=0

r−2
∑
�=1

�≡a1 h (mod K)

a1 h + Kqh (m−1
2 m1(� + 1)) ≡

K−1
∑
h=0
(a1 h + Kqh)m−1

2 m1

r−K
K

∑
k=0
(a1 h + bh K + kK + 1) (mod r),

remarking that the corresponding terms for � = 0 and � = r − 1 vanish modulo r. We
have

K−1
∑
h=0
(a1 h + Kqh)m−1

2 m1

r−K
K

∑
k=0
(a1 h + bh K + kK + 1)

=
K−1
∑
h=0
(a1 h + Kqh)m−1

2 m1 (
r
K
(a1 h + bh K + 1) + r(r − K)

2K
)

≡
K−1
∑
h=0
(a1 h + Kqh)m−1

2 m1 (
r
K
(a1 h + 1) + r(r − K)

2K
) (mod r)

≡
K−1
∑
h=0

a1 hm−1
2 m1 (

r
K
(a1 h + 1) + r(r − K)

2K
) +

K−1
∑
h=0

qh m−1
2 m1 (

r(r − K)
2

)(mod r)

=a1 m−1
2 m1

r(K − 1)
2

(1 + (r − K)
2

) + a2
1 m−1

2 m1
r(K + 1)(2K + 1)

6
+

K−1
∑
h=0

qh m−1
2 m1 (

r(r − K)
2

)(mod r).

Notice that if the parity of K and r is the same, r − K is even and hence the leftmost and
rightmost terms will vanish modulo r when we subtract the corresponding terms of
Kx′0. (For the first term, note that then either K − 1 or (a1m−1

2 m1 − a′1n−1
2 n1) is even).

Additionally, it follows from a computation that

a2
1 m−1

2 m1
r(K + 1)(2K + 1)

6
≡ a1m−1

2
r(K + 1)(2K + 1)

6
(mod r).

So, if the parity of r and K is the same, we have

K(x′0 − x0) ≡ (m−1
2 m1 − n−1

2 n1)
r(r − 1)(r − 2)

3
+ (a′1 n−1

2 − a1 m−1
2 )

r(K + 1)(2K + 1)
6

(mod r).
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We now consider the case where r is even and K is odd. We first let

J0 ∶=
K−1
∑
h=0

qh m−1
2 m1 (

r − K
K

) ,

so that we may rewrite the last term as J0K r
2 and note that J0 is an integer since K

divides r − K. Consider next the first term. Since K − 1 is even, we have

(a1 m−1
2 m1 − a′1 n−1

2 n1)
r(K − 1)

2
(1 + (r − K)

2
) ≡ (a1 m−1

2 m1 − a′1 n−1
2 n1)

r(K − 1)
2

(r − K)
2

(mod r),

which we conclude has the form KJ1
r
2 for an integer, using a similar argument as

before J1. It follows that K(x′0 − x0) is equivalent to

(m−1
2 m1 − n−1

2 n1)
r(r − 1)(r − 2)

3
+ (a′1n−1

2 − a1m−1
2 ) r(K + 1)(2K + 1)

6
+ KJ r

2
(7.1)

modulo r where J = J0 − J′0 + J1. Note that from the analysis above, we can conclude
that KJ r

2 ≡ 0 (mod r) if the parity of r and K is the same.
By an application of SLP-equivalence (Corollary 4.1), we have that there exist

integers v1 , v2 , u such that

x′0 ≡ r
K

v1 + v2 y0 + x0 + u r(r + 1)
2

(mod r).

Hence,

K(x′0 − x0) ≡ v2
r(r − K)

2
+ u r(r + 1)K

2
(mod r).

If r and K have the same parity, then the right-hand side is congruent to zero modulo
r and KJ r

2 is congruent to zero modulo r.
Assume now that r and K have opposite parity (in particular, K is odd and r is

even). We then obtain

(m−1
2 m1 − n−1

2 n1)
r(r − 1)(r − 2)

3
+ (a′1n−1

2 − a1m−1
2 ) r(K + 1)(2K + 1)

6
= M r

2
,

where M = v2(r − K) + u(r + 1)K − KJ. If 3 ∤ r, then it is easy to see (remarking that
the left-hand side is then an integer multiple of r) that M is even, recalling that in this
case, either 3 ∣ (K + 1) or 3 ∣ (2K + 1). If 3 ∣ r, then the expression may be rewritten as

N r
3
= M r

2
for some integer N, and consequently

M = 2 N
3

from which it follows that M is even, and hence

(m−1
2 m1 − n−1

2 n1)
r(r − 1)(r − 2)

3
+ (a′1n−1

2 − a1m−1
2 ) r(K + 1)(2K + 1)

6
≡0 (mod r).

(7.2)
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Consider the term

(a′1n−1
2 − a1m−1

2 ) r(K + 1)(2K + 1)
6

.

It follows from an easy computation that if 3 ∤ K, then this is congruent to zero
modulo r, and consequently the invariant coincides with the analogous invariant for
the other three cases, and we may make the same conclusion as in [13, Corollary 7.9]. If
3 divides both r and K, then a1 ≡ m1 (mod 3), m−1

2 ≡ m2 (mod 3), and so on, whereas
neither of (K + 1), (2K + 1), (r − 1), or (r − 2) is divisible by 3. So we in this case have

(m−1
2 m1 − n−1

2 n1)
r(r − 1)(r − 2)

3
+ (a′1n−1

2 − a1m−1
2 ) r(K + 1)(2K + 1)

6
≡ 0 (mod r)

if and only if

2 (m−1
2 m1 − n−1

2 n1) (r − 1)(r − 2) + (a′1n−1
2 − a1m−1

2 ) (K + 1)(2K + 1) ≡ 0 (mod 3).

To see the “if ” part of the statement, one should notice that the left-hand side of the
second equation is always even and a multiple of 3 under the given assumptions and
hence a multiple of 6. Now, since (r − 1)(r − 2) ≡ 2 (mod 3) and (K + 1)(2K + 1) ≡ 1
(mod 3) and 2 is self-inverse modulo 3, the above is congruent to

(m−1
2 m1 − n−1

2 n1) + (a′1n−1
2 − a1m−1

2 ) ≡ 0 (mod 3),

which is

m−1
2 (m1 − a1) + n−1

2 (a′1 − n1) ≡ 0 (mod 3).

Furthermore, since a′1 ≡ n1 (mod 3) and a1 ≡ m1 (mod 3), this is true independent
of the choice of weights, and hence this case is trivial.

For the reverse implication, assume now that (7.2) holds. By appealing to (7.1), there
is an integer s such that

K(x′0 − x0) = sr + KJ r
2

⇐⇒ x′0 − x0 = s r
K

+ J r
2

.

We will make use of [13, Proposition 2.14]. Hence, we need to show that we can
transform

⎛
⎝

0 r
K y0 x0

0 0 r r(r+1)
2

0 0 0 r
0 0 0 0

⎞
⎠

into

⎛
⎝

0 r
K y0 x′0

0 0 r r(r+1)
2

0 0 0 r
0 0 0 0

⎞
⎠

by adding columns (rows) of either matrix to subsequent (prior) columns (rows) of
the same matrix an integral number of times. This is done by the following operations:
First, we add the second row to the first row J times to obtain

x0 + J r(r + 1)
2

= x0 + J r
2
+ J r2

2
.
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We can then transform this into x′0 by adding the second column to the fourth s − JK r
2

times (recall that J is even if r and K are both odd by the first part of the proof).
(3). Assume that the quantum lens spaces coming from the weights

m = (m0 , m1 , m2 , m3) and n = (n0 , n1 , n2 , n3) are isomorphic. We denote by
x0 , . . . , xK−1 , y0 , . . . , yK−1 , a1 , a2, and x′0 , . . . , x′K−1, y′0 , . . . , y′K−1 , a′1 , a′2 the elements
x i and y i coming from Lemma 6.6 corresponding to m and n, respectively. See
Notation 6.2 for the definition of a i . Then, by Corollary 4.1, we obtain the following
equations:

y′j ≡ y j + u23
r
K

+ rv3, j+4 , x′j ≡ x j + u12 y j + v3, j+4
r(r + 1)

2
+ u13

r
K

(mod r),(7.3)

for j = 0, 1, . . . , K − 1, where u�m , v�m ∈ Z are the entries of the matrices U and V from
the SLP-equivalence.

Note that since y0 = y′0, K divides u23. Then, by (7.3),

a′2
r
K

≡ a2
r
K

+ u23
r
K

(mod r),

and hence there exists a k ∈ Z such that

(a′2 − a2)
r
K

= u23
r
K

+ kr.

Then a′2−a2
K ∈ Z and a′2 = a2, which implies that m2 ≡ n2 (mod K).

We now consider the sum of all the x′i s. We have

x0 + x1 + ⋅⋅⋅ + xK−1 ≡ −m−1
2 m1

r(r − 2)(r − 1)
3

+ n
K−1
∑
h=0

r−2
∑
�=1

�≡m2 a1 h−1 (mod K)

�h
K

−
K−1
∑
t=1

K−1
∑

h=s t+1

r−2
∑
�=1

�≡m2 a1 t−1 (mod K)

� +
K−1
∑
t=1

r
K
(a1 t + a2 t)) (mod r)

≡ −m−1
2 m1

r(r − 2)(r − 1)
3

+
K−1
∑
h=0

r−2
∑
�=1

�≡m2 a1 h−1 (mod K)

�h

−
K−1
∑
t=1

K−1
∑

h=s t+1

r−2
∑
�=1

�≡m2 a1 t−1 (mod K)

� + r(K − 1)
2

(a1 + a2) (mod r).

The last term is always congruent to 0 modulo r; indeed, if K is odd, we are done, and
if K is even, then a1 + a2 is even.

Since each st corresponds uniquely to a number between 0 and K − 1, we may
reiterate the penultimate sum accordingly:

K−1
∑
t=1

K−1
∑

h=s t+1

r−2
∑
�=1

�≡m2 a1 h−1 (mod K)

� =
K−1
∑
t=1

K−1
∑
h=t

r−2
∑
�=1

�≡m2 a1 h−1 (mod K)

� =
K−1
∑
h=1

r−2
∑
�=1

�≡m2 a1 h−1 (mod K)

h�.
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Hence,

x0 + x1 + ⋅⋅⋅ + xK−1 ≡ −m−1
2 m1

r(r − 2)(r − 1)
3

(mod r).

Using (7.3) and the fact that (a2 − 1) r(K−1)
2 ≡ 0 (mod r), we have

(x′0 + x′1 + ⋅⋅⋅ + x′K−1) − (x0 + x1 + ⋅⋅⋅ + xK−1) ≡ u12(y0 + y1 + ⋅⋅⋅ + yK−1)

+ Ku13
r
K
+ (v34 + v35 + ⋅⋅⋅ + v3,K+3)

r(r + 1)
2

(mod r)

≡ u12 (
r(r + K)

2K
+ (K − 1) r(r − K)

2K
+ a2

r
K

K−1
∑
t=1

t) + (v34 + v35 + ⋅⋅⋅ + v3,K+3)
r(r + 1)

2
(mod r)

≡ u12
r(r + 1)

2
+ (v34 + v35 + ⋅⋅⋅ + v3,K+3)

r(r + 1)
2

(mod r)

≡ (v34 + v35 + ⋅⋅⋅ + v3,K+3)
r(r + 1)

2
(mod r) ≡ 0 (mod r).

The last congruence follows by [13, Proof of Theorem 7.8]. Hence,

(m−1
2 m1 − n−1

2 n1)
r(r − 1)(r − 2)

3
≡ 0 (mod r).

It remains to be shown that m1 ≡ n1 (mod K), i.e., a1 = a′1. For h = st + 1, . . . , K − 1, let
ph ∈ Z be such that 0 < m2a1h − 1 + K ph < K. First, we need to expand the following
sum:

K−1
∑

h=s t+1

r−2
∑
�=1

�≡m2 a1 h−1 (mod K)

� =
K−1
∑

h=s t+1

r−K
K

∑
k=0
(m2 a1 h − 1 + K ph + Kk) =

K−1
∑

h=s t+1
( r

K
(m2 a1 h − 1) + r ph +

r(r − K)
2K

)

≡ r
K

m2 a1 (
K(K − 1)

2
+ a2 t(1 − a2 t)

2
) + r

K
(a2 t − K) + (K − a2 t) r(r − K)

2K
(mod r).

We will now find an expression for (x′0 − x′t) − (x0 − xt) and then consider the
expressions for t = 1 and t = K − 1. From the above, we have

(x′0 − x′t) − (x0 − xt) ≡
K−1
∑

h=s t+1

r−2
∑
�=1

�≡m2 a′1 h−1 (mod K)

� −
K−1
∑

h=s t+1

r−2
∑
�=1

�≡m2 a1 h−1 (mod K)

� + r
K
(a1 − a′1)t (mod r)

≡ r
K
(K(K − 1)

2
− a2 t(a2 t − 1)

2
)m2(a′1 − a1) +

r
K
(a1 − a′1)t (mod r).

On the other hand, by (7.3), we have

(x′0 − x′t) − (x0 − xt) ≡ u12(y0 − yt) + (v34 − v3,t+4)
r(r + 1)

2
(mod r)

≡ −u12a2 t r
K

(mod r),

which follows since v34 = − u23
K . Indeed, we have y′0 = y0 and

r(r − K)
2K

+ a′2 t r
K

= y′t = rv3,t+4 + yt + u23
r
K

= rv3,t+4 +
r(r − K)

2K
+ a2 t r

K
+ u23

r
K

;

hence, rv3,t+4 + u23
r
K = (a′2 − a2)t r

K = 0 and v3,t+4 = − u23
K .
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Combining the two expressions for (x′0 − x′t) − (x0 − xt), we get

r
K
(K(K − 1)

2
− a2 t(a2 t − 1)

2
)m2(a′1 − a1) +

r
K
(a1 − a′1)t + u12a2 t r

K
≡ 0 (mod r).

Note that

r
K
(K(K − 1)

2
)m2(a1 − a′1) = r (K − 1

2
)m2(a1 − a′1) ≡ 0 mod r,

since if K is even, then 2 divides a1 − a′1, and if K is odd, then 2 divides K − 1. Thus,
we have

( r
K

a2 t(a2 t − 1)
2

m2 + t)(a1 − a′1) + u12a2 t r
K

≡ 0 (mod r).(7.4)

By taking the sum of the expressions in (7.4) where we choose t = 1 and t = K − 1, we
arrive at

r
K

a2
2m2(a1 − a′1) ≡ 0 (mod r).

Then r
K a2

2m2(a1 − a′1) = rk for some k ∈ Z; hence, K divides a2
2m2(a1 − a′1). Since a2

and m2 are both relatively prime to K, we conclude that a1 = a′1.
For the other direction, we will again make use of [13, Proposition 2.14] a number

of times. Assume that m i ≡ n i (mod K), i = 1, 2, and (m−1
2 m1 − n−1

2 n1) r(r−1)(r−2)
3

(mod r) ≡ 0 (mod r), then the entries, yt , in the second row of the adjacency
matrices are identical, and it suffices to show for each t that

x′t − xt ≡ (m−1
2 m1 − n−1

2 n1)
r(r − 1)(r − 2)

3K
+

r−2
∑
�=1

�
r
K
(k′� − k�) (mod r)

is an integer multiple of r
K . For the second term, this is obvious. Additionally, it is

obvious that this is also true for the first term, whenever r is not a multiple of 3. If 3∣r,
then one finds that 3∣m−1

2 m1 − n−1
2 n1, and the claim follows.

The adjacency matrices of each set of weights will then be identical after adding the
third row to the first, and the first column to the tth column in each an appropriate
number of times.

(2). Proceeding as in part (3), assume that the quantum lens spaces coming from
the weights m = (m0 , m1 , m2 , m3) and n = (n0 , n1 , n2 , n3) are isomorphic. We denote
x , a1 and x′ , a′1 the elements coming from the adjacency matrix as written in Lemma
6.8 corresponding to m and n, respectively. See Notation 6.2 for the definition of a1.
In a similar manner, it follows from Corollary 4.1 and a computation that

a′1r
K

≡ a1r
K

(mod r).

It follows that m1 ≡ n1 (mod K). Moreover, we obtain from the adjacency matrices
that

x′ − x ≡ (n−1
2 n1 −m−1

2 m1)
r(2r − K)(r − K)

6K2 + (n−1
1 −m−1

1 )
r(r − K)(K − 1)

4K
(mod r),
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and using [13, Theorem 7.1], we obtain k0 , k1 ∈ Z such that

x′ − x ≡ r(r + K)
2K

k0 +
r
K

k1 (mod r).

Consequently,

(n−1
2 n1 −m−1

2 m1)
r(2r − K)(r − K)

6K2 + (n−1
1 −m−1

1 )
r(r − K)(K − 1)

4K
≡ r(r + K)

2K
k0 +

r
K

k1 (mod r).

Multiplying both sides by 2K yields

(n−1
2 n1 − m−1

2 m1)
r(2r − K)(r − K)

3K
+ (n−1

1 − m−1
1 ) r(r − K)(K − 1)

2
≡ 0 (mod r).

Now, it is easy to check that the second term is always congruent to zero (mod r), so
we conclude that

(n−1
2 n1 − m−1

2 m1)
r(2r − K)(r − K)

3K
≡ 0 (mod r).

Conversely, assuming that

(n−1
2 n1 − m−1

2 m1)
r(2r − K)(r − K)

3K
= t ⋅ r,(7.5)

we may argue, as in the previous part, by showing that x − x′ is an integer multiple of
r
K . It follows by a computation that

x − x′ = r
K
(2t + (m−1

1 − n−1
1 )(r − K)(K − 1)

4
) .

Since (m−1
1 − n−1

1 )(r − K)(K − 1) is necessarily divisible by 4 (to see this, one can
consider the different parities of K and r), it suffices to show that t is even, which
one can conclude by considering (7.5).

It remains to be shown that (n−1
2 n1 − m−1

2 m1) r(2r−K)(r−K)
3K ≡ 0 (mod r) if and only

if (n−1
2 n1 − m−1

2 m1) r(r−1)(r−2)
3 ≡ 0 (mod r). It is routine to show that if 3 does not

divide r, then 3 divides either 2r − K or r − K, and the claim follows immediately. If
(n−1

2 n1 − m−1
2 m1) r(r−1)(r−2)

3 ≡ 0 (mod r) and 3∣r, then 3∣ (n−1
2 n1 − m−1

2 m1) and one
direction follows. The converse follows, remarking that 3∣ (n−1

2 n1 − m−1
2 m1) is always

true if (n−1
2 n1 − m−1

2 m1) r(2r−K)(r−K)
3K ≡ 0 (mod r).

The proof of (1) is identical to that of (2), remarking that the adjacency matrix
corresponding to the system of weights m ∶= (m0 , m1 , m2 , m3) with gcd(m1 , r) = K
and gcd(m i , r) = 1 if i ≠ 2 is the antitranspose of the adjacency matrix corresponding
to the system m′ ∶= (m0 , m2 , m1 , m3). By [17, Definition 1.7], the adjacency matrices
are related by the identity

AL7
q(r;m) = JAT

L7
q(r;m′)J ,

where J is the involutory matrix whose entries are 1 on the second diagonal and 0
elsewhere. ∎
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Remark 7.1 In this paper, we have only dealt with the case where a single weight is
coprime to the order of the acting group, r. There is, however, no clear reason why
a similar result should be unobtainable in a more general setting. In particular, if
we consider a list of weights (m0 , m1 , m2 , m3), then the methods for computing the
adjacency matrices of the corresponding graph could very likely be identical or similar,
albeit more tedious, to the ones used above if at least one of m1 or m2 is coprime to r.
If both weights are coprime, it is likely that an entirely different approach to counting
is necessary since all methods employed so far have required one of them to be a unit
of Zr .
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[8] T. Brzeziński and W. Szymański, The C*-algebras of quantum lens and weighted projective
spaces. J. Noncommut. Geom. 12(2018), no. 1, 195–215. https://doi.org/10.4171/JNCG/274

[9] T. Crisp, Corners of graph algebras. J. Operator Theory 60(2008), 253–271.
https://doi.org/10.1090/s0002-9947-2015-06283-7

[10] F. D’Andrea and G. Landi, Quantum weighted projective and lens spaces. Comm. Math. Phys.
340(2015), no. 1, 325–353. https://doi.org/10.1007/s00220-015-2450-5
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[20] J. H. Hong and W. Szymański, Quantum lens spaces and graph algebras. Pacific J. Math.
211(2003), 249–263. https://doi.org/10.2140/pjm.2003.211.249

[21] P. L. Jensen, F. R. Klausen, and P. M. R. Rasmussen, Combinatorial classification of quantum
lens spaces. Pacific J. Math. 297(2018), no. 2, 339–365. https://doi.org/10.2140/pjm.2018.297.339

[22] A. Kumjian, D. Pask, and I. Raeburn, Cuntz–Krieger algebras of directed graphs. Pacific J. Math.
184(1998), 161–174. https://doi.org/10.2140/pjm.1998.184.161

[23] S. E. Mikkelsen, Structure and symmetries in C*-algebras. Ph.D. thesis, University of Southerns
Denmark, Faculty of Science, 2021. https://doi.org/10.21996/m0xy-fp74. See also
https://sophiemath.dk/research.

[24] I. Raeburn, Graph algebras, CBMS Regional Conference Series in Mathematics, 103, American
Mathematical Society, Providence, RI, 2005, Published for the Conference Board of the
Mathematical Sciences, Washington, DC. https://doi.org/10.1090/cbms/103

[25] G. Restorff, Classification of Cuntz–Krieger algebras up to stable isomorphism. J. Reine Angew.
Math. 598(2006), 185–210. https://doi.org/10.1515/CRELLE.2006.074

[26] A. P. W. Sørensen, Geometric classification of simple graph algebras. Ergodic Theory Dynam.
Systems 33(2013), 1199–1220. https://doi.org/10.1017/S0143385712000260
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