SOME ORBITAL INTEGRALS AND A TEGHNIQUE FOR COUNTING REPRESENTATIONS OF $G L_{2}(F)$

T. CALLAHAN

Introduction. Let F be a local field of characteristic zero, with q elements in its residue field, ring of integers \mathscr{O}_{F}, uniformizer ω_{F} and maximal ideal \mathscr{G}_{F}. Let $G_{F}=G L_{2}(F)$. We fix Haar measures $d g$ and $d z$ on G_{F} and Z_{F}, the centre of G_{F}, so that

$$
\operatorname{meas}(K)=\text { meas } Z\left(\mathscr{O}_{F}\right)=1
$$

where $K=G L_{2}\left(\mathscr{O}_{F}\right)$ is a maximal compact subgroup of G_{F}. If T is a torus in G_{F} we take $d t$ to be the Haar measure on T such that

$$
\operatorname{meas}\left(T^{M}\right)=1
$$

where T^{M} denotes the maximal compact subgroup of T.
For any nonnegative integer c we define

$$
K_{c}=\left\{\left.\left[\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right] \in K \right\rvert\, \gamma \in \mathscr{G} c\right\}
$$

Let ψ_{c} denote the characteristic function of K_{c}. In $\S 1$ we compute the following orbital integrals:

$$
\Psi_{c}(T, t)=\int_{T \backslash G} \psi_{c}\left(g^{-1} t g\right) d g .
$$

In [5, §3], Langlands computes these integrals for $c=0$. He makes use of the Bruhat-Tits building of G_{F}, and we use the same tools. Perhaps the details contained in §1 will be helpful to those studying [5].

Let $n(c, F)$ denote the number of irreducible, unitary, admissible representations, π, of G_{F} such that
i) π is special or supercuspidal,
ii) $c(\pi)=c$,
iii) $\epsilon_{\pi}=1$,
where $c(\pi)$ is the conductor of π (see [1]), and ϵ_{π} is the central character of π. In Section 2 we describe a method for computing $n(c, F)$ and we undertake explicit computations when c is odd.

I would like to thank R. Langlands and R. Kottwitz for their assistance with this work.

[^0]1. The orbital integrals. There are several conjugacy classes of tori in G_{F}. A split torus is one which is conjugate to

$$
A=\left\{\left.\left[\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right] \right\rvert\, \alpha, \beta \in F^{x}\right\} .
$$

The other conjugacy classes are in a one-to-one correspondence with quadratic extension fields of F. If T is a nonsplit torus in G_{F}, then the set of eigenvalues of elements of T is the multiplicative subgroup of a quadratic extension of F. Two tori in G_{F} are conjugate if and only if they are isomorphic (see $[3, \S 7]$.

Lemma 1. Let H be an open subgroup of G_{F} and λ a function on G_{F} such that

$$
\lambda\left(h^{-1} g h\right)=\lambda(g)
$$

for all $h \in H$. Then, for all $a \in A$,

$$
\int_{A \backslash G_{F}} \lambda\left(g^{-1} a g\right) d g=\text { meas }(H) \int_{C \backslash G_{F} / Z H} \lambda\left(g^{-1} a g\right) d g
$$

where

$$
C=\left\{\left.\left[\begin{array}{cc}
\omega_{F}{ }^{n} & 0 \\
0 & 1
\end{array}\right] \right\rvert\, n \in \mathbf{Z}\right\}
$$

If T is any nonsplit torus in G_{F} and $t \in T$, then

$$
\int_{T \backslash G_{F}} \lambda\left(g^{-1} t g\right) d g=\left[T: T^{M} Z\right]^{-1} \text { meas }(H) \int_{G_{F} / H Z} \lambda\left(g^{-1} h g\right) d g .
$$

In particular, these formulae hold for H equal to K_{c} and λ equal to ψ_{c}.
Proof. Let T be a nonsplit torus and $t \in T$.

$$
\begin{aligned}
& \int_{T \backslash G_{F}} \lambda\left(g^{-1} t g\right) d g=\int_{T \backslash G_{F} / H} \lambda\left(g^{-1} t g\right) \frac{\text { meas }\left(g H g^{-1}\right)}{\text { meas }\left(T \cap g H g^{-1}\right)} d g \\
& \quad=\frac{\text { meas }(H)}{\operatorname{meas}\left(T^{M}\right)} \int_{T \backslash G_{F} / H} \lambda\left(g^{-1} t g\right) \frac{\text { meas }\left(T^{M}\right)}{\text { meas }\left(\overline{\left.T \cap g H g^{-1}\right)} d g\right.} d \\
& \quad=\text { meas }(H)\left[T: T^{M} Z\right]^{-1} \int_{G_{F} / H Z} \lambda\left(g^{-1} t g\right) d g .
\end{aligned}
$$

In the split case we proceed in the same way but use $A=C \times A^{M} Z$.
Let V be some 2 -dimensional vector space over F and let X_{F} be the set of classes of \mathscr{O}_{F}-lattices in V. We say L_{1} and L_{2} are in the same class if L_{1} is an F-multiple of L_{2}. Consider X_{F} as the set of points of a graph. We join two points M_{1} and M_{2} by a line of unit length if there are lattices $L_{1} \in M_{1}$ and $L_{2} \in M_{2}$ such that L_{1} has index q as a subgroup of $L_{2} . X_{F}$ is called the Bruhat-Tits building of G_{F}. Bruhat and Tits have defined the building of much more general groups, but we need only this simple case (see [6]). If $m \in X_{F}$, there
are exactly $q+1$ points joined to m by a line of unit length. It is not hard to verify that any two points in X_{F} are joined by some path and that there is a unique path of minimal length. This makes the building of G_{F} particularly easy to work with, but it does not hold true in general; in fact, even for $G L_{3}$ the situation is much more complicated (see [4]). If $m_{1}, m_{2} \in X_{F}$, we define $\operatorname{dist}_{X_{F}}\left(m_{1}, m_{2}\right)$ in the obvious way.

We identify G_{F} with $G L(V)$. Thus G_{F} (and G_{F} / Z) acts on X_{F}. There is a unique point $p_{0} \in X_{F}$ which is fixed by K. Let C be as in Lemma 1. Then the line \mathfrak{U} formed by the orbit of p_{0} under the action of C is called the standard apartment of X_{F} with respect to A. The connection with A is that \mathfrak{A} is the set of points of X_{F} fixed by A^{M}. In fact, if T is any split torus on G_{F}, then the standard apartment of X_{F} with respect to T is the line of points fixed by T^{M}. For $c \in \mathbf{Z}$ we let

$$
p_{c}=\left[\begin{array}{cc}
\omega_{F}{ }^{c} & 0 \\
0 & 1
\end{array}\right] p_{0}
$$

If $m_{1}, m_{2} \in X_{F}$, we let (m_{1}, m_{2}) denote the minimal path from m_{1} to m_{2}; we distinguish between $\left(m_{1}, m_{2}\right)$ and (m_{2}, m_{1}). We say g fixes $\left(m_{1}, m_{2}\right)$ if g fixes each point of (m_{1}, m_{2}) or, what is the same thing, if g fixes m_{1} and m_{2}.

Lemma 2. The subgroup of G_{F} which fixes $\left(p_{0}, p_{-c}\right)$ is equal to $K_{c} Z$.
Proof. The group which fixes p_{0} is $K Z$, and so the group which fixes p_{-c} is

$$
\left[\begin{array}{cc}
\bar{\omega}^{-c} & 0 \\
0 & 1
\end{array}\right] K Z\left[\begin{array}{cc}
\bar{\omega}^{c} & 0 \\
0 & 1
\end{array}\right]=\left\{\left.\left[\begin{array}{cc}
\alpha & \beta \bar{\omega}^{-n} \\
\gamma \bar{\omega}^{-n} & \delta
\end{array}\right] \right\rvert\,\left[\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right] \in K\right\} \cdot Z
$$

The intersection of the two groups is $K_{c} Z$.
Let g be a diagonalizable element of G_{F}; i.e., g is conjugate, in G_{F}, to a diagonal matrix. We define

$$
r_{F}(g)=\nu_{F}\left(\frac{\alpha-\beta}{\alpha \beta}\right)
$$

where α, β are the eigenvalues of g and ν_{F} is defined by

$$
|\gamma|_{F}=q^{\nu}{ }^{\nu}(\gamma)
$$

for all $\gamma \in F$ with $\left|\left.\right|_{F}\right.$ the usual absolute value on F.
Lemma 3. Let g be a diagonalizable element of G_{F} contained in some split torus D. Let \mathscr{D} be the standard apartment with respect to D. If $p \in X_{F}$, then $g p=p$ if and only if

$$
\operatorname{dist}_{X_{F}}(p, \mathscr{D}) \leqq r_{F}(g)
$$

Proof. This is Lemma 3.2 of [$\mathbf{5}]$.
For r and c nonnegative integers, we define $\mathscr{L}(c, r)$ to be the number of lines (m_{1}, m_{2}) of length c such that
(i) $\operatorname{dist}_{X_{F}}\left(m_{i}, \mathfrak{Y}\right) \leqq r$ for $i=1,2$,
(ii) $\operatorname{dist}_{X_{F}}\left(m_{1}, \mathfrak{t}\right)=\operatorname{dist}_{X_{F}}\left(m_{1}, p_{0}\right)$.

Lemma 4. For $c \neq 0, c$ even and $r \geqq c / 2$,
$\mathscr{L}(c, r)=(q+1) q^{c / 2+r-1}$.
For c odd and $r \geqq[c / 2]$,
$\mathscr{L}(c, r)=2 q^{r+[c / 2]}$.
For $c \neq 0$ and $r<[c / 2]$,

$$
\mathscr{L}(c, r)=2 q^{2 r} .
$$

For all $r \geqq 0$,

$$
\mathscr{L}(0, r)=q^{r} .
$$

Proof. We must count the lines of length c in Figure 1 which start at a point

Figure 1
marked by an open dot (Figure 1 is the diagram for $\mathscr{L}(2,3)$ with $q=3$). The base line is the standard apartment \mathfrak{H}. There are $(q-1) q^{n-1}$ starting points at level n for $0<n \leqq r$; i.e., there are $(q-1) q^{n-1}$ points, p, such that

$$
\operatorname{dist}_{X_{F}}(p, \mathfrak{A})=\operatorname{dist}\left(p, p_{0}\right)=n
$$

Suppose that c is even and $r \geqq c$. A line starting at level r must proceed towards \mathfrak{A} for $c / 2$ steps and then any one of q directions may be taken at each of the next $c / 2$ steps. Thus from each point at level r originate $q^{c / 2}$ lines of the required type. At the opposite end, a line starting from the level 0 point has $(q+1)$ initial directions and then $c-1$ choices of q directions. In this manner we obtain the following table:

Level	No. of Points	Lines per Point	Total
0	1	$(q+1) q^{c-1}$	$q^{c}+q^{c-1}$
1	$(q-1)$	$(q+1) q^{c-1}$	$q^{c+1}+q^{c-1}$
2	$(q-1) q$	$(q+1) q^{c-1}$	$q^{c+2}+q^{c}$
\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot
$r-c-1$	$(q-1) q^{r-c-2}$	$(q+1) q^{c-1}$	$q^{r-1}+q^{r-3}$
$r-c$	\cdot	$(q+1) q^{c-1}$	$q^{r}+q^{r-2}$
$r-c+1$	\cdot	q^{c-1}	$q^{r}+q^{r-1}$
$r-c+2$	\cdot	q^{c-1}	$q^{r+1}+q^{r}$
$r-c+3$	\cdot	q^{c-2}	$q^{r+1}+q^{r}$
$r-c+4$	$(q-1) q^{r-c+3}$	q^{c-2}	$q^{r+2}+q^{r+1}$
\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot
$r-3$	$(q-1) q^{r-4}$	$q^{c / 2+1}$	$q^{r+c / 2-2}+q^{r+c / 2-3}$
$r-2$	\cdot	$q^{c / 2+1}$	$q^{r+c / 2-1}+q^{r+c / 2-2}$
$r-1$	$(q-1) q^{r-1}$	$q^{c / 2}$	$q^{r+c / 2-1}+q^{r+c / 2-2}$
r	$q^{c / 2}$	$q^{r+c / 2}+q^{r+c / 2-1}$	

If we add all this together, we get the promised result. All the other cases are just as simple-and just as tedious!

Theorem 1. Let D be a split torus in G_{F} and let a be a regular element of D^{M}. Then

$$
\Psi_{c}(D, a)= \begin{cases}\operatorname{meas}\left(K_{c}\right) \mathscr{L}(c, r(a)), & \text { if }|\operatorname{det} a|_{F}=1 \\ 0 & \text { if }|\operatorname{det} a|_{F} \neq 1\end{cases}
$$

Proof. Without loss of generality we may take D to be equal to A. Let S denote the set of lines in X_{F} of length c. From Lemma 1 it follows that

$$
\begin{aligned}
& G_{F} / K_{c} Z \rightarrow S \\
& g K_{c} Z \mapsto\left(g p_{0}, g p_{-c}\right)
\end{aligned}
$$

is a bijection. Let S_{0} be the subset of lines (m_{1}, m_{2}) in S such that

$$
\operatorname{dist}_{X_{F}}\left(m_{1}, \mathfrak{A}\right)=\operatorname{dist}_{X_{F}}\left(m_{1}, p_{0}\right) .
$$

If $L \in S$, then $C L$, the orbit of L under the action of C, has exactly one element in S_{0}. Therefore, Lemma 1 yields

$$
\begin{aligned}
\Psi_{c}(A, a) & =\operatorname{meas}\left(K_{c}\right) \int_{C \backslash G_{F} / K_{c} Z} \psi_{c}\left(g^{-1} a g\right) d g \\
& =\sum_{\left(g p_{0}, g p-c\right) \in S_{0}} \psi_{c}\left(g^{-1} a g\right) .
\end{aligned}
$$

It is clear that $\psi_{c}\left(g^{-1} a g\right)$ is zero for all g if $|\operatorname{det} a|_{F} \neq 1$, and so we assume
$|\operatorname{det} a|_{F}=1$. We have, from Lemma 2, that

$$
\psi_{c}\left(g^{-1} a g\right)=1
$$

$\Leftrightarrow g^{-1} a g \in K_{c} \Leftrightarrow g^{-1} a g$ fixes $\left(p_{0}, p_{-c}\right) \Leftrightarrow a$ fixes $\left(g p_{0}, g p_{c}\right)$. Lemma 3 finishes the proof.

In order to compute $\Psi_{c}(T, t)$ for nonsplit tori we must work in a field large enough so that the matrices of T are diagonalizable, and then embed X_{F} in the larger building. Let E be a quadratic extension of F. We view E as a 2 -dimensional vector space over F. If $\alpha \in E^{\times}$, then

$$
\begin{aligned}
& \alpha: E \rightarrow E \\
& x \rightarrow \alpha x
\end{aligned}
$$

defines an element of $G L_{F}(E)$. We identify $G L_{F}(E)$ with G_{F}. The subgroup, T_{F}, corresponding to E^{\times}is a nonsplit torus. The lattices of E are \mathscr{O}_{F}-submodules of E and two lattices are in the same class if one is an $F \times$-multiple of the other. Thus we have a model of X_{F}, consisting of classes of lattices in E, on which T_{F} acts in a natural way. If L is a lattice in E, we let $[L]$ denote the class containing L.

Lemma 5. If E / F is unramified and $T_{F} \cong E^{\times}$, then $\left[\mathscr{O}_{E}\right]$ is the only point in X_{F} fixed by $T_{F^{M}}$. If E / F is ramified, then $\left[\mathscr{O}_{E}\right]$ and $\left[\omega_{E} \mathscr{O}_{E}\right]$ are the only points in X_{F} fixed by $T_{F}{ }^{M}$.

Proof. If [L] is fixed by $T_{F^{M}}$, then it is easy to check that L must be a fractional ideal in \mathscr{O}_{E}. The rest is straightforward.

We now want to embed X_{F} in X_{E}. Let X_{E} consist of classes of \mathscr{O}_{E}-lattices of $E \times E$. It is not hard to show that $E \otimes_{F} E \cong E \times E$ as E vector spaces under the map

$$
\begin{align*}
E \otimes_{F} E & \rightarrow E \times X \tag{1}\\
a \otimes b & \mapsto(a b, a \bar{b})
\end{align*}
$$

where \bar{b} is the conjugate of b with respect to E / F. If $[L]$ is a point in X_{F}, then we obtain a point in X_{E} by

$$
\begin{equation*}
[L] \rightarrow\left[L \otimes_{\mathscr{O}_{F}} \mathscr{O}_{E}\right] \tag{2}
\end{equation*}
$$

Actually, the right-hand side is a lattice class in $E \otimes_{F} E$, but (1) allows us to consider it as a point in X_{E}. In this way, we view X_{F} as a subset of X_{E}. If E / F is unramified, then each point of X_{E} has $q^{2}+1$ points distance one from it, a nd the embedding preserves distances. If E / F is ramified, then there are still $q+1$ points distance one from each point in X_{F}, but between any two points of X_{F} there is a point of X_{E}, not in X_{F}. In this case distance is not preserved; in fact, if $m_{1}, m_{2} \in X_{F}$,

$$
\operatorname{dist}_{X_{E}}\left(m_{1}, m_{2}\right)=2 \operatorname{dist}_{X_{F}}\left(m_{1}, m_{2}\right)
$$

Next, we define the action of G_{E} on X_{E} to be compatible with (2), the injection of G_{F} into G_{E} and the previously defined action of G_{F} on X_{F}. In other words, we identify G_{E} with $G L(E \times E)$ so that the following diagram commutes:

The top map is injection, the left side has been defined above and the bottom line is defined by (2); i.e.,

$$
\left[g L \otimes_{O_{F}} \mathscr{O}_{E}\right]=g\left[L \otimes_{\mathcal{O}_{F}} \mathscr{O}_{E}\right]
$$

In particular, if $\alpha \in E^{x}$, then α corresponds to a diagonalizable element of $G L_{E}(E \times E)$ with eigenvalues α and $\bar{\alpha}$. If $p \in X_{F}$ and $g \in G_{F}$, then p is fixed by g acting on X_{E} if and only if it is fixed by g acting on X_{F}. The torus $T_{F} \subseteq G_{F}$ is mapped into a split torus T_{E} in G_{E}. The apartment \mathfrak{A}_{E} is the line fixed by $T_{E}{ }^{M}$.

Lemma 6. Let $m_{1}=\left[\mathscr{O}_{E} \otimes_{\mathcal{O}_{F}} \mathscr{O}_{E}\right]$ and $m_{2}=\left[\omega_{E} \mathscr{O}_{E} \otimes_{\mathscr{O}_{F}} \mathscr{O}_{E}\right]$. If E / F is unramified, then $m_{1}=m_{2}$ and $\mathfrak{N}_{E} \cap X_{F}=\left\{m_{1}\right\}$. If E / F is ramified, then $m_{1} \neq m_{2}$ and
(1) $\mathfrak{A}_{E} \cap X_{F}$ is empty;
(2) $\operatorname{dist}_{X_{F}}\left(X_{F}, \mathfrak{A}_{E}\right)=\operatorname{dist}_{X_{E}}\left(m_{i}, \mathfrak{A}_{E}\right)=\delta(E / F)$,
where $\delta(E / F)=\nu_{E}$ (different of $\left.E / F\right)$ and $i=1,2$. Furthermore, if m is any other point of X_{F}, then $\operatorname{dist}_{X_{E}}\left(m, \mathfrak{A}_{E}\right)>\delta(E / F)$.

Proof. Suppose that E / F is unramified. Then
(3) $T_{E}^{M}=T_{F}^{M} \cdot Z\left(\mathscr{O}_{E}\right)$.

Therefore, a point of X_{E} is fixed by $T_{E}{ }^{M}$ if and only if it is fixed by $T_{F}{ }^{M}$. Lemma 5 says that the only point in X_{F} which is fixed by $T_{F}{ }^{M}$ is $\left[\mathscr{O}_{E}\right]$, and so the only point of X_{F} in X_{E} fixed by $T_{E}{ }^{M}$ is m_{1}.

Suppose that E / F is ramified. We no longer have (3), but any point on \mathfrak{H}_{E} must still be fixed by $T_{F}{ }^{M}$. Thus, Lemma 5 implies

$$
\mathfrak{U}_{E} \cap X_{F} \subseteq\left\{m_{1}, m_{2}\right\} .
$$

Multiplication by ω_{E} interchanges $\left[\mathscr{O}_{E}\right]$ and $\left[\omega_{E} \mathscr{O}_{E}\right]$. Therefore, the diagonalizable element of $G L_{E}(E \times E)$ corresponding to ω_{E} interchanges m_{1} and m_{2}. This transformation has eigenvalues ω_{E} and $\widetilde{\omega}_{E}$. Since $\operatorname{dist}_{X_{F}}\left(m_{1}, m_{2}\right)=1$ there must be a point, m, of X_{E}, not in X_{F}, which is between m_{1} and m_{2} and which is fixed by ω_{E}. From Lemma 3 , it follows that

$$
\operatorname{dist}_{X_{E}}\left(m, \mathfrak{N}_{E}\right) \leqq \nu_{E}\left(1-\frac{\bar{\omega}_{E}}{\omega_{E}}\right)
$$

and

$$
\operatorname{dist}_{X_{E}}\left(m_{1}, \mathfrak{U}_{E}\right)>\nu_{E}\left(1-\frac{\bar{\omega}_{E}}{\omega_{E}}\right) .
$$

Since $\operatorname{dist}_{X_{E}}\left(m, m_{1}\right)=1$, we have

$$
\begin{aligned}
\operatorname{dist}_{X_{E}}\left(m_{1}, \mathfrak{U}_{E}\right) & =1+\nu_{E}\left(1-\frac{\bar{\omega}_{E}}{\omega_{E}}\right) \\
& =\nu_{E}\left(\omega_{E}-\bar{\omega}_{E}\right) \\
& =\delta(E / F) .
\end{aligned}
$$

For nonnegative integers c and r, let $\mathscr{M}(c, r)$ denote the number of lines $\left(n_{1}, n_{2}\right)$ in X_{F} of length c such that

$$
\operatorname{dist}_{X_{F}}\left(n_{1}, n\right) \leqq r, \quad \text { and } \quad \operatorname{dist}_{X_{F}}\left(n_{2}, n\right) \leqq r
$$

where n is a fixed but arbitrary point in X_{F}.
Lemma 7. $c \neq 0, c$ even and $r \geqq c / 2$,

$$
\mathscr{M}(c, r)=\frac{q^{c-1}(q+1)}{(q-1)}\left(q^{r-c / 2+1}+q^{r-c / 2}-2\right)
$$

For c odd and $r \geqq[c / 2]+1$,

$$
\mathscr{M}(c, r)=\frac{2 q^{c-1}(q+1)}{q-1}\left(q^{r-[c / 2]}-1\right) .
$$

For $r<c / 2$,

$$
\mathscr{M}(c, r)=0 .
$$

For all $r>0$,

$$
\mathscr{M}(0, r)=(q+1) q^{r-1}
$$

and

$$
\mathscr{M}(0,0)=1 .
$$

Proof. For $q=3, \mathscr{M}(c, 3)$ is the number of lines of length c in Figure 2. For

Figure 2
c odd and $[c / 2]<c<r$ we can produce, as in the proof of Lemma 4, the following table:

Level	No. of Poinis	Lines per Point	Total
0	1	0	0
1	$q+1$	0	0
2	$(q+1) q$	0	0
\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	0
$c-r-1$	$(q+1) q^{c-r-2}$	0	$q^{c}+q^{c-1}$
$c-r$	$(q+1) q^{c-r-1}$	q^{r}	$q^{c}+q^{c-1}$
$c-r+1$	\cdot	q^{r-1}	$q^{c+1}+q^{c-1}$
$c-r+2$	\cdot	q^{r-1}	$q^{c+1}+q^{c-1}$
$c-r+3$	\cdot	q^{r-2}	\cdot
\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot
$r-2$	\cdot	\cdot	$q^{[c / 2]+1}$
$r-1$	\cdot	$q^{r+[c / 2]-1}+q^{r+[c / 2]-2}$	
r	$(q+1) q^{r-1}$	$q^{[c / 2]}$	$q^{r+[c / 2]}+q^{r+[c / 2]-1}$
	$q^{r+[c / 2]}+q^{r+[c / 2]-1}$.		

If we add all this up, and fiddle about for a bit, then we get the advertised result. The other cases are just more of the same sort of thing.

The next two lemmas are standard results.
Lemma 8. If T is a torus in G_{F}, isomorphic to E^{\times}where E is a quadratic extension of F, then

$$
\left[T: T^{M} Z\right]=e(E / F)
$$

where $e(E / F)$ is the ramification index of E over F.
Lemma 9. If c is any positive integer, then

$$
\left[K: K_{c}\right]=q^{c-1}(q+1) .
$$

Theorem 2. If B is a nonsplit torus in G_{F}, isomorphic to an unramified quadratic extension of F, and $b \in \hat{B}$, then

$$
\Psi_{c}(B, b)= \begin{cases}\operatorname{meas}\left(K_{c}\right)\left(c \mathscr{M}, r_{E}(b)\right) & \text { if }|\operatorname{det} b|_{F}=1 \\ 0 & \text { if }|\operatorname{det} b|_{F} \neq 1 .\end{cases}
$$

Proof. It is clear that the integral is zero if $|\operatorname{det} b|_{F} \neq 1$, and so we assume $|\operatorname{det} b|_{F}=1$. Let S be the set of lines in X_{F} of length c. Then there is a $1-1$
correspondence with $G / K_{c} Z$ given by

$$
\begin{aligned}
G / K_{c} Z & \rightarrow S \\
g K_{c} Z & \mapsto\left(g p_{0}, g p_{-c}\right) .
\end{aligned}
$$

Therefore, from Lemmas 1 and 8 ,

$$
\begin{aligned}
\psi_{c}(B, b) & =\operatorname{meas}\left(K_{c}\right) \int_{G / K_{c} Z} \psi_{c}\left(g^{-1} b g\right) d g \\
& =\sum_{\left(g p_{0}, g p_{-c}\right) \in S} \psi_{c}\left(g^{-1} b g\right) .
\end{aligned}
$$

We embed X_{F} in X_{E}, and use Lemma 3, to obtain

$$
\psi_{c}\left(g^{-1} b g\right)=1
$$

if and only if

$$
\operatorname{dist}_{X_{E}}\left(g p_{0}, \mathfrak{A}_{E}\right) \leqq r_{E}(b) \quad \text { and } \quad \operatorname{dist}_{X_{E}}\left(g p_{-c}, \mathfrak{A}_{E}\right) \leqq r_{E}(b)
$$

But there is a unique point, m, in $X_{F} \cap \mathfrak{A}_{E}$. Therefore, for $p \in X_{F}$,

$$
\operatorname{dist}_{X_{E}}\left(p, \mathfrak{U}_{E}\right)=\operatorname{dist}_{X_{E}}(p, m)
$$

For nonnegative integers c and r, let $\mathscr{N}(c, r)$ be the number of lines, $\left(n_{1}, n_{2}\right)$, of length c in X_{F} such that

$$
\operatorname{dist}_{X_{F}}\left(n_{i}, l_{1}\right) \leqq r \quad \text { or } \quad \operatorname{dist}_{X_{F}}\left(n_{i}, l_{2}\right) \leqq r
$$

for $i=1,2$, where l_{1} and l_{2} are two arbitrary but fixed points in X_{F} such that $\operatorname{dist}_{X_{F}}\left(l_{1}, l_{2}\right)=1$. For $q=3, \mathscr{N}(c, 2)$ is the number of lines of length c in Figure 3.

Figure 3
Lemma 10. For $c \neq 0$, c even and $r \geqq c / 2$,

$$
\mathscr{N}(c, r)=\frac{2 q^{c-1}(q+1)}{(q-1)}\left(q^{r-c / 2+1}-1\right) .
$$

For c odd and $r \geqq[c / 2]$,

$$
\mathscr{N}(c, r)=\frac{2 q^{c-1}}{q-1}\left(2 q^{r-[c / 2]+1}-q-1\right)
$$

For all $r>0$,

$$
\mathscr{N}(0, r)=\frac{2\left(q^{r+1}-1\right)}{q-1}
$$

For $r<[c / 2]$,

$$
\mathscr{N}(c, r)=0
$$

Proof. We could prove this lemma in the same manner as Lemmas 4 and 7, but there is a simpler way. If we bend Figure 3 at the point l_{1}, then we get Figure 4 (ignore the points marked by closed dots). Thus $\mathscr{N}(c, r)$ is equal to $\mathscr{M}(c, r)$ plus the number of lines with an end point at one of the q^{r} points on level $r+1$. If c is odd, then a line of length c can have at most one end point at level $r+1$ and so, for $r \geqq[c / 2]$,

$$
\mathscr{N}(c, r)=\mathscr{M}(c, r)+2 q^{r+[c / 2]} .
$$

If c is even, we must be careful not to count twice the lines with both end points on level $r+1$. For c even and $r \geqq c / 2$, we get

$$
\mathscr{N}(c, r)=\mathscr{M}(c, r)+q^{r+c / 2}+q^{r+c / 2-1}
$$

Combining this with Lemma 7, we obtain the required formulae.
Theorem 3. If T is a nonsplit torus in G_{F}, isomorphic to a ramified quadratic extension E of F, and $t \in \hat{T}$, then

$$
\Psi_{c}(T, t)= \begin{cases}\frac{1}{2} \operatorname{meas}\left(K_{c}\right) \mathcal{N}\left(c,\left[\frac{r_{E}(t)-\delta(E / F)}{2}\right]\right), & \text { if }|\operatorname{det} t|_{F}=1 \\ 0 & , \\ \text { if }|\operatorname{det} t|_{F} \neq 1\end{cases}
$$

Proof. We assume $|\operatorname{det} t|_{F}=1$. If S is the set of lines of length c in X_{F}, then

$$
\begin{aligned}
G_{F} / K_{c} Z & \rightarrow S \\
g K_{c} Z & \rightarrow\left(g p_{0}, g p_{-c}\right)
\end{aligned}
$$

is a bijection. Therefore, from Lemmas 1 and S

$$
\Psi_{c}(T, t)=2 \operatorname{meas}\left(K_{c}\right) \sum_{\left(g p_{0}, g p_{-c}\right) \in S} \psi_{c}\left(g^{-1} t g\right) .
$$

We embed X_{F} in X_{E}. Let m_{1} and m_{2} be as defined in Lemma 6 and let m be the point of X_{E} between m_{1} and m_{2} (see the proof of Lemma 6). For $p \in X_{F}$, we have

$$
\begin{aligned}
\operatorname{dist}_{X_{E}}\left(p, \mathfrak{A}_{E}\right) & =\delta(E / F)-1+\operatorname{dist}_{E}(p, m) \\
& =\delta(E / F)+\min \left\{2 \operatorname{dist}_{X_{F}}\left(p, m_{1}\right), 2 \operatorname{dist}_{X_{F}}\left(p, m_{2}\right)\right\} .
\end{aligned}
$$

The situation is illustrated by Figure 4. The open dots are points of X_{F} and the closed dots are points in X_{E} not in X_{F}. The base line is \mathfrak{H}_{E}. Figure 3 must be bent at m_{1} to relate it to Figure 4.

Figure 4
From Lemmas 2 and 3 we have

$$
\psi_{c}\left(g^{-1} t g\right)=1
$$

if and only if

$$
t \text { fixes } g p_{0} \text { and } g p_{-c}
$$

if and only if

$$
\operatorname{dist}_{X_{E}}\left(g p_{0}, \mathfrak{Y}_{E}\right) \leqq r_{E}(t) \quad \text { and } \quad \operatorname{dist}_{X_{E}}\left(g p_{-c}, \mathfrak{A}_{E}\right) \leqq r_{E}(t)
$$

The theorem follows easily.
If we combine Theorem 1, 2 and 3 with Lemmas 4, 7, 9 and 10 we can establish the following table of values of $\psi_{c}(T, t)$.

For A a split torus, $a \in \hat{A}^{M}$ and $r=r_{F}(a)$

$$
\psi_{c}(A, a)= \begin{cases}2 q^{2 r-c+1}(q+1)^{-1} & \text { for } r<[c / 2] \\ q^{r-c / 2} & \text { for } r \geqq c / 2, c \text { even, } c \neq 0 \\ 2 q^{r-[c / 2]}(q+1)^{-1} & \text { for } r \geqq[c / 2], c \text { odd }\end{cases}
$$

For $B \cong E^{\times}$where E / F is an unramified quadratic extension, $b \in \hat{B}^{M}$ and $r=r_{E}(b)$.

$$
\Psi_{c}(B, b)= \begin{cases}0 & \text { for } r<c / 2 \\ (q-1)^{-1}\left(q^{r-c / 2+1}+q^{r-c / 2}-2\right) & \text { for } r \geqq c / 2, c \text { even } \\ 2(q-1)^{-1}\left(q^{r-[c / 2]}-1\right) & \text { for } r \geqq[c / 2]+1, c \text { odd. }\end{cases}
$$

For $T \cong E^{\times}$where E / F is a ramified quadratic extension, $t \in \hat{T}^{M}$ and
$l=\left[\left(r_{E}(t)-\delta(E / F)\right) / 2\right]$,

$$
\psi_{c}(T, t)= \begin{cases}0 & \text { for } l<[c / 2] \\ (q-1)^{-1}\left(q^{l-c / 2+1}-1\right) & \text { for } l \geqq c / 2, c \text { even } \\ \left(q^{2}-1\right)^{-1}\left(2 q^{l-[c / 2]+1}-q-1\right) & \text { for } l \geqq[c / 2], c \text { odd }\end{cases}
$$

2. The computation of $n(c, F)$. We shall produce a function (Lemma 13), f_{c}, on $Z \backslash G_{F}$, which is locally constant and has compact support such that

$$
\operatorname{tr}\left(\pi\left(f_{c}\right)\right)= \begin{cases}1 & \text { if } c(\pi)=c \text { and } \epsilon_{\pi}=1 \tag{4}\\ 0 & \text { otherwise }\end{cases}
$$

where π is any irreducible unitary admissible representation of G_{F}. There exists a locally integrable class function X_{π}, for each π, such that (see [3, §7])

$$
\operatorname{tr}\left(\pi\left(f_{c}\right)\right)=\int_{z \backslash G_{F}} \chi_{\pi}(g) f_{c}(g) d g
$$

If we apply equation 7.2.2 of [3], we obtain

$$
\begin{aligned}
\int_{Z \backslash G_{F}} \chi_{\pi}(g) f_{c}(g) d g & =\frac{1}{2} \sum_{T \in S} \int_{Z \backslash T} \Delta(t) \int_{T \backslash G} \chi_{\pi}(g) f_{c}\left(g^{-1} \operatorname{tg}\right) d g d t \\
& =\frac{1}{2} \sum_{T \in S} \int_{Z \backslash T} \Delta(t) \chi_{\pi}(t) F_{c}(T, t) d t
\end{aligned}
$$

where S is a complete set of nonconjugate tori in G_{F}, containing A,

$$
\Delta(g)=\left|\frac{\left(\alpha_{1}-\alpha_{2}\right)^{2}}{\alpha_{1} \alpha_{2}}\right|_{F}
$$

with α_{1} and α_{2} the eigenvalues of g, and

$$
F_{c}(T, t)=\int_{T \backslash G} f_{c}\left(g^{-1} t g\right) d g .
$$

Let $S^{\prime}=S-\{A\}$. We define a function \mathbf{F}_{c} on $\cup_{T \in S} Z \backslash T=\mathscr{U}$ by

$$
\mathbf{F}_{c}(a)=F_{c}(A, a), \quad a \in Z \backslash A
$$

and

$$
\mathbf{F}_{c}(t)=\operatorname{meas}(Z \backslash T) F_{c}(T, t) \quad \text { for } T \in S^{\prime} \text { and } t \in T
$$

Then

$$
\operatorname{tr}\left(\pi\left(f_{c}\right)\right)=\frac{1}{2} \sum_{T \in S} \frac{1}{\operatorname{meas}(Z \backslash T)} \int_{Z \backslash T} \Delta(t) \chi_{\pi}(t) \mathbf{F}_{c}(t) d t
$$

If $T \in S$, then $T-\hat{T}$ (\hat{T} is the set of regular elements of T) has measure zero, and so

$$
\operatorname{tr}\left(\pi\left(f_{c}\right)\right)=\frac{1}{2} \sum_{T \in S} \frac{1}{\operatorname{meas}(Z \backslash T)} \int_{Z \backslash \hat{T}} \Delta(t) \chi_{\pi}(t) \mathbf{F}_{c}(t) d t .
$$

As in [3, p. 480], we define a measure on $\mathscr{U}^{\prime}=\bigcup_{T \in S^{\prime}} T$, by

$$
\int_{\mathscr{U},} f(s) d s=\frac{1}{2} \sum_{T \in S^{\prime}} \frac{1}{\operatorname{meas}(Z \backslash T)} \int_{Z \backslash \hat{T}} \Delta(t) f(t) d t .
$$

This defines an inner product which we denote by \langle,$\rangle and we let L^{2}\left(\mathscr{U}^{\prime}\right)$ denote the corresponding space of functions on \mathscr{U}^{\prime}. From [3, Chapters 15, 16] we known that the characters χ_{π} are an orthonormal basis of $L^{2}\left(\mathscr{U}^{\prime}\right)$ where π runs over D, the set of special and supercuspidal representations of G_{F}.

We now suppose that
(5) $\quad F_{c}(A, a)=0$
for all $a \in A$. This will be shown to be true in the case c is odd. Then

$$
\operatorname{tr}\left(\pi\left(f_{c}\right)\right)=\left\langle\mathbf{F}_{c}, \bar{\chi}_{\pi}\right\rangle .
$$

Therefore,

$$
\mathbf{F}_{c}=\sum_{\pi \in D} a_{\pi} \chi_{\pi}
$$

where

$$
\begin{aligned}
a_{\pi} & =\left\langle\mathbf{F}_{c}, \chi_{\pi}\right\rangle \\
& =\operatorname{tr}\left(\pi\left(f_{c}\right)\right) \\
& = \begin{cases}1 & \text { if } c(\pi)=c \text { and } \epsilon_{\pi}=1 \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Hence

$$
\left\langle\mathbf{F}_{c}, \mathbf{F}_{c}\right\rangle=\sum_{\pi \in D} a_{\pi}^{2}=\sum_{\pi \in D} a_{\pi}=n(c, F) .
$$

We have shown
Theorem 4. If $F_{c}(A, a)=0$, for all $a \in A$, then

$$
n(c, F)=\left\langle\mathbf{F}_{c}, \mathbf{F}_{c}\right\rangle=\frac{1}{2} \sum_{T \in \mathbb{S}^{\prime}} \operatorname{meas}(Z \backslash T) \int_{Z \backslash \hat{T}} \Delta(t) F_{c}(T, t)^{2} d t .
$$

The next lemma presents (5) in a more transparent way.
Lemma 11. Suppose that f is a locally constant function on G_{F} with compact support. Then $\operatorname{tr}(\pi(f))=0$ for all principal series representations π if and only if $F(A, a)=0$ for all $a \in \hat{A}$ where

$$
F(A, a)=\int_{A \backslash G} f\left(g^{-1} a g\right) d g .
$$

Proof. From [3, Proposition 7.6] it follows that $\operatorname{tr}(\pi(f))=0$ for all principal series representations π if and only if all the Fourier coefficients of $F(A, \quad)$ are zero.

Lemma 12. If c is odd, then \mathbf{F}_{c} is identically zero on \hat{A}.
Proof. Let π denote a principal series representation of G_{F}. If $\epsilon_{\pi}=1$, then $c(\pi)$ is even, and so, by Lemma 11, $\operatorname{tr}\left(\pi\left(F_{c}\right)\right)=0$.

It is now time to construct the functions f_{c}. We observe that $\operatorname{tr}\left(\pi\left(\left(\text { meas } K_{c}\right)^{-1} \psi_{c}\right)\right)$ is equal to the number of times that π contains the trivial representation when restricted to K_{c}. Therefore, if ϵ_{π} is not identically 1 , then $\operatorname{tr}\left(\pi\left(f_{c}\right)\right)=0$ for all c. Suppose that $\epsilon_{\pi} \equiv 1$. Then (see [1] or [2])
(6) $\quad\left(\operatorname{meas}\left(K_{c}\right)\right)^{-1} \operatorname{tr}\left(\pi\left(\psi_{c}\right)\right)=\{0$

$$
\begin{aligned}
& \text { if } c<c(\pi) \\
& \text { if } 0 \leqq c(\pi) \leqq c \text {. }
\end{aligned}
$$

Lemma 13. Let

$$
\begin{aligned}
& f_{0}=\psi_{0} \\
& f_{1}=-2 \psi_{0}+\left(\text { meas } K_{1}\right)^{-1} \psi_{1}
\end{aligned}
$$

and for $c \geqq 2$,

$$
f_{c}=\left(\text { meas } K_{c-2}\right)^{-1} \psi_{c-2}-2\left(\text { meas } K_{c-1}\right)^{-1} \psi_{c-1}+\left(\text { meas } K_{c}\right)^{-1} \psi_{c} .
$$

Then f_{c} satisfies (4).
Proof. It is a simple exercise to verify the lemma by means of (6).
One could now verify Lemma 12 directly because \mathbf{F}_{c} is a linear combination of the integrals computed in $\S 1$.

Let $T \in S^{\prime}$ and let E be the corresponding quadratic extension of F. We shall write δ_{T} to mean $\delta(E / F)$. Since the eigenvalues of any element, t, of T must be conjugate with respect to $E / F,|\operatorname{det} t|_{F}=1$ forces the eigenvalues of t to be units. Therefore, the set of $t \in T$ such that $|\operatorname{det} t|_{F}=1$ corresponds to $\mathscr{O}_{E} \times$. We define, for n a nonnegative integer,

$$
H_{T}(n)=\left\{t \in T \mid r_{E}(t)=n \text { and }|\operatorname{det} t|_{F}=1\right\} .
$$

For fixed $T \in S$, the function $F_{c}(T, t)$ depends only on $r_{E}(t)$ and so we shall write $F_{c}(T, t)=F_{c}\left(T, r_{E}(t)\right)$.

Lemma 14. If E / F is unramified and $n \geqq 0$, then

$$
\operatorname{meas}\left(H_{T}(n)\right)= \begin{cases}(q-1)(q+1)^{-1} q^{-n}, & n \geqq 1 \\ q(q+1)^{-1} & , \quad n=0\end{cases}
$$

If E / F is ramified, then $H_{T}(n)$ is empty if n is not of the form $2 m+\delta_{T}$ for some nonnegative integer m, and

$$
\operatorname{meas}\left(H_{T}\left(2 m+\delta_{T}\right)\right)=q^{-(m+1)}(q-1)
$$

Proof. We have

$$
\operatorname{meas}\left(H_{T}(n)\right)=\operatorname{meas}\left\{\alpha \in \mathscr{O}_{E} \times\left.\right|_{\nu_{E}}(\alpha-\bar{\alpha})=n\right\}
$$

Suppose that E / F is ramified. Let J be a complete set of representatives of
$\mathscr{O}_{E} \times / \bar{\omega}_{E} \mathscr{O}_{E} \times$ such that $0 \in J$ and $J-\{0\} \subseteq \mathscr{O}_{F} \times$. If $\alpha \in \mathscr{O}_{E} \times$, we can write

$$
\alpha=\sum_{m=0}^{\infty}\left(\epsilon_{2 m}+\epsilon_{2 m+1} \bar{\omega}_{E}\right) \bar{\omega}_{F}^{m}
$$

where $\epsilon_{m} \in J$ and $\epsilon_{0} \neq 0$. Thus

$$
\alpha-\bar{\alpha}=\sum_{m=0}^{\infty} \epsilon_{2 m+1}\left(\bar{\omega}_{E}-\overline{\bar{\omega}}_{E}\right) \bar{\omega}_{F}^{m}
$$

If $\epsilon_{2 m+1}$ is the first odd numbered coefficient which is not zero, then

$$
\begin{aligned}
\nu_{E}(\alpha-\bar{\alpha}) & =\nu_{E}\left(\left(\bar{\omega}_{E}-\overline{\bar{\omega}}_{E}\right) \bar{\omega}_{F}{ }^{m}\right) \\
& =\delta(E / F)+2 m
\end{aligned}
$$

The rest is straightforward and we omit it. The unramified case is similar.
The function $\Delta(t)$ has the following explicit values:

$$
\Delta(t)= \begin{cases}q^{-2 \tau_{E}(t)} & \text { if } E / F \text { is unramified } \\ q^{-r_{E}(t)} & \text { if } E / F \text { is ramified }\end{cases}
$$

Let B denote the unique unramified torus in S^{\prime}, and let $S^{\prime \prime}=S-\{A, B\}$. We can put the last few facts into the formula in Theorem 4 and, for odd c, obtain

$$
\begin{align*}
\left\langle\mathbf{F}_{c}, \mathbf{F}_{c}\right\rangle= & \frac{1}{2} \sum_{T \in S^{\prime}} \operatorname{meas}(Z \backslash T) \int_{Z \backslash \hat{T}} \Delta(t) F_{c}(T, t)^{2} d t \\
= & \frac{1}{2} \sum_{n=0}^{\infty} \operatorname{meas} H_{B}(n) q^{-2 n} F_{c}\left(T_{0}, n\right)^{2} \\
& +\frac{1}{2} \sum_{T \in S^{\prime \prime}} 2 \sum_{m=0}^{\infty} \operatorname{meas} H_{T}\left(2 m+\delta_{T}\right) q^{-2 m-\delta_{T}} F_{c}\left(T, 2 m+\delta_{T}\right)^{2} \\
= & \frac{1}{2} \sum_{n=0}^{\infty}(q-1)(q+1)^{-1} q^{-3 n} F_{c}\left(T_{0}, n\right)^{2} \\
& +\sum_{T \in S^{\prime \prime}} q^{-\delta_{T}} \sum_{m=0}^{\infty} q^{-3 m-1}(q-1)^{-1}{ }_{c} F\left(T, 2 m+\delta_{T}\right)^{2} . \tag{7}
\end{align*}
$$

We shall need
Lemma 15.

$$
\sum_{T \in S^{\prime}-\left\{T_{0}\right\}} q^{-\delta_{T}}=2 q^{-1}
$$

Proof. This lemma is a special case of a more general theorem due to Serre. It can be proved in several ways. It can be proved by the same techniques we have been using. One has only to use the Weyl integration formula to obtain

$$
1=\int_{G} \psi_{0}(g) d g=\frac{1}{2} \sum_{T \in S} \int_{T} \Delta(t) \Psi_{0}(T, t) d t
$$

If we put explicit values of $\psi_{0}(T, t)$ into the above, then the identity drops out.
Theorem 5. If c is an odd integer, then

$$
n(c, F)= \begin{cases}2 q^{(c-3) / 2}(q-1) & \text { for } c \geqq 2 \\ 2 & \text { for } c=1\end{cases}
$$

Proof. Suppose that π is a supercuspidal representation of G_{F}. Then $c(\pi) \geqq 2$. Therefore, for $c=1$, we need only count the special representations with trivial central character. It is not hard to show that there are exactly 2 of these.

We now take c to be at least 2. To make the computation we have to put explicit values for $F_{c}(T, t)$ into (7). We start with the unramified torus B. We shall use the results of $\S 1$ without giving specific references.

$$
f_{c}=\left(\operatorname{meas}\left(K_{c-2}\right)\right)^{-1} \psi_{c-2}-2\left(\operatorname{meas}\left(K_{c-1}\right)\right)^{-1} \psi_{c-1}+\left(\operatorname{meas}\left(K_{c}\right)\right)^{-1} \psi_{c} .
$$

Therefore, if $r=r(b)$

$$
F_{c}(B, b)=\mathscr{M}(c-2, r)-2 \mathscr{M}(c-1, r)+\mathscr{M}(c, r) .
$$

A bit of computation shows that

$$
F_{c}(B, b)= \begin{cases}-2(q-1)^{2} q^{c-3} & \text { if } r \geqq(c-1) / 2 \\ 0 & \text { if } r \leqq(c-1) / 2\end{cases}
$$

Hence,

$$
\begin{aligned}
& \frac{1}{2} \int_{Z \backslash \hat{T}_{0}}\left(F_{c}(B, b)\right)^{2} \Delta(t) d b \\
& =\frac{1}{2} \sum_{n=(c-1) / 2}^{\infty}(q-1)(q+1)^{-1} q^{-3 n}\left(-2(q-1) q^{c-3}\right)^{2} \\
& =\frac{2 q^{(c-3) / 2}(q-1)\left(q^{2}-1\right)}{q^{2}+q+1} .
\end{aligned}
$$

Now suppose that $T \in S^{\prime \prime}$ and let $m=\left(r_{E}(t)-\delta_{T}\right) / 2$ (in view of Lemma $14, m$ is a positive integer). Then

$$
F_{c}(T, t)=\frac{1}{2}\{\mathscr{N}(c-2, m)-2 \mathscr{N}(c-1, m)+\mathscr{N}(c, m)\}
$$

It follows that

$$
F_{c}(T, t)= \begin{cases}-q^{c-3}\left(q^{2}-1\right) & \text { for } l>(c-1) / 2 \\ q^{c-3} & \text { for } l=(c-1) / 2 \\ 0 & \text { for } l<(c-1) / 2\end{cases}
$$

Therefore,

$$
\begin{aligned}
& \int_{Z \backslash T} \Delta(t)\left(F_{c}(T, t)\right)^{2} d t \\
& =(q-1) q^{(c-5) / 2-\delta_{T}}+q^{-\delta_{T}} \sum_{m=(c-1) / 2}^{\infty} q^{-3 m-1}(q-1)^{-1}\left(-q^{c-3}\left(q^{2}-1\right)\right)^{2} \\
& =\frac{q^{(c-1) / 2-\delta_{T}}(q-1)(q+2)}{q^{2}+q+1} .
\end{aligned}
$$

Applying Lemma 15, we get

$$
\begin{aligned}
& \sum_{T \in S^{\prime \prime}} \int_{Z \backslash \hat{T}} \Delta(t)\left(F_{c}(T, t)\right)^{2} d t \\
& =\sum_{T E S^{\prime \prime}} q^{-\delta_{T}}\left(\frac{q^{(c-1) / 2}(q-1)(q+2)}{q^{2}+q+1}\right) \\
& =\frac{2 q^{(c-3) / 2}(q-1)(q+2)}{q^{2}+q+1} .
\end{aligned}
$$

Adding this to the unramified term produces the advertised values of $n(c, F)$.
To make this method work for c even it is necessary to construct functions which behave like f_{c} but whose orbital integrals vanish on the split torus. While this can probably be done, it is not clear what form these functions should take. Recently J. Tunnell [7] has found a completely different method which imposes no restrictions on c or ϵ_{π}.

References

1. W. Casselman, On some results of Atkin and Lehner, Math. Ann. 201 (1973), 301-314.
2. P. Deligne, Formes modulaires et représentations de GL2, Modular functions of one variable (Springer, London-New York, $3 \not 49$ (1973), 55-106.
3. H. Jaquet and R. Langlands, Automorphic forms on GL(2) (Springer, London-New York, 114, 1970).
4. R. Kottwitz, Thesis, Harvard University, to appear.
5. R. Langlands, Base change for $G L(2)$, notes for lectures at the Institute for Advanced Study, Autumn, 1975.
6. I. Macdonald, Spherical functions on a group of p-adic type, Ramanujan Institute Publications No. 2, University of Madras, 1971.
7. J. Tunnell, Harvard University, to appear.

The Institute for Advanced Study, Princeton, New Jersey 08540

[^0]: Received February 28, 1977 and in revised form, June 29, 1977.

