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A b s t r a c t . We outline the noise-filtering finite-field inversion kernel and 
the regularized maximum likelihood methods for cluster reconstruction. 

Unbiased finite-field mass reconstructions start from the relation VK = 

u, where Κ = ln( l — κ) , and the vector field u is a combination of the 
observable reduced shear g = 7 / ( 1 — κ) and derivatives of it. Estimates of 
Κ are thus obtained up to an arbitrary constant by averaging line integrals 
of observables. Noise degrades u to a combination of a gradient and a 
rotational field u = Viif + R , where only the rotational ('noise') component 
is treated differently by different line averaging methods. Requiring that 
the contribution from R is filtered out in the reconstruction is therefore a 
sensible requirement. For this, the above decomposition has to be specified 
uniquely by a boundary condition for R: for ideal data, where u is indeed a 
gradient field, R has to vanish identically; this implies that in this case the 
scalar field from which R can be derived has to be constant everywhere, 
in particular on the boundary. This boundary condition is consistent with 
the assumption that in the general case there should not be a systematic 
rotational component in the observed region U: < R >u— 0 . Since Κ 

and u are linearly related, we can make the ansatz that Κ{θ) — Κ = 

fuà
20' H ( 0 ' , 0 ) · u ( 0 ' ) , where the additive constant Κ is chosen to be the 

average of Κ over U. We now replace u by its decomposition in gradient 
and rotational field and integrate by parts. Boundary terms vanish if we 
require that Η · η = 0 on the boundary dZV, and the rotational component 
is 'filtered out ' if Η is a gradient field, H = VC. With these requirements, 
the ansatz holds iff Δ £ ( 0 ' , 0 ) = V • H ( 0 ' , 0 ) = - < 5 ( 0 ' - 0 ) + \ , where 

A is the area enclosed by dU. Together with Η · η = 0 this differential 
equation defines a Neumann boundary problem for £ , which implies an 
unique solution for H. For a rectangular data field we have compared (see 
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Seitz & Schneider 1995 and references therein) reconstructions using the 

new kernel with earlier finite-field reconstructions of Schneider and Kaiser 

et al. or Bartelmann, hereafter named K S F W B / B , and the classical KS-

reconstruction. The ranking of the unbiased finite-field reconstructions in 

terms of the power spectrum of the error of the reconstructed iif-field is 

always the following: the noise filtering reconstruction is the best, followed 

by the Schneider and K S F W B / B reconstructions. A clear peak of the power 

spectrum at large wavelengths reflects the artifacts introduced by the KS-

reconstruction. 

I now outline the maximum likelihood reconstruction technique devel-

oped with Bartelmann, Schneider and Narayan: this method uses shape 

and magnification information (and possibly any other information) with 

the same weight simultaneously, it does not require the choice of a smooth-

ing length and finally yields an objective measurement for the quality of the 

reconstructed mass profile. We define a model by choosing the deflection 

potential on a grid and calculate the mass density, shear and magnifica-

tion, and finally the expectation value of the observables at every galaxy 

position and compare it to the 'measured' observables. The likelihood or, 

in the case of gaussian probability distributions (which we consider for sim-

plicity), the χ2 per galaxy, measures the quality of the model considered. 

One now can minimize the χ2 to obtain a model which 'best' fits the data; 

this has a χ2 per galaxy considerably below unity, which illustrates that the 

data are Overfitted'; the corresponding surface mass density shows strong 

short scale fluctuations, to fit the noise as closely as possible. To avoid 

this, we add to the χ2 a regularization term proportional to the sum of 

squares of derivatives of κ at every grid point and minimize the sum. These 

derivatives can be of first or higher order, or combinations of these. The 

factor of proportionality must be adjusted such, that at the minimum, the 

χ2 for the shape and size and/or number-density distribution is equal to 

one. Any regularization contains a prejudice or prior knowledge about the 

mass distribution generating the observables. A regularization which is not 

compatible with the lens reveals itself immediately, since then the χ2 for the 

shape and magnification distribution can not become equal to one at the 

same time, or the χ2 locally becomes much larger then 1 (e.g. non-resolved 

substructure). 
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