ANALYTIC TOEPLITZ AND COMPOSITION OPERATORS

JAMES A. DEDDENS

1. Introduction. This paper is a continuation of [1] where we began the study of intertwining analytic Toeplitz operators. Recall that X intertwines two operators A and B if XA = BX. Let H^2 be the Hilbert space of analytic functions in the open unit disk D for which the functions $f_r(\theta) = f(re^{i\theta})$ are bounded in the L^2 norm, and H^{∞} be the set of bounded functions in H^2 . For $\varphi \in H^{\infty}$, $T_{\varphi}(\text{or } T_{\varphi(z)})$ is the analytic Toeplitz operator defined on H^2 by the relation $(T_{\varphi f})(z) = \varphi(z)f(z)$. For $\varphi \in H^{\infty}$, we shall denote $\{\varphi(z): |z| < 1\}$ by Range (φ) or $\varphi(D)$. Then $\sigma_p(T_{\varphi^*}) \supseteq \tilde{\varphi}(D)$ where $\tilde{\varphi}(z) = \overline{\varphi(\bar{z})}$ and $\sigma(T_{\varphi}) = Closure(\varphi(D))$ [1]. If $\varphi \in H^{\infty}$ maps D into D, then we define the composition operator C_{φ} on H^2 by the relation $(C_{\varphi f})(z) = f(\varphi(z))$. J. Ryff has shown [11, Theorem 1] that C_{φ} is a bounded linear operator on H^2 . In § 2 we investigate intertwining operators between analytic Toeplitz operators using composition operators, and in § 3 we study a special class of composition operators.

Acknowledgement. I would like to thank Professor J. Caughran for several helpful conversations concerning the proof of Theorem 2.

2. Intertwining analytic Toeplitz operators.

THEOREM 1 (see [1]). Let $\varphi, \psi \in H^{\infty}$. If $\psi(D) \not\subseteq \sigma(T_{\varphi})$, then the only bounded linear operator X satisfying $XT_{\varphi} = T_{\psi}X$ is X = 0.

COROLLARY 1. If $\varphi, \psi \in H^{\infty}$ are such that there exists $X \neq 0$, $Y \neq 0$ satisfying $XT_{\varphi} = T_{\psi}X$ and $T_{\varphi}Y = YT_{\psi}$, then $\sigma(T_{\varphi}) = \sigma(T_{\psi})$.

Proof. Applying Theorem 1 we see that $\psi(D) \subseteq \sigma(T_{\varphi})$ and $\varphi(D) \subseteq \sigma(T_{\psi})$. Since $\sigma(T_{\varphi}) = \text{Closure}(\varphi(D)), \sigma(T_{\varphi}) = \sigma(T_{\psi})$.

PROPOSITION 1. Let $\varphi, \psi \in H^{\infty}$. If there exists an analytic function ω mapping D into D such that $\varphi(\omega(z)) = \psi(z)$, then there exists a nonzero X such that $XT_{\varphi} = T_{\psi}X$.

Proof. Since C_{ω} is clearly nonzero and since for $f \in H^2$

$$\left(\left(C_{\omega}T_{\varphi}\right)f\right)(z) = \varphi\left(\omega(z)\right)f(\omega(z)) = \psi(z)f(\omega(z)) = \left(T_{\psi}C_{\omega}f\right)(z),$$

we have that

$$C_{\omega}T_{\varphi} = T_{\psi}C_{\omega}.$$

Received August 31, 1971 and in revised form, March 15, 1972. This research was partially supported by NSF Grant GP-16292.

THEOREM 2. Let $\varphi, \psi \in H^{\infty}, \varphi$ univalent in D. Then $\psi(D) \not\subseteq \varphi(D)$ if and only if $XT_{\varphi} = T_{\psi}X$ implies X = 0. In addition, $\bar{\varphi}(D) = \sigma_p(T_{\varphi}^*)$.

Proof. Suppose $\psi(D) \not\subseteq \varphi(D)$.

Case 1. ψ is constant, $\psi(z) = \lambda$. Then either $\lambda \notin \sigma(T_{\varphi})$ in which case X = 0by Theorem 1, or $\lambda \in \sigma(T_{\varphi}) \setminus \varphi(D)$. Suppose X satisfies $XT_{\varphi} = T_{\psi}X = \lambda X$. Then $(T_{\varphi}^* - \lambda^*)X^* = 0$, so that Range $X^* \subseteq \text{Null}(R_{\varphi}^* - \lambda^*) = \text{Range}$ $(T_{\varphi} - \lambda)^{\perp}$. Since $\lambda \notin \varphi(D)$, the univalent function $\varphi - \lambda$ never vanishes in D. Hence $\varphi - \lambda$ contains no Blaschke products, and by Theorem 3.17 in [4] (see also [9]) $\varphi - \lambda$ contains no singular inner factor. Thus the decomposition of H^2 functions into the product of an inner and an outer function [7, p. 67] implies that $\varphi - \lambda$ must be outer. But if $\varphi - \lambda$ is outer, then Range $(T_{\varphi} - \lambda)$ is dense in H^2 [7, p. 101], so that Range $X^* = \{0\}$. Thus X = 0. This also establishes that $\sigma_p(T_{\varphi^*}) = \bar{\varphi}(D)$.

Case 2. ψ is not constant. Now $N = \psi(D) \cap \mathbb{C} \setminus \varphi(D)$ is nonempty by hypothesis. Since φ is a univalent analytic function, $\varphi(D)$ is an open simply connected set, hence $\mathbb{C} \setminus \varphi(D)$ contains no isolated points. Since ψ is nonconstant, $\psi(D)$ is an open set. Thus N is the nonempty intersection of an open set and a closed set containing no isolated points, and hence N must be uncountable. The proof of Theorem 1 then implies X = 0.

Suppose $\psi(D) \subseteq \varphi(D)$. Since φ is univalent, $F(z) = \varphi^{-1}(\psi(z))$ is an analytic function mapping D into D such that $\varphi(F(z)) = \psi(z)$. Hence Proposition 1 implies there exists an $X \neq 0$ such that $XT_{\varphi} = T_{\psi}X$.

PROPOSITION 2. Let $\varphi, \psi \in H^{\infty}$ map D into D. If $\overline{C_{\varphi}H^2}$ reduces T_{φ} and if there exists K > 0 such that

(*)
$$||C_{\psi}g|| \leq K ||C_{\varphi}g|| \text{ for all } g \in H^2,$$

then there exists a bounded $X \neq 0$ such that $XT_{\varphi} = T_{\psi}X$. (We remark that (*) is equivalent to the existence of $Y \in \mathscr{B}(H)$ satisfying $YC_{\varphi} = C_{\psi}$ and to $C_{\psi}^*H^2 \subseteq C_{\varphi}^*H^2$ [2].)

Proof. Write $H^2 = \overline{C_{\varphi}H^2} \oplus (C_{\varphi}H^2)^{\perp}$ and define X on $C_{\varphi}H^2 \oplus (C_{\varphi}H^2)^{\perp}$ by

$$X(C_{\varphi}g) = C_{\psi}g \text{ for } g \in H^2$$

$$Xf = 0 \qquad \text{for } f \perp C_{\varphi}H^2.$$

Then X is well defined and (*) implies that X is bounded, so we can continuously extend it to all of H^2 . Also

$$(XT_{\varphi})f = XT_{\varphi}(C_{\varphi}g \oplus h) = X(\varphi C_{\varphi}g \oplus \varphi h)$$
$$= X(\varphi C_{\varphi}g) = \psi C_{\psi}g$$

and

$$(T_{\psi}X)f = T_{\psi}X(C_{\varphi}g \oplus h) = T_{\psi}XC_{\varphi}g$$
$$= T_{\psi}C_{\psi}g = \psi C_{\psi}g.$$

Hence $XT_{\varphi} = T_{\psi}X$ on $C_{\varphi}H^2 \oplus (C_{\varphi}H^2)^{\perp}$ and thus on H^2 .

Remarks. 1. There is no loss of generality in assuming φ , ψ map D into D, since $\tilde{\varphi} = \varphi/2M$ and $\tilde{\psi} = \psi/2M$, where $M = \max\{||\varphi||_{\omega}, ||\psi||_{\omega}\}$, map D into D, and $XT_{\tilde{\varphi}} = T_{\tilde{\psi}}X$ if and only if $XT_{\varphi} = T_{\psi}X$.

2. $\overline{C_{\varphi}H^2}$ is always invariant for T_{φ} , since $T_{\varphi}C_{\varphi} = C_{\varphi}T_z$. However, $\overline{C_{\varphi}H^2}$ need not always reduce T_{φ} (example: if $\varphi(z) = \frac{1}{2}z^2 + \frac{1}{2}z^3$ then $e_1(z) = z \in \text{Null}$ $(C_{\varphi}^*) = (C_{\varphi}H^2)^{\perp}$ but $C_{\varphi}^*T_{\varphi}e_1 = \frac{1}{2}e_1 \neq 0$).

3. Nevertheless there are examples where $\overline{C_{\varphi}H^2}$ reduces T_{φ} . If $C_{\varphi}H^2$ is dense, then $\overline{C_{\varphi}H^2}$ trivially reduces T_{φ} . If φ is an inner function, then $\overline{C_{\varphi}H^2}$ reduces T_{φ} since, in this case, $T_{\varphi}^*C_{\varphi} = C_{\varphi}(T_z^* + \bar{\varphi}(0)E)$ where (Ef)(z) = f(0). Also, if ω is an inner function and $C_{\psi}H^2$ is dense in H^2 , then $\overline{C_{\varphi}H^2}$ reduces T_{φ} for $\varphi(z) = \psi(\omega(z))$.

COROLLARY 2. Let $\varphi, \psi \in H^{\infty}, \varphi$ an inner function. Then $\overline{\psi}(D) \not\subseteq \sigma_p(T_{\varphi^*})$ if and only if $XT_{\varphi} = T_{\psi}X$ implies X = 0.

Proof. If φ is constant the statement is clear, so we assume φ is nonconstant. Hence $\sigma_p(T_{\varphi}^*) = D[\mathbf{5}, p. 230].$

Suppose $\bar{\psi}(D) \subseteq D$. By Remark 3, $\overline{C_{\varphi}H^2}$ reduces T_{φ} , and by Theorem 1 in [10], C_{φ} is bounded below, hence Proposition 2 implies there exists $X \neq 0$ such that $XT_{\varphi} = T_{\psi}X$. An alternative proof is to observe that there exists $Y \neq 0$ such that $YT_{\varphi} = T_z Y$, since T_{φ} and T_z are both isometries. Hence $X = C_{\psi}Y \neq 0$ satisfies $XT_{\varphi} = T_{\psi}X$.

Suppose $\bar{\psi}(D) \not\subseteq D$. The result then follows from Corollary 1 in [1] with (i) replaced by

(i)' Interior (Closure(
$$\sigma_p(T_{\varphi}^*)$$
)) = $\sigma_p(T_{\varphi}^*)$.

In [1] we conjectured that $\bar{\psi}(D) \not\subseteq \sigma_p(T_{\varphi}^*)$ is necessary and sufficient for $XT_{\varphi} = T_{\psi}X$ to imply X = 0. Theorem 2 and Corollary 2 establish this conjecture if φ is univalent or inner. In case φ is a polynomial, $\bar{\varphi}(D) = \sigma_p(T_{\varphi}^*)$ (see [3]). Since it can be shown that Interior ($\text{Closure}(\varphi(D))$) = $\varphi(D)$, Corollary 1 in [1] implies the sufficiency of our conjecture in case φ is a polynomial.

3. Composition operators. In this section we study the special class of composition operators C_{φ} of the form $\varphi(z) = \alpha + \beta z$, that is, $|\alpha| < 1$, $|\alpha| + |\beta| \leq 1$. E. Nordgren [10] has studied C_{φ} when φ is an inner function, while H. Schwartz [12] has obtained numerous results concerning composition operators.

THEOREM 3. (i) If $|\beta| = 1$, then $C_{\alpha+\beta z}$ is a unitary operator whose spectrum is the closure of the set $\{1, \beta, \beta^2, \ldots\}$.

- (ii) If $|\alpha| + |\beta| < 1$, then $C_{\alpha+\beta z}$ is a compact operator whose spectrum is the closure of $\{1, \beta, \beta^2, \ldots\}$.
- (iii) If $|\alpha| + |\beta| = 1$, $|\beta| \neq 1$, β not positive, then $C_{\alpha+\beta z}$ is a noncompact operator, whose square is compact, and whose spectrum is the closure of $\{1, \beta, \beta^2, \ldots\}$.

861

JAMES A. DEDDENS

(iv) If $|\alpha| + |\beta| = 1$, $|\beta| \neq 1$, β positive, then $C_{\alpha+\beta_2}$ is a cosubnormal operator whose spectrum is the closed disk of radius $\beta^{-\frac{1}{2}}$ centered at the origin.

Proof. Before beginning the proof, notice that under the natural identification between H^2 and l_+^2 (i.e., $\sum_{n=0}^{\infty} a_n z^n \to \{a_n\}_0^{\infty}$), $C_{\alpha+\beta z}$ has a matrix representation on l_+^2 as

$$C_{\alpha+\beta_{z}} \sim \begin{bmatrix} 1 & \alpha & \alpha^{2} & \alpha^{3} \dots \\ \beta & 2\alpha\beta & 3\alpha^{2}\beta \dots \\ 0 & \beta^{2} & 3\alpha\beta^{2} \dots \\ \beta^{3} & \beta^{3} \dots \end{bmatrix}$$

that is, $C_{\alpha+\beta z} \sim (a_{ij})$ where $a_{ij} = 0$ if j < i and $a_{ij} = {j \choose i} \alpha^{j-i} \beta^i$ if $j \ge i$.

Proof of 3(i). Since $|\beta| = 1$, α equals 0. Hence $C_{\alpha+\beta z}$ corresponds to a diagonal matrix all of whose entries have modulus 1. Thus $C_{\alpha+\beta z}$ is unitary with spectrum = Closure(Diagonal) = Closure(1, β, β^2, \ldots).

Proof of 3(ii). Since $|\alpha| + |\beta| = r < 1$, we have $|\alpha + \beta z| \leq r < 1$ for $|z| \leq 1$. Hence Theorem 5.2 in [12] implies that $C_{\alpha+\beta z}$ is compact with spectrum = Closure{1, β , β^2, \ldots }, and that if $\beta \neq 0$ then each β^n is a simple eigenvalue. An alternative proof is to first notice that $\sigma_p(C_{\alpha+\beta z}) \supseteq \{1, \beta, \beta^2, \ldots\}$. In fact, if $f_n(z) = (z - \alpha/(1 - \beta))^n$ then $C_{\alpha+\beta z}f_n = \beta^n f_n$. Next notice that the matrix (a_{ij}) of $C_{\alpha+\beta z}$ satisfies $\sum_{i,j=0}^{\infty} |a_{ij}| = 1/(1 - r) < \infty$, so that $C_{\alpha+\beta z}$ is compact. From this it is not hard to conclude that spectrum = Closure $\{1, \beta, \beta^2, \ldots\}$ and that each eigenvalue is simple if $\beta \neq 0$.

Proof of 3(iii). Since $|\alpha| + |\beta| = 1$, $|\beta| \neq 1$, and β is not positive, we have $|1 + \beta| < 1 + |\beta|$ and hence $|\alpha(1 + \beta)| + |\beta^2| < 1$. Because $C_{\alpha+\beta_z}^2 = C_{\alpha(1+\beta)+\beta^2_z}$, 3(ii) and the spectral mapping theorem [5, p. 38] imply that $C_{\alpha+\beta_z}^2$ is compact and that

$$(\sigma(C_{\alpha+\beta z}))^2 = \sigma(C_{\alpha+\beta z}^2) = \sigma(C_{\alpha(1+\beta)+\beta^2 z}) = \text{Closure}\{1, \beta^2, \beta^4, \ldots\}$$

Hence

$$\sigma(C_{\alpha+\beta z}) \subseteq \text{Closure}\{\pm 1, \pm \beta, \pm \beta^2, \ldots\}$$

As usual, $\sigma_p(C_{\alpha+\beta z}) \supseteq \{1, \beta, \beta^2, \ldots\}$. Recall that β^{2n} is a simple eigenvalue for $C_{\alpha+\beta z^2}$ with eigenvector $f_n(z) \equiv (z - \alpha(1+\beta)/(1-\beta^2))^n = (z - \alpha/(1-\beta))^n$, which is also the eigenvector for $C_{\alpha+\beta z}$ corresponding to the eigenvalue β^n . Hence

$$\mathcal{N} \equiv \operatorname{Null}(C_{\alpha+\beta z^2} - \beta^{2n}) = \operatorname{Null}(C_{\alpha+\beta z} - \beta^n),$$

and

$$\operatorname{Null}(C_{\alpha+\beta z}+\beta^n)=\{0\}$$

since Null $(C_{\alpha+\beta z} + \beta^n) \subseteq$ Null $(C_{\alpha+\beta z}^2 - \beta^{2n})$ and $\beta \neq 0$. We need to show that $-\beta^n \notin \sigma(C_{\alpha+\beta z})$ for $n = 0, 1, 2, \ldots$. If $-\beta^n \in \sigma(C_{\alpha+\beta z})$, then $-\beta^n \in \partial \sigma(C_{\alpha+\beta z}) \subset \sigma_a(C_{\alpha+\beta z})$ [5, p. 39]. Hence there exist y_m , $||y_m|| = 1$ such that

so

$$||(C_{\alpha+\beta z} + \beta^{*})y_{m}|| \to 0 \text{ as } m \to \infty$$

$$|(C_{\alpha+\beta z^2}-\beta^{2n})y_m|| \to 0 \text{ as } m \to \infty.$$

862

Let $y_m = y'_m \oplus y''_m \in \mathcal{N} \oplus \mathcal{N}^{\perp}$. Since $C_{\alpha+\beta z}^2$ is compact and $\beta \neq 0$, $C_{\alpha+\beta z}^2 - \beta^{2^n}$ is bounded below on \mathcal{N}^{\perp} [5, p. 91]. Hence $y_m'' \to 0$. Because $1 = ||y_m||^2 + ||y_m||^2$, there is a subsequence $\{y'_{mk}\}$ that converges weakly to g_n where $g_n \in \mathcal{N}$, $||g_n|| = 1$. Hence

$$(C_{\alpha+\beta z}+\beta^n)y_{mk}\to (C_{\alpha+\beta z}+\beta^n)g_n=0,$$

which contradicts Null $(C_{\alpha+\beta z} + \beta^n) = \{0\}$. Thus $\sigma(C_{\alpha+\beta z}) = \text{Closure}\{1, \beta, \beta^2, \ldots\}$.

In order to see that $C_{\alpha+\beta z}$ is not compact, we employ the argument on page 23 of [12]. By hypothesis $|\alpha| + |\beta| = 1$, $|\beta| \neq 1$, so that $\alpha = \rho e^{i\theta}$ and $\beta = (1-\rho)e^{i\eta}$ where $0 < \rho < 1$. If we define $f_n(z) = 1/\sqrt{n}$ $(e^{i\theta} - z + z/n)^{-1}$ then $f_n \in H^2$, $\frac{1}{2} \leq ||f_n||^2 \leq 1$, and $f_n \to 0$ uniformly on compact subsets of D. Also $||C_{\alpha+\beta z} f_n||^2 \geq ||f_n||^2 \geq \frac{1}{2}$. Theorem 2.5 in [12] then implies that $C_{\alpha+\beta z}$ is not compact.

Proof of 3(iv). We first consider the case when α is positive. Then $\alpha + \beta = 1$. Define C_0^* to be that operator on H^2 whose matrix representation under the natural identification between H^2 and l_{+}^2 is

$$C_{0}^{*} \sim \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \cdots \\ 0 & \frac{1}{2} & \frac{1}{3} \cdots \\ & & \frac{1}{3} \cdots \end{bmatrix}$$

That is, $C_0^* \sim (b_{ij})$ where $b_{ij} = 0$ if j < i and $b_{ij} = 1/j$ if $j \ge i$. Then C_0^* is a bounded linear operator on H^2 and a simple calculation shows that $C_{\alpha+\beta z}$ commutes with C_0^* . The operator C_0 on l_+^2 is called the Cesaro operator [6, p. 96]. A theorem of Shields and Wallen [13] then implies that there is a bounded analytic function F on $\{z: |1 - z| < 1\}$ such that $C_{\alpha+\beta z} = F(C_0^*)$, $\sigma(C_{\alpha+\beta z}) = \text{Closure}\{F(z): |1 - z| < 1\}$ and $||C_{\alpha+\beta z}|| = \sup\{|\lambda|: \lambda \in \sigma(C_{\alpha+\beta z})\}$. Since we obviously must have $F(1/n) = \beta^{n-1}$ for $n = 1, 2, \ldots; F(z) = \beta^{(1/z)-1}$ is the required function. Hence

$$\sigma(C_{\alpha+\beta z}) = \operatorname{Closure} \{F(z) \colon |1-z| < 1\}$$

= Closure $\{\beta^{(1/z)-1} \colon |1-z| < 1\}$
= $\{\lambda \colon |\lambda| \leq \beta^{-\frac{1}{2}}\}.$

and

$$||C_{\alpha+\beta z}|| = \sup\{|\lambda|: \lambda \in \sigma(C_{\alpha+\beta z})\} = \beta^{-\frac{1}{2}}.$$

A theorem of Kriete and Trutt [8] states that C_0 is a subnormal operator with a cyclic vector and hence every operator commuting with C_0 is subnormal [14]. Thus $C_{\alpha+\beta z}$ is cosubnormal. We remark that $C_{\alpha+\beta z}$ is the adjoint of the Euler summability matrix of order $\alpha/(1-\alpha)$ [6, p. 178]. Thus the spectrum of the Euler matrix of order $\alpha/(1-\alpha)$ on l^2 is $\{z: |z| \leq (1-\alpha)^{-\frac{1}{2}}\}$.

We next consider the case when α is not positive. Then $\alpha = |\alpha|e^{i\theta}$ and $|\alpha| + \beta = 1$. However, it is easily checked using the unitary operator $C_{e^{i\theta}z}$ that $C_{\alpha+\beta z}$ is unitarily equivalent to $C_{|\alpha|+\beta z}$. Hence $C_{\alpha+\beta z}$ is again a cosubnormal operator whose spectrum is the closed disk of radius $\beta^{-\frac{1}{2}}$ centered at the origin.

An alternative proof for 3(iv) would be to first try and prove that $||C_{\alpha+\beta_z}|| = \beta^{-(\frac{1}{2})}$ and then notice that $(1-z)^{(1/\lambda)-1}$ is an eigenvector for $C_{\alpha+\beta_z}$ corresponding to the eigenvalue $\beta^{(1/\lambda)-1}$ where $|1-\lambda| < 1$.

Notice that if $\beta \neq 1$ then $\alpha/(1-\beta)$ is the only fixed point of $\varphi(z) = \alpha + \beta z$. We remark that the real distinction between 3(iv) and 3(i-iii) is that in 3(iv) the fixed point of φ is on the unit circle, while in 3(i-iii) the fixed point of φ is in *D*.

Theorem 3(iii) can be generalized in the following manner. If $\varphi \in H^{\infty}$ maps D into D, define $\varphi_n \in H^{\infty}$ inductively by $\varphi_1(z) = \varphi(z), \varphi_n(z) = \varphi_{n-1}(\varphi(z))$.

PROPOSITION 3. Suppose that $\varphi \in H^{\infty}$ maps D into D and that for some integer n there is an r, 0 < r < 1, such that $|\varphi_n(z)| \leq r < 1$ for all |z| < 1. Then C_{φ}^n is compact. Furthermore, if φ has a fixed point z_0 in D and $\beta = \varphi'(z_0)$, then $\sigma(C_{\varphi}) = \text{Closure}\{1, \beta, \beta^2, \ldots\}$.

Proof. By Theorem 5.2 in [12], $C_{\varphi}^{n} = C_{\varphi_{n}}$ is compact. The last statement follows as in Theorem 3(iii).

Remarks. 4. H. Schwartz in [12] proves that if $\varphi \in H^{\infty}$ maps D into D and has a fixed point z_0 in D and if $\varphi'(z_0) \neq 0$ then $\{\varphi'(z_0)^n\}_{n=0}^{\infty}$ are eigenvalues for C_{φ} and these are the only eigenvalues. In Theorem 3(iv) and Theorems 5 and 6 in [10] the eigenvalues are related to the fixed points of φ on the unit circle. Is there some general connection between fixed points of φ on the unit circle and eigenvalues for C_{φ} ?

5. Using Schur's test [5, p. 22] one can show that $||C_{\alpha+\beta z}|| \leq (1 - |\alpha|)^{-\frac{1}{2}}$. Is this an equality?

6. Theorem 3(iii) yields perhaps the worst possible example of a noncompact operator T whose square is compact, since T and T^2 possess common simple eigenvectors that span H^2 .

References

- 1. J. A. Deddens, Intertwining analytic Toeplitz operators, Michigan Math. J. 18 (1971), 243-246.
- 2. R. G. Douglas, On majorization, factorization and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415.
- 3. P. L. Duren, On the spectrum of a Toeplitz operator, Pacific J. Math. 14 (1964), 21-29.
- 4. ——— Theory of H^p spaces (Academic Press, New York, 1970).
- 5. P. R. Halmos, A Hilbert space problem book (Van Nostrand, Princeton, 1967).
- 6. G. H. Hardy, Divergent series (Oxford University Press, Oxford, 1949).
- 7. K. Hoffman, Banach spaces of analytic functions (Prentice Hall, Englewood Cliffs, 1962).
- 8. K. L. Kriete and David Trutt, The Cesaro operator in l² is subnormal, Amer. J. Math., 93 (1971), 215-225.
- A. J. Lohwater and Frank Ryan, A distortion theorem for a class of conformal mappings, Mathematical essays dedicated to A. J. MacIntyre (Ohio University Press, Athens, 1970).
- 10. E. A. Nordgren, Composition operators, Can. J. Math. 20 (1968), 442-449.
- 11. J. V. Ryff, Subordinate H^p functions, Duke Math. J., 33 (1966), 347-354.

- H. J. Schwartz, Composition operators on H^p, Doctoral dissertation, University of Toledo, 1969.
- 13. A. L. Shields and L. J. Wallen, The commutants of certain Hilbert space operators, Indiana J. Math. 20 (1971), 777-788.
- 14. T. Yoshino, Subnormal operator with a cyclic vector, Tôhoku Math. J. 21 (1969), 49-55.

University of Kansas, Lawrence, Kansas