ANALYTIC TOEPLITZ AND COMPOSITION OPERATORS

JAMES A. DEDDENS

1. Introduction. This paper is a continuation of [1] where we began the study of intertwining analytic Toeplitz operators. Recall that X intertwines two operators A and B if $X A=B X$. Let H^{2} be the Hilbert space of analytic functions in the open unit disk D for which the functions $f_{r}(\theta)=f\left(r e^{i \theta}\right)$ are bounded in the L^{2} norm, and H^{∞} be the set of bounded functions in H^{2}. For $\varphi \in H^{\infty}, T_{\varphi}\left(\right.$ or $\left.T_{\varphi(z)}\right)$ is the analytic Toeplitz operator defined on H^{2} by the relation $\left(T_{\varphi} f\right)(z)=\varphi(z) f(z)$. For $\varphi \in H^{\infty}$, we shall denote $\{\varphi(z):|z|<1\}$ by Range (φ) or $\varphi(D)$. Then $\sigma_{p}\left(T_{\varphi}{ }^{*}\right) \supseteq \bar{\varphi}(D)$ where $\bar{\varphi}(z)=\varphi(\bar{z})$ and $\sigma\left(T_{\varphi}\right)=$ Closure ($\varphi(D)$) [1]. If $\varphi \in H^{\infty}$ maps D into D, then we define the composition operator C_{φ} on H^{2} by the relation $\left(C_{\varphi} f\right)(z)=f(\varphi(z))$. J. Ryff has shown [11, Theorem 1] that C_{φ} is a bounded linear operator on H^{2}. In § 2 we investigate intertwining operators between analytic Toeplitz operators using composition operators, and in $\S 3$ we study a special class of composition operators.

Acknowledgement. I would like to thank Professor J. Caughran for several helpful conversations concerning the proof of Theorem 2.

2. Intertwining analytic Toeplitz operators.

Theorem 1 (see [1]). Let $\varphi, \psi \in H^{\infty}$. If $\psi(D) \nsubseteq \sigma\left(T_{\varphi}\right)$, then the only bounded linear operator X satisfying $X T_{\varphi}=T_{\psi} X$ is $X=0$.

Corollary 1. If $\varphi, \psi \in H^{\infty}$ are such that there exists $X \neq 0, Y \neq 0$ satisfying $X T_{\varphi}=T_{\psi} X$ and $T_{\varphi} Y=Y T_{\psi}$, then $\sigma\left(T_{\varphi}\right)=\sigma\left(T_{\psi}\right)$.

Proof. Applying Theorem 1 we see that $\psi(D) \subseteq \sigma\left(T_{\varphi}\right)$ and $\varphi(D) \subseteq \sigma\left(T_{\psi}\right)$. Since $\sigma\left(T_{\varphi}\right)=$ Closure $(\varphi(D)), \sigma\left(T_{\varphi}\right)=\sigma\left(T_{\psi}\right)$.

Proposition 1. Let $\varphi, \psi \in H^{\infty}$. If there exists an analytic function ω mapping D into D such that $\varphi(\omega(z))=\psi(z)$, then there exists a nonzero X such that $X T_{\varphi}=T_{\psi} X$.

Proof. Since C_{ω} is clearly nonzero and since for $f \in H^{2}$

$$
\left(\left(C_{\omega} T_{\varphi}\right) f\right)(z)=\varphi(\omega(z)) f(\omega(z))=\psi(z) f(\omega(z))=\left(T_{\psi} C_{\omega} f\right)(z),
$$

we have that

$$
C_{\omega} T_{\varphi}=T_{\psi} C_{\omega} .
$$

[^0]Theorem 2. Let $\varphi, \psi \in H^{\infty}$, φ univalent in D. Then $\psi(D) \nsubseteq \varphi(D)$ if and only if $X T_{\varphi}=T_{\psi} X$ implies $X=0$. In addition, $\bar{\varphi}(D)=\sigma_{p}\left(T_{\varphi}{ }^{*}\right)$.

Proof. Suppose $\psi(D) \nsubseteq \varphi(D)$.
Case $1 . \psi$ is constant, $\psi(z)=\lambda$. Then either $\lambda \notin \sigma\left(T_{\varphi}\right)$ in which case $X=0$ by Theorem 1, or $\lambda \in \sigma\left(T_{\varphi}\right) \backslash \varphi(D)$. Suppose X satisfies $X T_{\varphi}=T_{\psi} X=\lambda X$. Then $\left(T_{\varphi}{ }^{*}-\lambda^{*}\right) X^{*}=0$, so that Range $X^{*} \subseteq \operatorname{Null}\left(R_{\varphi}{ }^{*}-\lambda^{*}\right)=$ Range $\left(T_{\varphi}-\lambda\right)^{\perp}$. Since $\lambda \notin \varphi(D)$, the univalent function $\varphi-\lambda$ never vanishes in D. Hence $\varphi-\lambda$ contains no Blaschke products, and by Theorem 3.17 in [4] (see also [9]) $\varphi-\lambda$ contains no singular inner factor. Thus the decomposition of H^{2} functions into the product of an inner and an outer function [7, p. 67] implies that $\varphi-\lambda$ must be outer. But if $\varphi-\lambda$ is outer, then Range $\left(T_{\varphi}-\lambda\right)$ is dense in H^{2} [7, p. 101], so that Range $X^{*}=\{0\}$. Thus $X=0$. This also establishes that $\sigma_{p}\left(T_{\varphi}{ }^{*}\right)=\bar{\varphi}(D)$.

Case $2 . \psi$ is not constant. Now $N=\psi(D) \cap \mathbf{C} \backslash \varphi(D)$ is nonempty by hypothesis. Since φ is a univalent analytic function, $\varphi(D)$ is an open simply connected set, hence $\mathbf{C} \backslash \varphi(D)$ contains no isolated points. Since ψ is nonconstant, $\psi(D)$ is an open set. Thus N is the nonempty intersection of an open set and a closed set containing no isolated points, and hence N must be uncountable. The proof of Theorem 1 then implies $X=0$.

Suppose $\psi(D) \subseteq \varphi(D)$. Since φ is univalent, $F(z)=\varphi^{-1}(\psi(z))$ is an analytic function mapping D into D such that $\varphi(F(z))=\psi(z)$. Hence Proposition 1 implies there exists an $X \neq 0$ such that $X T_{\varphi}=T_{\psi} X$.
Proposition 2. Let $\varphi, \psi \in H^{\infty} \operatorname{map} D$ into D. If $\overline{C_{\varphi} H^{2}}$ reduces T_{φ} and if there exists $K>0$ such that

$$
\begin{equation*}
\left|\left|C_{\psi} g\right|\right| \leqq K| | C_{\varphi} g| | \text { for all } g \in H^{2} \tag{*}
\end{equation*}
$$

then there exists a bounded $X \neq 0$ such that $X T_{\varphi}=T_{\psi} X$. (We remark that ${ }^{(*)}$) is equivalent to the existence of $Y \in \mathscr{B}(H)$ satisfying $Y C_{\varphi}=C_{\psi}$ and to $C_{\psi}{ }^{*} H^{2} \subseteq C_{\varphi}{ }^{*} H^{2}$ [2].)

Proof. Write $H^{2}=\overline{C_{\varphi} H^{2}} \oplus\left(C_{\varphi} H^{2}\right)^{\perp}$ and define X on $C_{\varphi} H^{2} \oplus\left(C_{\varphi} H^{2}\right)^{\perp}$ by

$$
\begin{array}{ll}
X\left(C_{\varphi} g\right)=C_{\psi} g \text { for } g \in H^{2} \\
X f=0 & \text { for } f \perp C_{\varphi} H^{2} .
\end{array}
$$

Then X is well defined and $\left(^{*}\right)$ implies that X is bounded, so we can continuously extend it to all of H^{2}. Also

$$
\begin{aligned}
\left(X T_{\varphi}\right) f & =X T_{\varphi}\left(C_{\varphi} g \oplus h\right)=X\left(\varphi C_{\varphi} g \oplus \varphi h\right) \\
& =X\left(\varphi C_{\varphi} g\right)=\psi C_{\psi} g
\end{aligned}
$$

and

$$
\begin{aligned}
\left(T_{\psi} X\right) f & =T_{\psi} X\left(C_{\varphi} g \oplus h\right)=T_{\psi} X C_{\varphi} g \\
& =T_{\psi} C_{\psi} g=\psi C_{\psi} g .
\end{aligned}
$$

Hence $X T_{\varphi}=T_{\psi} X$ on $C_{\varphi} H^{2} \oplus\left(C_{\varphi} H^{2}\right)^{\perp}$ and thus on H^{2}.

Remarks. 1. There is no loss of generality in assuming φ, ψ map D into D, since $\tilde{\varphi}=\varphi / 2 M$ and $\tilde{\psi}=\psi / 2 M$, where $M=\max \left\{\|\varphi\|_{\infty},\|\psi\|_{\infty}\right\}$, map D into D, and $X T_{\tilde{\varphi}}=T_{\tilde{\psi}} X$ if and only if $X T_{\varphi}=T_{\psi} X$.
2. $\overline{C_{\varphi} H^{2}}$ is always invariant for T_{φ}, since $T_{\varphi} C_{\varphi}=C_{\varphi} T_{z}$. However, $\overline{C_{\varphi} H^{2}}$ need not always reduce T_{φ} (example: if $\varphi(z)=\frac{1}{2} z^{2}+\frac{1}{2} z^{3}$ then $e_{1}(z)=z \in$ Null $\left(C_{\varphi}{ }^{*}\right)=\left(C_{\varphi} H^{2}\right)^{\perp}$ but $\left.C_{\varphi}{ }^{*} T_{\varphi} e_{1}=\frac{1}{2} e_{1} \neq 0\right)$.
3. Nevertheless there are examples where $\overline{C_{\varphi} H^{2}}$ reduces T_{φ}. If $C_{\varphi} H^{2}$ is dense, then $\overline{C_{\varphi} H^{2}}$ trivially reduces T_{φ}. If φ is an inner function, then $\overline{C_{\varphi} H^{2}}$ reduces T_{φ} since, in this case, $T_{\varphi}^{*} C_{\varphi}=C_{\varphi}\left(T_{z}^{*}+\bar{\varphi}(0) E\right)$ where $(E f)(z)=f(0)$. Also, if ω is an inner function and $C_{\psi} H^{2}$ is dense in H^{2}, then $\overline{C_{\varphi} H^{2}}$ reduces T_{φ} for $\varphi(z)=\psi(\omega(z))$.

Corollary 2. Let $\varphi, \psi \in H^{\infty}, \varphi$ an inner function. Then $\bar{\psi}(D) \nsubseteq \sigma_{p}\left(T_{\varphi}{ }^{*}\right)$ if and only if $X T_{\varphi}=T_{\psi} X$ implies $X=0$.

Proof. If φ is constant the statement is clear, so we assume φ is nonconstant. Hence $\sigma_{p}\left(T_{\varphi}{ }^{*}\right)=D[5$, p. 230].

Suppose $\bar{\psi}(D) \subseteq D$. By Remark $3, \overline{C_{\varphi} H^{2}}$ reduces T_{φ}, and by Theorem 1 in [10], C_{φ} is bounded below, hence Proposition 2 implies there exists $X \neq 0$ such that $X T_{\varphi}=T_{\psi} X$. An alternative proof is to observe that there exists $Y \neq 0$ such that $Y T_{\varphi}=T_{z} Y$, since T_{φ} and T_{z} are both isometries. Hence $X=C_{\psi} Y \neq 0$ satisfies $X T_{\varphi}=T_{\psi} X$.

Suppose $\bar{\psi}(D) \nsubseteq D$. The result then follows from Corollary 1 in [1] with (i) replaced by

$$
\begin{equation*}
\text { Interior }\left(\operatorname{Closure}\left(\sigma_{p}\left(T_{\varphi}^{*}\right)\right)\right)=\sigma_{p}\left(T_{\varphi}^{*}\right) \tag{i}
\end{equation*}
$$

In [1] we conjectured that $\bar{\psi}(D) \nsubseteq \sigma_{p}\left(T_{\varphi}{ }^{*}\right)$ is necessary and sufficient for $X T_{\varphi}=T_{\psi} X$ to imply $X=0$. Theorem 2 and Corollary 2 establish this conjecture if φ is univalent or inner. In case φ is a polynomial, $\bar{\varphi}(D)=\sigma_{p}\left(T_{\varphi}{ }^{*}\right)$ (see [3]). Since it can be shown that Interior (Closure $(\varphi(D))$) $=\varphi(D)$, Corollary 1 in [1] implies the sufficiency of our conjecture in case φ is a polynomial.
3. Composition operators. In this section we study the special class of composition operators C_{φ} of the form $\varphi(z)=\alpha+\beta z$, that is, $|\alpha|<1,|\alpha|+$ $|\beta| \leqq 1$. E. Nordgren [10] has studied C_{φ} when φ is an inner function, while H. Schwartz [12] has obtained numerous results concerning composition operators.

Theorem 3. (i) If $|\beta|=1$, then $C_{\alpha+\beta z}$ is a unitary operator whose spectrum is the closure of the set $\left\{1, \beta, \beta^{2}, \ldots\right\}$.
(ii) If $|\alpha|+|\beta|<1$, then $C_{\alpha+\beta z}$ is a compact operator whose spectrum is the closure of $\left\{1, \beta, \beta^{2}, \ldots\right\}$.
(iii) If $|\alpha|+|\beta|=1,|\beta| \neq 1, \beta$ not positive, then $C_{\alpha+\beta z}$ is a noncompact operator, whose square is compact, and whose spectrum is the closure of $\left\{1, \beta, \beta^{2}, \ldots\right\}$.
(iv) If $|\alpha|+|\beta|=1,|\beta| \neq 1, \beta$ positive, then $C_{\alpha+\beta_{z}}$ is a cosubnormal operator whose spectrum is the closed disk of radius $\beta^{-\frac{1}{2}}$ centered at the origin.
Proof. Before beginning the proof, notice that under the natural identification between H^{2} and l_{+}^{2} (i.e., $\sum_{n=0}^{\infty} a_{n} z^{n} \rightarrow\left\{a_{n}\right\}_{0}^{\infty}$), $C_{\alpha+\beta z}$ has a matrix representation on $l_{+}{ }^{2}$ as

$$
\mathrm{C}_{\alpha+\beta z} \sim\left[\begin{array}{lllr}
1 & \alpha & \alpha^{2} & \alpha^{3} \ldots \\
& \beta & 2 \alpha \beta & 3 \alpha^{2} \beta \ldots \\
& \beta^{2} & 3 \alpha \beta^{2} \ldots \\
& & & \beta^{3} \cdot .
\end{array}\right]
$$

that is, $C_{\alpha+\beta z} \sim\left(a_{i j}\right)$ where $a_{i j}=0$ if $j<i$ and $a_{i j}=\binom{j}{i} \alpha^{j-i} \beta^{2}$ if $j \geqq i$.
Proof of 3(i). Since $|\beta|=1, \alpha$ equals 0 . Hence $C_{\alpha+\beta z}$ corresponds to a diagonal matrix all of whose entries have modulus 1 . Thus $C_{\alpha+\beta z}$ is unitary with spectrum $=$ Closure (Diagonal) $=$ Closure ($1, \beta, \beta^{2}, \ldots$).

Proof of 3 (ii). Since $|\alpha|+|\beta|=r<1$, we have $|\alpha+\beta z| \leqq r<1$ for $|z| \leqq 1$. Hence Theorem 5.2 in [12] implies that $C_{\alpha+\beta z}$ is compact with spectrum $=$ Closure $\left\{1, \beta, \beta^{2}, \ldots\right\}$, and that if $\beta \neq 0$ then each β^{n} is a simple eigenvalue. An alternative proof is to first notice that $\sigma_{p}\left(C_{\alpha+\beta z}\right) \supseteq\left\{1, \beta, \beta^{2}, \ldots\right\}$. In fact, if $f_{n}(z)=(z-\alpha /(1-\beta))^{n}$ then $C_{\alpha+\beta z} f_{n}=\beta^{n} f_{n}$. Next notice that the matrix $\left(a_{i j}\right)$ of $C_{\alpha+\beta z}$ satisfies $\sum_{i, j=0}^{\infty}\left|a_{i j}\right|=1 /(1-r)<\infty$, so that $C_{\alpha+\beta z}$ is compact. From this it is not hard to conclude that spectrum $=$ Closure $\left\{1, \beta, \beta^{2}, \ldots\right\}$ and that each eigenvalue is simple if $\beta \neq 0$.

Proof of 3 (iii). Since $|\alpha|+|\beta|=1,|\beta| \neq 1$, and β is not positive, we have $|1+\beta|<1+|\beta|$ and hence $|\alpha(1+\beta)|+\left|\beta^{2}\right|<1$. Because $C_{\alpha+\beta z}{ }^{2}=$ $C_{\alpha(1+\beta)+\beta^{2} z}, 3$ (ii) and the spectral mapping theorem [5, p. 38] imply that $C_{\alpha+\beta z}{ }^{2}$ is compact and that

$$
\left(\sigma\left(C_{\alpha+\beta z}\right)\right)^{2}=\sigma\left(C_{\alpha+\beta z}{ }^{2}\right)=\sigma\left(C_{\alpha(1+\beta)+\beta^{2} z}\right)=\text { Closure }\left\{1, \beta^{2}, \beta^{4}, \ldots\right\} .
$$

Hence

$$
\sigma\left(C_{\alpha+\beta z}\right) \subseteq \text { Closure }\left\{ \pm 1, \pm \beta, \pm \beta^{2}, \ldots\right\}
$$

As usual, $\sigma_{p}\left(C_{\alpha+\beta z}\right) \supseteq\left\{1, \beta, \beta^{2}, \ldots\right\}$. Recall that $\beta^{2 n}$ is a simple eigenvalue for $C_{\alpha+\beta z}{ }^{2}$ with eigenvector $f_{n}(z) \equiv\left(z-\alpha(1+\beta) /\left(1-\beta^{2}\right)\right)^{n}=(z-\alpha /(1-\beta))^{n}$, which is also the eigenvector for $C_{\alpha+\beta z}$ corresponding to the eigenvalue β^{n}. Hence

$$
\mathcal{N} \equiv \operatorname{Null}\left(C_{\alpha+\beta z}{ }^{2}-\beta^{2 n}\right)=\operatorname{Null}\left(C_{\alpha+\beta z}-\beta^{n}\right)
$$

and

$$
\operatorname{Null}\left(C_{\alpha+\beta z}+\beta^{n}\right)=\{0\},
$$

since $\operatorname{Null}\left(C_{\alpha+\beta_{2}}+\beta^{n}\right) \subseteq \operatorname{Null}\left(C_{\alpha+\beta_{2}}{ }^{2}-\beta^{2 n}\right)$ and $\beta \neq 0$. We need to show that $-\beta^{n} \notin \sigma\left(C_{\alpha+\beta_{z}}\right)$ for $n=0,1,2, \ldots$ If $-\beta^{n} \in \sigma\left(C_{\alpha+\beta_{z}}\right)$, then $-\beta^{n} \in \partial \sigma\left(C_{\alpha+\beta z}\right) \subset \sigma_{a}\left(C_{\alpha+\beta z}\right)\left[5\right.$, p. 39]. Hence there exist $y_{m},\left\|y_{m}\right\|=1$ such that

$$
\left\|\left(C_{\alpha+\beta z}+\beta^{n}\right) y_{m}\right\| \rightarrow 0 \text { as } m \rightarrow \infty
$$

so

$$
\left\|\left(C_{\alpha+\beta z}{ }^{2}-\beta^{2 n}\right) y_{m}\right\| \rightarrow 0 \text { as } m \rightarrow \infty .
$$

Let $y_{m}=y^{\prime}{ }_{m} \oplus y^{\prime \prime}{ }_{m} \in \mathscr{N} \oplus \mathscr{N} \perp$. Since $C_{\alpha+\beta z}{ }^{2}$ is compact and $\beta \neq 0, C_{\alpha+\beta z}{ }^{2}-$ $\beta^{2 n}$ is bounded below on $\mathscr{N} \perp$ [5, p. 91]. Hence $y_{m}{ }^{\prime \prime} \rightarrow 0$. Because $1=\left\|y_{m}\right\|^{2}+$ $\left\|y_{m}\right\|^{2}$, there is a subsequence $\left\{y^{\prime}{ }_{m k}\right\}$ that converges weakly to g_{n} where $g_{n} \in \mathcal{N}$, $\left\|g_{n}\right\|=1$. Hence

$$
\left(C_{\alpha+\beta z}+\beta^{n}\right) y_{m_{k}} \rightarrow\left(C_{\alpha+\beta z}+\beta^{n}\right) g_{n}=0,
$$

which contradicts $\operatorname{Null}\left(C_{\alpha+\beta z}+\beta^{n}\right)=\{0\}$. Thus $\sigma\left(C_{\alpha+\beta z}\right)=$ Closure $\{1, \beta$, $\left.\beta^{2}, \ldots\right\}$.

In order to see that $C_{\alpha+\beta z}$ is not compact, we employ the argument on page 23 of [12]. By hypothesis $|\alpha|+|\beta|=1,|\beta| \neq 1$, so that $\alpha=\rho e^{i \theta}$ and $\beta=(1-\rho) e^{i \eta}$ where $0<\rho<1$. If we define $f_{n}(z)=1 / \sqrt{n}\left(e^{i \theta}-z+z / n\right)^{-1}$ then $f_{n} \in H^{2}$, $\frac{1}{2} \leqq\left\|f_{n}\right\|^{2} \leqq 1$, and $f_{n} \rightarrow 0$ uniformly on compact subsets of D. Also $\left\|C_{\alpha+\beta z} f_{n}\right\|^{2} \geqq\left\|f_{n}\right\|^{2} \geqq \frac{1}{2}$. Theorem 2.5 in $[12]$ then implies that $C_{\alpha+\beta z}$ is not compact.

Proof of 3 (iv). We first consider the case when α is positive. Then $\alpha+\beta=1$. Define $C_{0}{ }^{*}$ to be that operator on H^{2} whose matrix representation under the natural identification between H^{2} and l_{+}^{2} is

$$
\mathrm{C}_{0}{ }^{*} \sim\left[\begin{array}{ccc}
1 & \frac{1}{2} & \frac{1}{3} \cdots \\
0 & \frac{1}{2} & \frac{1}{3} \cdots \\
& & \frac{1}{3} \cdot .
\end{array}\right]
$$

That is, $C_{0}{ }^{*} \sim\left(b_{i j}\right)$ where $b_{i j}=0$ if $j<i$ and $b_{i j}=1 / j$ if $j \geqq i$. Then $C_{0}{ }^{*}$ is a bounded linear operator on H^{2} and a simple calculation shows that $C_{\alpha+\beta_{z}}$ commutes with $C_{0}{ }^{*}$. The operator C_{0} on $l_{+}{ }^{2}$ is called the Cesaro operator [$\mathbf{6}$, p. 96]. A theorem of Shields and Wallen [13] then implies that there is a bounded analytic function F on $\{z:|1-z|<1\}$ such that $C_{\alpha+\beta z}=F\left(C_{0}{ }^{*}\right)$, $\sigma\left(C_{\alpha+\beta_{z}}\right)=\operatorname{Closure}\{F(z):|1-z|<1\}$ and $\| C_{\alpha+\beta_{z}}| |=\sup \left\{|\lambda|: \lambda \in \sigma\left(C_{\alpha+\beta_{z}}\right)\right\}$. Since we obviously must have $F(1 / n)=\beta^{n-1}$ for $n=1,2, \ldots ; F(z)=$ $\beta^{(1 / z)-1}$ is the required function. Hence

$$
\begin{aligned}
\sigma\left(C_{\alpha+\beta z}\right) & =\text { Closure }\{F(z):|1-z|<1\} \\
& =\text { Closure }\left\{\beta^{(1 / z)-1}:|1-z|<1\right\} \\
& =\left\{\lambda:|\lambda| \leqq \beta^{-\frac{1}{2}}\right\} .
\end{aligned}
$$

and

$$
\left\|C_{\alpha+\beta_{z}}\right\|=\sup \left\{|\lambda|: \lambda \in \sigma\left(C_{\alpha+\beta_{z}}\right)\right\}=\beta^{-\frac{1}{2}} .
$$

A theorem of Kriete and Trutt [8] states that C_{0} is a subnormal operator with a cyclic vector and hence every operator commuting with C_{0} is subnormal [14]. Thus $C_{\alpha+\beta z}$ is cosubnormal. We remark that $C_{\alpha+\beta z}$ is the adjoint of the Euler summability matrix of order $\alpha /(1-\alpha)$ [6, p. 178]. Thus the spectrum of the Euler matrix of order $\alpha /(1-\alpha)$ on l^{2} is $\left\{z:|z| \leqq(1-\alpha)^{-\frac{1}{2}}\right\}$.

We next consider the case when α is not positive. Then $\alpha=|\alpha| e^{i \theta}$ and $|\alpha|+\beta=1$. However, it is easily checked using the unitary operator $C_{e}{ }^{i \theta_{z}}$ that $C_{\alpha+\beta_{z}}$ is unitarily equivalent to $C_{|\alpha|+\beta z}$. Hence $C_{\alpha+\beta z}$ is again a cosubnormal operator whose spectrum is the closed disk of radius $\beta^{-\frac{1}{2}}$ centered at the origin.

An alternative proof for 3 (iv) would be to first try and prove that $\left\|C_{\alpha+\beta z}\right\|=$ $\beta^{-\left(\frac{1}{2}\right)}$ and then notice that $\left.(1-z)^{(1 / \lambda}\right)^{-1}$ is an eigenvector for $C_{\alpha+\beta z}$ corresponding to the eigenvalue $\beta^{(1 / \lambda)-1}$ where $|1-\lambda|<1$.

Notice that if $\beta \neq 1$ then $\alpha /(1-\beta)$ is the only fixed point of $\varphi(z)=$ $\alpha+\beta z$. We remark that the real distinction between 3 (iv) and 3 ($\mathrm{i}-\mathrm{iii}$) is that in 3 (iv) the fixed point of φ is on the unit circle, while in 3 (i -iii) the fixed point of φ is in D.

Theorem 3(iii) can be generalized in the following manner. If $\varphi \in H^{\infty}$ maps D into D, define $\varphi_{n} \in H^{\infty}$ inductively by $\varphi_{1}(z)=\varphi(z), \varphi_{n}(z)=\varphi_{n-1}(\varphi(z))$.

Proposition 3. Suppose that $\varphi \in H^{\infty}$ maps D into D and that for some integer n there is an $r, 0<r<1$, such that $\left|\varphi_{n}(z)\right| \leqq r<1$ for all $|z|<1$. Then $C_{\varphi}{ }^{n}$ is compact. Furthermore, if φ has a fixed point z_{0} in D and $\beta=\varphi^{\prime}\left(z_{0}\right)$, then $\sigma\left(C_{\varphi}\right)=$ Closure $\left\{1, \beta, \beta^{2}, \ldots\right\}$.

Proof. By Theorem 5.2 in [12], $C_{\varphi}{ }^{n}=C_{\varphi_{n}}$ is compact. The last statement follows as in Theorem 3(iii).

Remarks. 4. H. Schwartz in [12] proves that if $\varphi \in H^{\infty}$ maps D into D and has a fixed point z_{0} in D and if $\varphi^{\prime}\left(z_{0}\right) \neq 0$ then $\left\{\varphi^{\prime}\left(z_{0}\right)^{n}\right\}_{n=0}^{\infty}$ are eigenvalues for C_{φ} and these are the only eigenvalues. In Theorem 3(iv) and Theorems 5 and 6 in [10] the eigenvalues are related to the fixed points of φ on the unit circle. Is there some general connection between fixed points of φ on the unit circle and eigenvalues for C_{φ} ?
5. Using Schur's test [5, p. 22] one can show that $\left\|C_{\alpha+\beta z}\right\| \leqq(1-|\alpha|)^{-\frac{1}{2}}$. Is this an equality?
6. Theorem 3 (iii) yields perhaps the worst possible example of a noncompact operator T whose square is compact, since T and T^{2} possess common simple eigenvectors that span H^{2}.

References

1. J. A. Deddens, Intertwining analytic Toeplitz operators, Michigan Math. J. 18 (1971), 243-246.
2. R. G. Douglas, On majorization, factorization and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415.
3. P. L. Duren, On the spectrum of a Toeplitz operator, Pacific J. Math. 14 (1964), 21-29.
4. - Theory of H^{p} spaces (Academic Press, New York, 1970).
5. P. R. Halmos, A Hilbert space problem book (Van Nostrand, Princeton, 1967).
6. G. H. Hardy, Divergent series (Oxford University Press, Oxford, 1949).
7. K. Hoffman, Banach spaces of analytic functions (Prentice Hall, Englewood Cliffs, 1962).
8. K. L. Kriete and David Trutt, The Cesaro operator in l^{2} is subnormal, Amer. J. Math., 93 (1971), 215-225.
9. A. J. Lohwater and Frank Ryan, A distortion theorem for a class of conformal mappings, Mathematical essays dedicated to A. J. MacIntyre (Ohio University Press, Athens, 1970).
10. E. A. Nordgren, Composition operators, Can. J. Math. 20 (1968), 442-449.
11. J. V. Ryff, Subordinate H^{p} functions, Duke Math. J., 33 (1966), 347-354.
12. H. J. Schwartz, Composition operators on H^{p}, Doctoral dissertation, University of Toledo, 1969.
13. A. L. Shields and L. J. Wallen, The commutants of certain Hilbert space operators, Indiana J. Math. 20 (1971), 777-788.
14. T. Yoshino, Subnormal operator with a cyclic vector, Tôhoku Math. J. 21 (1969), 49-55.

University of Kansas,
Lawrence, Kansas

[^0]: Received August 31, 1971 and in revised form, March 15, 1972. This research was partially supported by NSF Grant GP-16292.

