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STATISTICAL MODELS OF SNOW STRENGTH 

By RICHARD A. SOMMERFELD 

(Rocky Mountain Forest and Range Experiment Station, 240 West Prospect Street, 
Fort Collins, Colorado 80526, U.S.A.) 

ABSTRACT. Snow is variable in both time and space. Because of this fact, a complete understanding of 
snow strength must include statistical strength analyses. Two types of statistical strength theories are the 
series-element, or weakest-link theories and the parallel-element theories. In the case of snow in shear, 
Daniels' (1945) parallel-element theory provides a quantitative explanation of the size and stress-rate relation­
ships of snow, which are at least as accurate as presently available data. In the case of tensile tests, a combina­
tion of the two types of theories is proposed which also provides a quantitative explanation which is as 
accurate as present data. In each case large-volume, low-stress-rate strengths are predicted using small­
volume, high-stress-rate data. More data are necessary to provide definitive tests of the proposed hypotheses. 

REsuME. Modeles statistiques de la resistance de la neige. La neige varie a la fois dans l'espace et dans le 
temps. C'est pourquoi une intelligence complete de la resistance de la neige doit comprendre des analyses 
statistiques de resistance. 11 y a deux types de theories statistiques de la resistance, les theories des elements 
en series ou theories de la plus faible liaison et les theories des elements en paralleles. Dans le cas de la neige 
sou mise a un cisaillement, la theorie de Daniels (1945) des elements en parallele donnent une explication 
quantitative des liaisons entre la taille et le taux de contrainte des grains de neige qui est au moins aussi 
precise que les observations presentement disponibles. Dans le cas des essais a la traction, une combinaison 
des deux types de theories est proposee qui donne egalement une explication quantitative aussi precise que 
les donnees disponibles . Dans chaque cas on prevoit des resistances sur de grands volumes a des contraintes 
faibles a partir d'experiences portant sur des petits volumes a de fortes contraintes. 11 est necessaire d'avoir 
plus d 'observations pour un controle definitif des hypotheses proposees. 

ZUSAMMENFASSUNG. Statistisclle Modelle der Sclmeefistigkeit. Schnee verandert sich sowohl zeitlich wie 
raumlich . Ein vollstandiges Verstandnis del' Schneefestigkeit muss daher statistische Festigkeitsanalysen 
einschliessen. Zwei Typen der statist ische Festigkeitstheorie sind die Theorie der Serienelemente oder des 
schwachsten Gliedes und die Theorie der Parallelelemente. Im Fall von Schnee unter Scherdruck vermittelt 
Daniels' (1945) Theorie der Parallelelemente eine quantitative Erklarung fur die Beziehung zwischen Grosse 
und Spannungsrate des Schnees, deren Genauigkeit der von derzeit verfugbaren Daten entspricht. Fur den 
Fall von Zugspannungen wird eine Kombination der beiclen Theorie typen vorgeschlagen, die ebenfalls eine 
quantitative Erklarung mit gleicher Genauigkeit liefert. In jedem Fall ergeben sich hohe Volumen-, aber 
geringe Spannungsratenfestigkeiten, wenn man kleine Volumina und hohe Spannungsraten heranzieht. 
Fur eine endgultige Erprobung der vorgeschlagenen Hypothesen wird mehr Datenmaterial benotigt. 

We dance round in a ring and suppose, 
but the secret sits in the middle and knows. 

Robert Frost, Witness tree, 1942 

INTRODUCTION 

The physical properties of snow are extremely variable and snow strength shows this 
variability to a marked degree. The strength of snow is a function of many parameters, 
among which are density, texture, and thermodynamic history. These parameters are variable 
across both space and time. It appears not to be possible to quantify the variables adequately 
enough to permit the prediction of strengths of specific bodies of snow in Nature. Thus, the 
variability of snow strength becomes an inherent property which must be dealt with. 

STATISTICAL STRENGTH THEORIES 

Statistical analyses are methods of dealing with variability. There are two major classes of 
statistical strength theories: series-element theories and parallel-element theories. The series­
element theories are also called weakest-link theories by analogy with the failure of a chain. 
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Series-element theories 

The formulation of this class of theories involves two basic assumptions : (I) There is a 
distribution of streng ths within the material, and (2) Failure of one element of the material 
precipitates failure of the entire body, as the failure of a weak link causes the failure of a chain. 

The most widely quoted series-element theory is that ofWeibull (1939[a], [b]) where he 
also proposed a unique cumulative distribution function: 

F(a) = 1 -exp [- V(a-au/ao)m], a ~ CJu, (I) 
where V is the volume, a is the failure stress, au, ao, and m are distribution constants. The 
Weibull distribution given above is the three-parameter distribution which includes the 
truncation stress au below which the probability of failure is zero. Some sort of truncated 
distribution is undoubtedly more realistic than one which would have a finite probability of 
zero strength. 

Weibull's formulation of the series-element theory is incomplete for real materials. The 
median failure stress given by Equation (1) increases without limit as the volume decreases 
to zero. As an example, Sommerfeld ( 1974) presents Weibull constants derived from centri­
fugal tensile tests on snow. Using his layer 5, with a density of 230 kg m-J, a volume of 
10-5 ml would give a median failure stress of about 30 X 105 N m-2 or about twice the mean 
strength of pure ice. This physically absurd result indicates that Weibull's distribution is not 
realistic below a certain volume range. Weibull comments on this problem (1939[b] ) . He 
points out that distribution functions for real materials should probably be truncated at both 
upper and lower stresses. For the types of material which he considers, he justifies the assump­
tion that the upper limit can be approximated by infinity and concludes that this is an adequate 
approximation for all but extremely small volumes. As shown above, such an approximation 
is unrealistic even for appreciable volumes of snow. 

It is generally recognized that the physical basis behind Weibull's and other statistical 
strength theories is the existence of flaws which weaken the material (Epstein, 1948). Weibull's 
assumption that there is no upper limit on the strength is essentially the assumption that an 
unflawed element of the material has infinite strength. Thus, elements which are so small 
they do not include a flaw would, under Weibull's theory, contribute unrealistically high 
strengths to a body. One method of handling this problem would be to limit the minimum 
volume for which the Weibull distribution can be used, and Weibull's discussion implies such 
a limit. While a limit does not truncate the strength distribution at the high end, it would 
limit the mean strength which would be calculated. Conceptually, such a limit would be 
equivalent to limiting the volumes of the elements to volumes which would include at least 
one flaw per element. The difficulty of detecting and evaluating flaws in snow limits the 
usefulness of this concept, but we will see later that there is some experimental evidence on the 
size of flaws in snow. Coleman ( 1958) argues that the requirement that the elements are 
statistically independent implies a lower bound on the volume for which this type of analysis 
is valid. 

Other formulations of weakest-link theories have been made. These are concisely reviewed 
by Epstein (1948). As he points out, however, material strength data are usually not accurate 
enough to make a rational decision among various distributions used for these different 
formulations from the data alone. This comment is especially true of the measurements of 
snow strength. 

Parallel-element theories 

Parallel-element theories are well represented by Daniels' (1945) classic work. The 
formulation of parallel-element theories involves two basic assumptions: (1) There is a distri­
bution of strengths within the material, and (2) Elements act independently without failure 
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propagation between elements. A consequence of the latter assumption is that there is no 
catastrophic failure mechanism. Failure of one element does not ensure failure of the entire 
body; the failure simply transfers that element's share of the load to the remaining elements. 
The Daniels strength, the failure stress of an entire collection of elements (a bundle), is found 
from the relationship, 

00 

d~1 {err f f(er) der} = 0, 

where err is the stress at failure. Daniels (1945) does not build his theory around any particular 
distribution function: the theory is general enough to use any density function f (er) including 
Weibull's (1939). 

ApPLICATION TO SNOW 

The two types of strength theory represent two extreme ideas of the failure mechanisms 
of materials with variable strength. Both types predict that the mean strength of a number of 
samples should decrease as the number of elements in each sample increases. For very large 
specimens each theory predicts very small variability in measured strengths. However, the 
large-volume strength predicted by WeibuII's (1939) theory is, in general, significantly lower 
than that predicted by Daniels' (1945) theory. As pointed out by Epstein (1948), real 
materials can be expected to exhibit behavior which is some combination of the two types of 
theory. 

Kinosita (1967) showed that snow exhibits different properties in compression tests 
depending on the rate at which the stress is applied. Below a certain stress rate, depending on 
the temperature, snow compresses without fracture. Above that rate snow normally fractures 
in a short period of time. The stress which snow can sustain in compression at low stress rates 
is greater than it can sustain at high stress rates. Perla ( 1977) also presented some data 
indicating that shear-frame tests performed at slower rates give higher strengths than those 
performed at higher rates. 

For high stress rates Weibull's model should be more realistic than Daniels' model. At 
high stress rates, the stress concentrations would not have time to relax and could lead to 
catastrophic failure. At lower stress rates, such relaxation should be possible, and Daniels' 
model should be more realistic. Furthermore, Weibull's model should apply better to tension 
experiments, where the sides of the cracks which form do not remain in contact and cannot 
re-sinter. In shear experiments the crack sides do remain in contact and Daniels' model 
should be better. 

Using a WeibulI distribution in the Daniels relationship results in a model of a material 
with combined properties as discussed above. Different WeibulI distribution shapes are 
obtained by using different volumes in Equation (I). Thus a family ofDaniels strengths can be 
obtained from a particular set of Weibull parameters by choosing different volumes for the 
individual elements. For example, if we are trying to predict the strength of a large volume, 
say 1 mJ, we would calculate a wide range of values depending on the volume chosen for the 
Daniels elements. If we chose 1 m 3 as the element volume we would have a one-element 
Daniels body with a strength equal to the weakest flaw. This is a degenerate case where the 
Daniels body is identical to the WeibulI body and would give the lowest strength of the family 
of strengths mentioned above. On the other extreme is a body made of elements of such a 
volume that each contains one flaw, as discussed previously. I hypothesize that this volume 
is the lower limit on the WeibulI distribution as applied to real materials. Using this volume 
would result in the highest in the family of strengths one would obtain from the Daniels 
relationship, given a particular set of WeibulI parameters and the hypothesized volume 
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limitation. I would further hypothesize that snow would exhibit this strength at very low 
stress rates. 

At very low stress rates the failure of one flaw should not propagate throughout the sample 
or through a portion of the sample. It would merely cause a transfer of its share of the load 
to all the surviving flaws. However, if each volume element of the model contained more than 
one flaw, the failure of one flaw would remove the other flaws in that model volume element 
from supporting the load. This concept may be clarified somewha t by considering a 
mechanical model to simulate the material. A combination Weibull- Daniels body could be a 
number of chains of equal length, connected in parallel, perpendicularly between two stiff 
parallel bars. Suppose each chain contained six links, which would be analogous to six flaws 
per element. When a link failed, six links would no longer bear the load: the link which failed 
and the five other links in the chain. However, a basic assumption for a pure Daniels material 
is that the failure of one link transfers the load to all the remaining links. Thus the basic 
assumption would only be fulfilled if each element contained only one link, or by analogy, one 
flaw per volume element. This type of problem has also been discussed in Gubler (1978) from 
a different viewpoint. 

ANALYSES OF EXPERIMENTAL DATA 

Accurate data on snow strength are still scarce. Strength tests on snow are difficult to 
perform. The difficulty of working with snow as a material, and the rigorous conditions under 
which tests are performed limit accuracy. While available data are insufficient to test the 
above speculations definitively, they do provide some support. Furthermore, an analysis of 
available data will show where further experiments are needed. 

Sommerfeld and King ( 1979) presented shear-frame data on avalanche sliding layers. 
Stress rates leading to avalanches are very low. Sommerfeld and King (1979) showed that the 
Daniels strength calculated from shear-frame measurements predicted the failure stress at low 
stress rates very well (Table I). 

TABLE I. A COMPARISON OF DANIELS STRENGTHS AND FAILURE 

STRESSES OF SEVEN AVALANCHES 

Predicted 
(Daniels) Measured 

Avalanche Trigger· strength stress 
Nm-z Nm-z 

Alta 14 January HE 1257 1260 
Berthoud 14 January N 703 702 
Loveland 14 January N 437 527 
Alta 17 January N 56 7 587 
Berthoud 1 7 January HE 2183 2 153 
Bridger 21 April I S 50 48 
Bridger 21 April 11 HE 470 280 

• HE = high explosive release, N = natural release, S = ski 
release. 

If Daniels' second assumption, that the elements act independently, holds for snow shear­
frame tests, the data of Sommerfeld and King (1979) can be analyzed in a simple way to 
predict the size effect. For example, 0.03 m 2 samples could be created by combining the 
original 0.01 m 2 samples, three at a time. Daniels gives the method of calculating the strengths 
of such combinations in his section on small bundles (see also Epstein, 1948). 

The results for such combined samples are compared with PerIa's (1977) data on the size 
effect in shear-frame tests in Table 11. I t is seen that, except for the comparison between 0.0 I 

and 0.05 m 2 the agreement is satisfactory. Of particular interest are the larger size com-
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TABLE n. COMPARISON OF EXPERIMENTAL DATA ON THE SIZE 

EFFECT IN SHEAR-FRAME TESTS WITH CALCULATIONS PROPOSED IN 

THIS PAPER 

Perla (I977 ) This paper 

Area ratio Area ratio 
in square meters Strength ratio in square meters Strength ratio 

0.025 : 0.01 0·73 0.03 : 0.01 0·74 
0.05: 0.01 1.00 0.05: 0.01 0.67 

0.1 : 0.01 0.64 0.1 : 0.01 0·59 
0.05 : 0.025 0·99 0.05: 0.03 0.90 

0.1 : 0.025 0·77 0 . 1 : 0.03 0.80 

0.1 : 0.05 0.80 0.1 : 0.05 0.89 
0 .25 : 0.05 0·73 <Xl : 0.05 0.72 

221 

paraisons. Daniels' theory predicts a decrease in variability with increasing size, which 
Perla found. This also means that Perla's data for the larger sizes should be more accurate. 
The discrepancy at 0.01 - 0.05 m 2 can probably be explained by the large variability in Perla's 
measurements with the smaller frames. More data are necessary for a definitive test of the 
applicability of Daniels' statistics to snow shear-frame tests. However the data which are 
available support such an application and indicate that Daniels' second assumption is realistic 
for snow in shear at least within the accuracy of the data. 

McClung (unpublished) presented some data on larger-volume tensile tests. His results 
for dry, equi-temperature, metamorphosed snow are shown in Figure I. Also shown is the line 
fitted to the minimum Weibull strengths uu, calculated for similar types of snow (Sommerfeld, 
1974). It is clear that Uu forms a lower envelope to McClung's data. Also shown in Figure I 

is a line for the Weibull failure stress of McClung's volumes calculated with Sommerfeld's 
(1974) Weibull constants. Again the Weibull strengths are too low to explain McClung's data. 
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Fig. J. McClung's (1974) data compared with different statistical strength analyses using Sommerfeld's (I974) Weibull 
constants. 

https://doi.org/10.3189/S0022143000010753 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000010753


222 JOURNAL OF GLAC10LOGY 

McClung's tests were at low stress rates. He proved he was working in the "ductile range" 
by introducing serious stress concentrators in some of his specimens without much effect. 
It would be expected that at low stress rates, snow would exhibit some measure of Daniels 
behavior. 

The average Daniels strengths shown in Figure I were calculated using Sommerfeld (1974) 
Weibull constants, assuming V = 5 X 10- 4 m3. It fits McClung's (unpublished) data as well 
as can be expected considering the scatter. There is some experimental evidence that 
5 X 10- 4 m3 is about the right size for a lower limit on V in Equation ( I). Keeler and Weeks 
(1967), Keeler (1969), and MartineIIi ( 197 I) all reported zero strengths in some of their 
measurements using volumes of 5 X 10- 4 m 3, indicating that their samplers were interfering 
with flaws. Sommerfeld ( 1974) obtained no zero strengths with samples of 2.3 X 10-3 m 3 • 

CONCLUSIONS 

Applying statistical strength theories to snow results in quantitative explanations of many 
of the features of snow strength testing. Failure of snow in large volumes at Iow stress rates 
can be predicted from tests on small volumes at high stress rates. In the case of shear-frame 
tests, the elements act independently and thus exhibit almost pure Daniels behavior, with very 
little Weibull behavior. Tensile tests appear to exhibit a mixture of the two types of be ha vi or. 
A problem with the tensile tests is that the appropriate volume for use in the Weibull distribu­
tion is uncertain. A comparison between Sommerfeld's (1974) and McClung's (unpublished) 
results indicates that it should be about 5 X 10-4 m3. This agrees with the results of Keeler 
and Weeks (1967), Keeler (1969), and MartineIIi (1971) as discussed above. 

It is possible to propose a model of snow-slab failure, based on these conclusions. At the 
slow loading rates which occur on the usual avalanche slope, the snow should behave in a 
manner modeled better by Daniels. However, if ductile cracks begin to form, they become 
stress concentrators, and more importantly, stress-rate concentrators. If the stress-rate 
concentrators increase the stress rate into the more brittle range, the snow flips over into 
WeibulI behavior and exhibits a lower strength. Since the stress on the snow is at the Daniels 
strength, the change to Weibull behavior, with its lower strength, precipitates catastrophic 
failure. 

A small amount of evidence exists in favor of this model. McClung (unpublished) proved 
he was in the "ductile" range by introducing serious stress concentrators in his samples with 
little effect. However, his samples fractured, indicating that at some point in the test the stress 
rate became high enough to cause brittle fracture. Another piece of data which bears on this 
point comes from strain measurements which I made during a natural avalanche release 
(Sommerfeld, 1979). The strain-rate measured across a three meter distance was 
1.08 X 10-7 s-'. This strain-rate is more than an order of magnitude too low to cause tensile 
fracture (personal communication from R. L. Brown; unpublished data of H. Singh). 
Therefore, the strain-rate must have been concentrated at some point in the snow-pack. 

A final point is unrelated to the above speculations. Perla (1969) states that the high ratios 
of mean tensile strength to mean shear strength obtained by previous workers could not be 
"reconciled with the standard theory of strength of materials which predicts afT ~ 2". 

McClung's large-volume tensile strengths average about 1.5 X 10-3 N m-2 and the large­
volume shear strengths of SommerfeId and King (1979) averaged about the same. Larger­
volume tensile tests would average somewhat lower, easily satisfying the above inequality. 
Perhaps the high ratios previously found were an artifact of the small sample size and the 
statistics of snow strength. 
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