ON TRACE BILINEAR FORMS ON LIE-ALGEBRAS by HANS ZASSENHAUS
 (Received 17th October, 1958)

To what extent is the structure of a Lie-algebra L over a field F determined by the bilinear form

$$
\begin{equation*}
f(a, b)=(a, b)_{\Delta} \tag{1}
\end{equation*}
$$

on L that is derived from a matrix representation

$$
a \rightarrow \Delta(a) \quad(a \in L)
$$

of L with finite degree $d(\Delta)$ by forming the trace of the matrix products

$$
\begin{equation*}
f(a, b)=\operatorname{tr}(\Delta a \Delta b) \quad(a, b \in L) ? \tag{2}
\end{equation*}
$$

Such a bilinear form is a function with two arguments in L, values in F and the properties :
$\left(\lambda \in F ; a, a_{1}, b, b_{1}, c \in L\right)$.
It is clear from the definition that the trace bilinear form (1) depends only on the class of equivalent representations to which Δ belongs.

For any subset K of L, the set K^{\perp} of all elements x of L satisfying $f(K, x)=0 \dagger$ is a linear subspace of L, because of the bilinearity of f. This linear subspace is called the orthogonal subspace of K. It coincides with the orthogonal subspace of the linear subspace $\{F K\}$ generated by K. If $K_{1} \subseteq K_{2}$ then $K_{1}^{\perp} \supseteq K_{2}^{\perp}$. By the symmetry of f we have $K \subseteq\left(K^{\perp}\right)^{\perp}$. If K is an ideal of L, then it follows from the invariance of f that the orthogonal subspace K^{\perp} is also an ideal. The ideal $L^{\perp}=L^{\perp}(\Delta)$ is called the radical of the representation Δ. For any ideal A of L contained in L^{\perp}, a symmetric invariant bilinear form f^{A} is induced on the factor algebra L / A by setting

$$
\begin{equation*}
f^{A}(a / A, b / A)=f(a, b) \quad(a, b \in L) \tag{7}
\end{equation*}
$$

We observe that the kernel of Δ, i.e. the ideal L_{Δ} of L formed by the elements x that are mapped onto 0 by Δ, lies in the radical of Δ. By the first isomorphism theorem, L / L_{Δ} is isomorphic to a Lie-subalgebra of the Lie-algebra formed by the matrices of degree $d(\Delta)$ over F. Hence L / L_{Δ} and a fortiori L / L^{\perp} are finite-dimensional Lie-algebras.

It will be the aim of the investigation to determine the structure of the factor algebra L / L^{\perp} in terms of simple algebras.

Theorem 1. If the characteristic of F is distinct from 2 and 3 , then, for any solvable ideal A of L, the ideal $L A$ is contained in the radical of any matrix representation Δ.
\dagger For any two subsets K_{1}, K_{2} of L, denote by $f\left(K_{1}, K_{2}\right)$ the set of all values $f\left(x_{1}, x_{2}\right)$, where x_{i} denotes any element of $K_{i}(i=1,2)$. Hence $f\left(K, K^{\perp}\right)=f\left(K^{\perp}, K\right)=0$.

Before we enter into the proof of Theorem l, let us prove
Lemma 1. For any irreducible representation Δ of a Lie-algebra L over the field of reference F all of the irreducible components of the representation Δ^{T} obtained by restricting Δ to the subinvariant subalgebra T are equivalent,
and
Lemma 2. If the irreducible representation Δ of the Lie-algebra L over the field of reference F induces by restriction to the ideal A of L a nilrepresentation Δ^{A} of A, then Δ^{A} is a null representation of A.

Proof of Lemma 1. By assumption there is a chain $L=L_{0} \supseteq L_{1} \supseteq \ldots \supseteq L_{m}=T$ of Lie-algebras over F from L to T such that L_{i} is an ideal of $L_{i-1}(i=1,2, \ldots, m)$. Let M be a representation space of Δ. Since it is of finite dimension over F, it must contain an irreducible $L_{1}-F$-subspace m. Also there is a maximal $L_{1}-F$-subspace M_{1} of M such that $m \subseteq M_{1}$ and all irreducible components of the representation of L_{1} with representation space M_{1} are equivalent to the representation Γ of L_{1} with representation space m. Let s be an element of L, x an element of L_{1}, u an element of M_{1}; then

$$
\begin{equation*}
x(s u)=x(s u)-s(x u)+s(x u)=(x s) u+s(x u) . \tag{8}
\end{equation*}
$$

Hence $x(s u)$ is contained in $s M_{1}+M_{1}$ and thus $s M_{1}+M_{1}$ is an $L_{1}-F$-module such that the mapping of u onto $s u$ is an operator homomorphism of M_{1} onto $\left(s M_{1}+M_{1}\right) / M_{1}$. It follows that the irreducible components of the representation of L_{1} with representation space $\left(s M_{1}+M_{1}\right) / M_{1}$ are equivalent to Γ. By the Jordan-Hölder Theorem, the same applies to the irreducible components of the representation of L_{1} with representation space $s M_{1}+M_{1}$. Because of the maximality of M_{1} we have $s M_{1}+M_{1}=M_{1}, s M_{1} \subseteq M_{1}, L M_{1} \subseteq M_{1}$. Since M is an irreducible $L-F$-space, it follows that $M_{1}=M$ and thus every irreducible component of $\Delta^{L_{1}}$ is equivalent to Γ.

The proof of Lemma 1 can now be completed by induction on m and by an application of the Jordan-Hölder Theorem.

Proof of Lemma 2. Without restricting the generality we can assume that Δ is a faithful representation. Hence Δ^{A} is faithful. By [4, p. 34, Satz 11], the Lie-algebra A is nilpotent. By [4, p. 29], every irreducible component of Δ^{A} is a null representation. Let M be a representation space of Δ. It contains a minimal A - F-subspace $\neq 0$, say m. Hence $A m=0$. Let M_{1} be the linear subspace of M consisting of all elements u of M satisfying $A u=0$. Applying (8) for s of L, x of A, u of M_{1}, we find that $s u$ belongs to M_{1}. Hence M_{1} is a nonvanishing invariant subspace of the $L-F$-space M. Since M is irreducible, it follows that $M_{1}=M, A M=0$ and this proves Lemma 2.

Proof of Theorem 1. (1) Let F be algebraically losed, $L^{\perp} \neq L, \Delta$ be irreducible and faithful and $A(A A)=0$. By Lemma 1 , the irreducible representation Δ induces on A a representation Δ^{A} all of whose irreducible constituents are equivalent. Since A is nilpotent, it follows from [4, p. 29] that each irreducible representation of A maps each element of A onto a matrix with only one characteristic root (of maximal multiplicity). Hence, for any element a of A, the matrix $\Delta(a)$ has only one characteristic root, say $\alpha(a)$, of maximal multiplicity $d(\Delta)$.

If the characteristic of F is 0 , then by the trace argument we have

$$
\begin{equation*}
\alpha(a+b)=\alpha(a)+\alpha(b) . \tag{9}
\end{equation*}
$$

If the characteristic of F does not vanish, then it is by assumption greater than 3 and,
since $A(A A)=0$, it follows that (9) again holds by [4, p. 95, formula (66)]. We observe also that

$$
\begin{equation*}
\Delta(\lambda a)=\lambda \Delta(a) \quad(\lambda \in F, a \in A) \tag{10}
\end{equation*}
$$

so that α is a linear form on A.
As a next step we want to show that, for any element x of L,

$$
\begin{equation*}
\alpha(x A)=0 . \tag{11}
\end{equation*}
$$

It suffices to show (11) under the additional assumption that

$$
\begin{equation*}
(x, x)_{\Delta} \neq 0 \tag{12}
\end{equation*}
$$

Indeed, we know that there are elements y, z of L for which $(y, z)_{\Delta} \neq 0$, and from the identity

$$
(y+z, y+z)_{\Delta}=(y, y)_{\Delta}+2(y, z)_{\Delta}+(z, z)_{\Delta}
$$

it follows, in view of the assumption that the characteristic of F is not 2, that at least one of the three elements $(y+z, y+z)_{\Delta},(y, y)_{\Delta},(z, z)_{\Delta}$ does not vanish. Hence there is an element x_{0} of L satisfying $\left(x_{0}, x_{0}\right)_{\Delta} \neq 0$. For any element x of L we have the identity

$$
(x, x)_{\Delta}+\left(x_{0}, x_{0}\right)_{\Delta}=\frac{1}{2}\left(\left(x+x_{0}, x+x_{0}\right)_{\Delta}+\left(x-x_{0}, x-x_{0}\right)_{\Delta}\right)
$$

so that at least one of the three elements $(x, x)_{\Delta},\left(x+x_{0}, x+x_{0}\right)_{\Delta},\left(x-x_{0}, x-x_{0}\right)_{\Delta}$ does not vanish. Therefore, if we have shown already that $\alpha\left(x_{0} A\right)=0$ and that at least one of the three conditions $\alpha(x A)=0, \alpha\left(\left(x+x_{0}\right) A\right)=0, \alpha\left(\left(x-x_{0}\right) A\right)=0$ is satisfied, it follows from the linearity of α that (11) is true without restrictions on the element x of L.

Now let us assume (12).
We want to show that for any subalgebra U of A satisfying $x U \subseteq U$ we have $\alpha(x U)=0$. We observe that $V=F x+U$ is a subalgebra of L containing U as an ideal. The representation Δ induces a representation $\Delta^{\boldsymbol{V}}$ on V. Let Γ be an irreducible constituent of Δ^{V} with representation space m. Since $(x, x)_{\Delta}$ is the trace of $(\Delta x)^{2}$, which can be formed by adding up the traces of $(\Gamma x)^{2}$ over all irreducible constituents of Δ^{V}, it follows from (12) that Γ may be chosen in such a way that

$$
\begin{equation*}
(x, x)_{\Gamma} \neq 0 \tag{13}
\end{equation*}
$$

(a) If V is nilpotent then, by [4, p. 29], the matrix $\Gamma(x)$ has only one characteristic root ξ, so that $(x, x)_{\Gamma}=d(\Gamma) \xi^{2}$ and thus, by (13), we have $d(\Gamma) \neq 0$ in $F, \xi^{2} \neq 0$. From [4, p. 97, Satz 12] it follows that $d(\Gamma)=1, \Gamma(x U)=0, \alpha(x U)=0$.
(b) If $U=F u$ and

$$
\begin{equation*}
x u=\lambda u \quad(\lambda \neq 0) \tag{14}
\end{equation*}
$$

then there is a characteristic root ξ of $\Gamma(x)$ and an element $v \neq 0$ of m such that

$$
\begin{equation*}
x v=\xi v . \tag{15}
\end{equation*}
$$

Set $v_{0}=v$ and $v_{i+1}=u v_{i}$ for $i=0,1,2, \ldots$. It follows by induction that

$$
\begin{equation*}
x v_{i}=(\xi+i \lambda) v_{i} \quad(i=0,1,2 \ldots) \tag{16}
\end{equation*}
$$

Indeed (15) is (16) for $i=0$. Let (16) be proved for some subscript i; then it follows from (14) that

$$
x v_{i+1}=x\left(u v_{i}\right)=(x u) v_{i}+u\left(x v_{i}\right)=u v_{i}+u(\xi+i \lambda) v_{i}=\lambda v_{i+1}+(\xi+i \lambda) v_{i+1}=(\xi+(i+1) \lambda) v_{i+1}
$$

Since m is finite-dimensional, it follows that there is a first element among the elements
v_{0}, v_{1}, \ldots that is linearly dependent on the preceding elements, say v_{g}. Hence the linearly independent elements $v_{0}, v_{1}, \ldots, v_{g-1}$ span a linear subspace of m which is invariant under V. Since m is irreducible, it follows that the g elements v_{0}, \ldots, v_{g-1} form a basis of m. Hence

$$
\begin{aligned}
(x, x)_{\Gamma} & =\operatorname{tr}\left((\Gamma x)^{2}\right)=\Sigma_{i=0}^{g-1}(\xi+i \lambda)^{2} \\
& =g \xi^{2}+g(g-1) \xi \lambda+\frac{g(g-1)(2 g-1)}{6} \lambda^{2} \\
& =g\left(\xi^{2}+(g-1) \xi \lambda+\frac{(g-1)(2 g-1)}{6} \lambda^{2}\right)
\end{aligned}
$$

since the characteristic of F is different from 2 and 3.
From (13) it follows that $g \neq 0$ in F. Hence

$$
\operatorname{tr}(\Gamma(x u))=g \alpha(x u)=\operatorname{tr}(\Gamma x \Gamma u-\Gamma u \Gamma x)=0, \quad \alpha(x u)=0, \quad \alpha(x U)=0
$$

(c) If $U U=0$ and if there is a basis $u_{1}, u_{2}, \ldots, u_{\mu}$ of U over F such that $x u_{i}=\lambda u_{i}+u_{i+1}$ $\left(\lambda \neq 0, i=1,2, \ldots, \mu ; u_{\mu+1}=0\right)$, and if we have shown already that $\alpha\left(x u_{i}\right)=0$ for $i=k$, $k+1, \ldots, \mu+1$, then we find that the linear form α vanishes on the ideal $F u_{k}+F u_{k+1}+\ldots+F u_{\mu+1}$ of V, so that Γ induces on this ideal a nil representation. By Lemma 2 this nil representation is a null representation. If $k>1$, then we can apply (b) to the Lie-algebra $\Gamma(F x)+\Gamma\left(F u_{k-1}\right)$, substituting $\Gamma(x)$ for x and $\Gamma\left(u_{k-1}\right)$ for u, and obtain $\alpha\left(u_{k-1}\right)=0$. Hence, by induction, $\alpha\left(u_{1}\right)=\alpha\left(u_{2}\right)=\ldots=\alpha\left(u_{\mu}\right)=\alpha\left(u_{\mu+1}\right)=0, \alpha(x U)=0$.
(d) If $U U=0$, then let us consider a decomposition

$$
U=\dot{\Sigma}_{j=1}^{\varepsilon} U_{j}
$$

of U into the direct sum of linear subspaces U_{j}, invariant under the linear transformation $\binom{u}{x u}$ of U, that cannot be further decomposed into invariant subspaces. To each of the subalgebras $F x+U_{j}$, either (a) or (c) is applicable and thus we have $\alpha\left(x U_{j}\right)=0$; moreover $\alpha(x U)=0$ because of the linearity of α.

We may set $U=A A$ and in this event we find that $\alpha(x(A A))=0$. As had been shown before, it follows that $\alpha(L(A A))=0$. Hence the irreducible representation Δ induces on the ideal $L(A A)$ of L a nil representation and this nil representation is a null representation by Lemma 2 . Since it is faithful by assumption, it follows that

$$
\begin{equation*}
L(A A)=0 \tag{17}
\end{equation*}
$$

(e) Denoting by x^{*} the linear transformation $\binom{a}{x a}$ of A and by S the set of the characteristic roots of x^{*}, it follows that there is a decomposition $A=\dot{\Sigma}_{k \epsilon S} A_{k}$ of A into the direct sum of the characteristic subspaces A_{k} of x^{*} consisting of all elements a of A satisfying an equation $\left(x^{*}-k\right)^{\mu} a=0$ for some exponent μ. Moreover, by [4, p. 32], we have $A_{j} A_{k} \subseteq A_{j+k}$, where we set $A_{h}=0$ if h is not a characteristic root of x^{*}. From (17) it follows that $A A$ is contained in A_{0}. Since the characteristic of F is distinct from 2 , it follows that $A_{k} A_{k} \subseteq A A \cap A_{2 k} \subseteq A_{0} \cap A_{2 k}=0$ if $k \neq 0$; hence A_{k} is an abelian subalgebra of A. In this event A_{k} admits a decomposition into the direct sum of abelian subalgebras of A to which (c) is applicable, so that $\alpha\left(x A_{k}\right)=0$ if $k \neq 0$. If $k=0$, then (a) is applicable and we find again that $\alpha\left(x A_{0}\right)=0$. Hence $\alpha\left(x U_{k}\right)=0$ for all k of S and hence $\alpha(x A)=0$ because of the
linearity of α.
It now follows that $\alpha(L A)=0$, as has been shown above. The irreducible representation Δ induces a nil representation on the ideal $L A$. By Lemma 2, this nil representation is a null representation and, since Δ is faithful, it follows that $L A=0$.

Let B be any solvable ideal of L so that $D^{k} B=0$ for some exponent k. There is the chain of ideals

$$
B \supseteq D B=B B \supseteq D^{2} B \supseteq \ldots \supseteq D^{k} B=0
$$

If $k>0$, then $D^{k-1} B$ is an abelian ideal of L and then it follows that $L D^{k-1} B=0$, as was shown above. If $k>1$, then the ideal $A=D^{k-2} B$ satisfies the condition $A(A A)=0$, so that $L A=0$, as was shown above. Since $D^{k-1} B=A A \subseteq L A=0$, it follows that $D^{k-1} B=0$. Hence $L B=0 . L B \subseteq L^{\perp}$.
(2) Let F be algebraically closed and Δ be irreducible. If $L^{\perp}=L$, then it is obvious that $L A \subseteq L^{\perp}$. Let $L^{\perp} \neq L$. The representation Δ induces a faithful irreducible representation of the Lie-algebra ΔL. We denote the Lie-multiplication in ΔL by $X \circ Y=X Y-Y X$. Since A is a solvable ideal of L, it follows that ΔA is a solvable ideal of ΔL and hence it follows, as was shown at the close of (1), that $\Delta L \circ \Delta A \subseteq(\Delta L)^{\perp}$. But $\Delta L \circ \Delta A=\Delta(L A)$ and $(\Delta L)^{\perp}=\Delta\left(L^{\perp}\right)$; hence $\Delta(L A) \subseteq \Delta\left(L^{\perp}\right), L A \subseteq L_{\Delta}+L^{\perp}=L^{\perp}$.
(3) Let F be algebraically closed. Let

be a complete reduction of the representation Δ with irreducible constitutents $\Delta_{1}, \ldots, \Delta_{r}$. We have

$$
\begin{align*}
\operatorname{tr}(\Delta a \Delta b) & =\sum_{i=1}^{r} \operatorname{tr}\left(\Delta_{i} a \Delta_{i} b\right), \\
(a, b)_{\Delta} & =\sum_{i=1}^{r}(a, b)_{\Delta_{i}} ; \tag{19}
\end{align*}
$$

hence

$$
\begin{equation*}
L^{\perp}(\Delta) \subseteq \bigcap_{i=1}^{+} L^{\perp}\left(\Delta_{i}\right) \tag{20}
\end{equation*}
$$

Since it was shown in (2) that $L A \subseteq L^{\perp}\left(\Delta_{i}\right)$, it follows from (20) that $L A \subseteq L^{\perp}(\Delta)$.
(4) Let E be an algebraically closed extension of the field of reference. The product algebra $L_{E}=L \times E$ over F is a Lie algebra over E such that any F-basis B of L is an E-basis of L_{E}. The representation Δ can be uniquely extended to a representation Δ^{E} of L_{E} by setting $\Delta^{E}\left(\sum_{b \in B} \lambda(b) b\right)=\sum_{b \in B} \lambda(b) b$ with coefficients $\lambda(b)$ in E. The product algebra $A_{E}=A \times E$ over F is a solvable ideal of L_{E}; hence it follows from (3) that $L_{E} A_{E} \subseteq L_{E}^{1}$ and thus $L A \subseteq L_{E}^{1} \cap L=L^{\perp}$.

From the proof of Theorem 1 and another application of Lemma 2 we derive the
Corollary of Theorem 1. Under the same assumptions, for an irreducible representation Δ of L either the radical of Δ coincides with L or the radical of Δ does not coincide with L and $L A$ lies in the kernel of Δ.

The example of the solvable linear Lie-algebras formed by all 2×2-matrices over any field of characteristic 2 shows that Theorem 1 does not hold for fields of characteristic 2. The example of the solvable linear Lie-algebras formed by the linear combinations of the matrices

$$
\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right), \quad\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

over any field of reference of characteristic 3 shows that the corollary of Theorem 1 does not hold any longer.

The following theorem states that, as far as the structure of L / L^{\perp} and the non-degenerate symmetric invariant bilinear form induced on L / L^{\perp} is concerned, it suffices to assume that Δ is fully reducible and faithful, that L^{\perp} lies in the centre of L and that every solvable ideal of L lies in the centre.

Theorem 2. If the characteristic of the field of reference is distinct from 2 and 3, then for any Lie-algebra L with a matrix representation Δ there is a subalgebra U with a fully reducible representation Ψ and kernel U_{Ψ} such that

$$
\begin{align*}
& U+L^{\perp}=L, \tag{21}\\
& (a, b)_{\psi}=(a, b)_{\Delta} \quad \text { for } a, b \in U, \tag{22}\\
& U U^{\perp}(\Psi) \subseteq U_{\Psi} \subseteq U^{\perp}(\Psi), \tag{23}\\
& U A \subseteq U_{\Psi} \text { for any ideal } A \text { of } U \text { for which } \Psi A \text { is solvable. } \tag{24}
\end{align*}
$$

For the proof of Theorem 2 we need the following
Lemma 3. For any ideal A of a finite-dimensional Lie-algebra L over the field of reference F, there is a subalgebra U of L such that $U+A=L$ and $U \cap A$ is nilpotent. If L / A is nilpotent, then U can be chosen as a nilpotent subalgebra (cf. [3, Theorem 4]).

Proof of Lemma 3. If $L=0$, then Lemma 3 is clear. Let $L \neq 0$ and the theorem be proved already for Lie-algebras of dimension less than $\operatorname{dim}_{F} L$. For any element a of A we form the adjoint linear transformation $\operatorname{ad}(a)=\binom{x}{a x}$ of L. The set of all elements x of L that are annihilated by some power of ad (a) forms a subalgebra L_{0}, by [4, p. 31]; moreover, L is the direct sum of L_{0} and another linear subspace \hat{L}_{0} such that $\operatorname{ad}(a)\left(\hat{L}_{0}\right)=\hat{L}_{0}$. Now let a be an element of L for which ad (a) induces a nilpotent linear transformation of L / A (e.g. an element of A). Then it follows that $\hat{L}_{0}=[\operatorname{ad}(a)]^{r} \hat{L}_{0} \subseteq[\operatorname{ad}(a)]^{r} L=A$, if r is large enough; hence $L_{0}+A=L$. If $\operatorname{dim}_{F} L_{0}<\operatorname{dim}_{F} L$, then, by the induction assumption, it follows that there is a subalgebra U of L_{0} such that $U+L_{0} \cap A=L_{0}$ and $U \cap\left(L_{0} \cap A\right)=U \cap A$ is nilpotent. But $U+A=U+\left(L_{0} \cap A\right)+A=L_{0}+A=L$. Moreover, if L / A is nilpotent, then, since by the second isomorphism theorem $L_{0} /\left(L_{0} \cap A\right)$ is isomorphic to L / A, it follows that $L_{0} /\left(L_{0} \cap A\right)$ is nilpotent, so that it can be assumed that U is nilpotent.

If the subalgebra L_{0} always coincides with L, then the adjoint representation of L induces a nil representation of A. The adjoint representation of A is a constituent of a nil representation ; hence it is itself a nil representation and hence A is nilpotent, by Engel's Theorem. In this case we may set $U=L$, if L / A is not nilpotent. If L / A is nilpotent, then for every
element a of L the adjoint linear transformation induces a nilpotent linear transformation of L / A. Thus by assumption the adjoint representation of L is a nil representation and by Engel's Theorem it follows that L is nilpotent. In this case we set $U=L$.

Proof of Theorem 2. By Lemma 3 there is a subalgebra U of L satisfying (21) such that $U \cap L^{\perp}$ is nilpotent. The representation $\Delta^{\boldsymbol{U}}$ induced by Δ by restriction to U has a complete reduction

with irreducible constituents $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{r}$. For the fully reducible representation Ψ that is obtained by adding only those irreducible constitutents Δ_{i} for which the Δ_{i}-radical does not coincide with L, we clearly obtain (22). Since $U^{\perp}(\Psi)=U \cap L^{\perp}$ is a nilpotent ideal and therefore $U^{\perp}=U^{\perp}(\Psi)$ is a solvable ideal of U, (23) follows by an application of the corollary of Theorem 1 ; (24) is proved similarly.

After these preparations we have the following
Structure Theorem (Theorem 3). (a) For any Lie-algebra L over a field F of characteristic distinct from 2 and 3 and for any matrix representation Δ of L, the factor algebra \bar{L} of L over the Δ-radical of L permits a decomposition

$$
\begin{equation*}
\bar{L}=\dot{\Sigma}_{i=1}^{r} \bar{L}_{i} \tag{25}
\end{equation*}
$$

into the direct sum of mutually orthogonal and indecomposable ideals $\bar{L}_{1}, \bar{L}_{2}, \ldots, \bar{L}_{r}$ distinct from 0 .
(b) The ideals $\bar{L}_{i} \bar{L}_{i}$ are perfect ideals and uniquely determined up to the order. The centre $z\left(\bar{L}_{i}\right)$ of \bar{L}_{i} is of the same dimension over the field of reference as the factor algebra $\bar{L}_{i} / \bar{L}_{i}^{2}$ of \bar{L}_{i} over \bar{L}_{i}^{2}.
(c) If the ideal \bar{L}_{i} is abelian, then it is one-dimensional.
(d) If the centre of \bar{L}_{i} vanishes, then $\bar{L}_{i}=\bar{L}_{i 1}$ is simple non-abelian.
(e) Only if the characteristic of F does not vanish can there be non-abelian components \bar{L}_{i} with non-vanishing centre $z\left(\bar{L}_{i}\right)$. In this event the ideal \bar{L}_{i}^{2} is the sum of the minimal non-vanishing perfect ideals $\bar{L}_{i 1}, \ldots, \bar{L}_{i m_{i}}$ of \bar{L} contained in \bar{L}_{i}. The algebra \bar{L}_{i}^{2} is directly indecomposable but there is the decomposition

$$
\bar{L}_{i}^{2} / z\left(\bar{L}_{i}\right)=\dot{\sum}_{j=1}^{m_{i}}\left(\bar{L}_{i j}+z\left(\bar{L}_{i}\right)\right) / z\left(\bar{L}_{i}\right)
$$

of the factor algebra $\bar{L}_{i}^{2} / z\left(\bar{L}_{i}\right)$ into the direct sum of its minimal non-vanishing ideals, each of which is simple non-abelian
(f) Every minimal non-vanishing perfect ideal of \bar{L} coincides with one of the ideals $\bar{L}_{i j}$. If and only if its centre vanishes, we have $\bar{L}_{i j}=\bar{L}_{i}$. The minimal non-vanishing perfect ideals are mutually orthogonal.

Proof of Theorem 3. From the definition of \vec{L} it follows that the trace bilinear form of Δ induces on \bar{L} a symmetric invariant bilinear form such that the orthogonal space of \bar{L} vanishes, i.e. a non-degenerate bilinear form. Hence, for every linear subspace \bar{X} of \bar{L}, the dimension of \bar{X} plus the dimension of the orthogonal subspace \bar{X}^{\perp} is equal to the dimension of \bar{L}. Hence
$\left(\bar{X}^{\perp}\right)^{\perp}=\bar{X}$. If \bar{X} is non-degenerate, i.e. if $\bar{X} \cap \bar{X}^{\perp}=0$, then we have in any event the direct decomposition $\bar{L}=\bar{X}+\bar{X}{ }^{\perp}$. Thus there is a decomposition (25) of the finite-dimensional Lie-algebra \bar{L} into the direct sum of r mutually orthogonal non-vanishing ideals $\bar{L}_{1}, \bar{L}_{2}, \ldots$, \bar{L}_{r}, such that there is no further decomposition of \bar{L}_{i} into the direct sum of mutually orthogonal non-vanishing ideals $(i=1,2, \ldots, r)$. Note that every ideal of \bar{L}_{i} is also an ideal of \bar{L} and that the trace bilinear form of Δ induces on \bar{L}_{i} a non-degenerate symmetric invariant bilinear form.

If \bar{L}_{i} is abelian, then, since the characteristic of F is distinct from 2 , it follows that there is an element \bar{x} of \bar{L}_{i} for which $(\bar{x}, \bar{x})_{\Delta} \neq 0$, so that \bar{L}_{i} is orthogonally decomposable into the direct sum of the ideal $F x$ and the orthogonal complement $(F x)^{\perp} \cap \bar{L}_{i}$, and this implies that $\bar{L}_{i}=F \bar{x}$. Note that $\bar{L}_{i}^{2}=0$ implies that \bar{L}_{i}^{2} is a perfect ideal.

Let $\bar{L}_{i}^{2} \neq 0$. For the Lie-algebra $M=\bar{L}_{i}$ with non-degenerate bilinear form f satisfying (2)-(5), we find that

$$
f\left(M^{2}, z(M)\right)=f(M, M z(M))=f(M, 0)=0
$$

Conversely, if $f\left(M^{2}, x\right)=0$ for the element x of M, then $f\left(M^{2}, x\right)=f(M, M x)=0, M x=0$, x lies in $z(M)$; hence $z(M)=\left(M^{2}\right)^{\perp}, z(M)^{\perp}=M^{2}$. If for an element \bar{x} of the centre of \bar{L}_{i} we have $(\bar{x}, \bar{x})_{\Delta} \neq 0$, then there is the orthogonal decomposition of \bar{L}_{i} into the ideal $F \bar{x}$ and its orthogonal complement. Since this is impossible and since the characteristic of the field of reference is distinct from 2, it follows that $z\left(\bar{L}_{i}\right)$ is contained in $\left(z\left(\bar{L}_{i}\right)\right)^{\perp}=\bar{L}_{i}^{2}$. The dimensions of $z\left(\bar{L}_{i}\right)$ and of \bar{L}_{i}^{2} add up to the dimension of \bar{L}_{i}, so that $z\left(\bar{L}_{i}\right)$ is isomorphic to the factor algebra of \bar{L}_{i} over \bar{L}_{i}^{2}.

By Theorem 1 every solvable ideal of \bar{L} lies in $z(\bar{L})$. For every solvable ideal \bar{A} of \bar{L}_{i}^{2}, it follows from Theorem 1 that $\bar{L}_{i}^{2} \bar{A} \subseteq\left(L_{i}^{2}\right)^{\perp} \cap \bar{L}_{i}=z\left(\bar{L}_{i}\right)$; hence \bar{A} lies in the second centre of \bar{L}_{i}^{2}, a solvable ideal of \bar{L}, and hence \bar{A} lies in $z\left(\bar{L}_{i}\right)$. It follows that the factor algebra $\bar{L}_{i}^{2} / z\left(\bar{L}_{i}\right)$ contains no abelian ideal $\neq 0$. Moreover $\widetilde{L}_{i}^{2} / z\left(\bar{L}_{i}\right) \neq 0$. The trace bilinear form of Δ induces a non-degenerate symmetric invariant bilinear form f^{*} on $L_{i}{ }^{*}=\bar{L}_{i}^{2} / z\left(\bar{L}_{i}\right)$.

There is a decomposition

$$
L_{i}^{*}=\dot{\Sigma}_{j=1}^{m_{i}} L_{i j}{ }^{*}
$$

of $L_{i}{ }^{*}$ into the direct sum of mutually orthogonal ideals $L_{i j}{ }^{*}$ which permit no further proper orthogonal decomposition. For an ideal A^{*} of $L_{i j}{ }^{*}$, set $B^{*}=A^{* \perp} \cap L_{i j}{ }^{*}$, so that

$$
f^{*}\left(\left(A^{*} \cap B^{*}\right)^{2}, L_{i j}{ }^{*}\right)=f^{*}\left(A^{*} \cap B^{*},\left(A^{*} \cap B^{*}\right) L_{i j}{ }^{*}\right) \subseteq f^{*}\left(A^{*}, B^{*}\right)=0,\left(A^{*} \cap B^{*}\right)^{2}=0
$$

Thus $A^{*} \cap B^{*}$ is an abelian ideal of $L_{i j}{ }^{*}$ and therefore of $L_{i}{ }^{*}$. Hence $A^{*} \cap B^{*}=0, L_{i j}{ }^{*}=$ $A^{*}+B^{*}$, so that, by assumption, $A^{*}=L_{i j}{ }^{*}$, and therefore $L_{i j}{ }^{*}$ is simple non-abelian. If X^{*} is any minimal non-vanishing ideal of $L_{i}{ }^{*}$ then, as shown above, $X^{* 2} \neq 0$; hence $X^{*} L_{i}^{*} \neq$ $0, X^{*} L_{i j}{ }^{*} \neq 0$ for some index $j, X^{*} L_{i j}{ }^{*} \subseteq X^{*} \cap L_{i j}{ }^{*}, X^{*} \cap L_{i j}{ }^{*} \neq 0, X^{*} \cap L_{i j}{ }^{*}=X^{*}=L_{i j}{ }^{*}$. It follows that the components $L_{i j}{ }^{*}$ are simple non-abelian ideals characterized as the minimal non-vanishing ideals of $L_{i}{ }^{*} \dagger$.

The ideal $\bar{L}_{i j}{ }^{*}$ of \bar{L}_{i}^{2} formed by the cosets in $L_{i j}{ }^{*}$ contains a minimal perfect ideal $\bar{L}_{i j} \neq 0$ of \bar{L}_{i}^{2}. It is clear that $L_{i j}{ }^{*} \supseteq\left(\bar{L}_{i j}+z\left(\bar{L}_{i}\right)\right) / z\left(\bar{L}_{i}\right)$ and hence

$$
\left(\bar{L}_{i j}+z\left(\bar{L}_{i}\right)\right) / z\left(\bar{L}_{i}\right)=L_{i j}{ }^{*}, \quad \bar{L}_{i j}^{*}=\bar{L}_{i j}+z\left(\bar{L}_{i}\right), \quad\left(\bar{L}_{i j}{ }^{*}\right)^{2}=\left(\bar{L}_{i j}\right)^{2}=\bar{L}_{i j} .
$$

Thus $\bar{L}_{i j}$ is uniquely determined by $L_{i j}{ }^{*}$ as the derived algebra of the algebra $\bar{L}_{i j}{ }^{*}$ formed by the cosets modulo $z\left(\bar{L}_{i}\right)$ belonging to $L_{i j}{ }^{*}$.

Conversely, if \bar{A} is a minimal perfect ideal $\neq 0$ of \bar{L} then, because $\bar{A} \bar{A}=\bar{A}$, we find that the i-th component ideal $\bar{A}_{i}=\left(\bar{A}+\sum_{j \neq i} \bar{L}_{j}\right) \cap \bar{L}_{i}$ lies in \bar{L}_{i}^{2} and is homomorphic to \bar{A}. Hence, if $\bar{A}_{i} \neq 0$, then A_{i} is a minimal perfect ideal $\neq 0$ of \bar{L}_{i}. Thus $\bar{A}_{i}=\bar{L}_{i j}$ for some j, $\bar{A}_{i} \bar{A}_{i}=\bar{A}_{i} \subseteq \bar{A}_{i} \bar{A} \subseteq \bar{A}_{i}, \bar{A}_{i} \bar{A}=\bar{A}_{i}, \bar{A}_{i} \subseteq \bar{A}$. Since \bar{A} is itself a minimal perfect ideal $\neq 0$ of \bar{L}, it follows that $\bar{A}=\bar{A}_{i}=\bar{L}_{i j}$.

Since the trace bilinear form of Δ induces on $\bar{L}_{i}^{2} / z\left(\bar{L}_{i}\right)$ a non-degenerate bilinear form, it follows by an argument similar to an earlier one that

$$
\begin{gathered}
0=\left(D^{2} \bar{L}_{i}, \bar{L}_{i} \cap\left(D^{2} \bar{L}_{i}\right)^{\perp}\right)=\left(D \bar{L}_{i}, D \bar{L}_{i}\left(\bar{L}_{i} \cap\left(D^{2} \bar{L}_{i}\right)^{\perp}\right)\right), \\
D \bar{L}_{i}\left(\bar{L}_{i} \cap\left(D^{2} L_{i}\right)^{\perp}\right) \subseteq \bar{L}_{i} \cap\left(D \bar{L}_{i}\right)^{\perp}=z\left(\bar{L}_{i}\right), \\
\bar{L}_{i} \cap\left(D^{2} \bar{L}_{i}\right)^{\perp} \text { is solvable, } \bar{L}_{i} \cap\left(D^{2} \bar{L}_{i}\right)^{\perp} \subseteq z\left(\bar{L}_{i}\right), \\
\bar{L}_{i} \cap\left(D^{2} \bar{L}_{i}\right)^{\perp}=z\left(\bar{L}_{i}\right)=\bar{L}_{i} \cap\left(D \bar{L}_{i}\right)^{\perp},
\end{gathered}
$$

$D^{2} \bar{L}_{i}^{+}=D \bar{L}_{i}^{+}, D^{2} \bar{L}_{i}=D \bar{L}_{i}$. For the perfect ideal $D \bar{L}_{i}$ we find that

$$
D \bar{L}_{i}=z\left(\bar{L}_{i}\right)+\sum_{j=1}^{m_{i}} \bar{L}_{i j}=D^{2} \bar{L}_{i}=\sum_{j=1}^{m_{i}} \bar{L}_{i j} .
$$

By Theorem 2, for the purpose of the structural investigation of \bar{L} we can assume that every solvable ideal of L and also L^{\perp} are contained in the centre of L. Let L_{i} be the ideal of L consisting of the cosets of \bar{L}_{i} modulo L^{\perp}. The elements of the cosets of $z\left(\bar{L}_{i}\right)$ modulo L^{\perp} form the centre $z\left(L_{i}\right)$ of L_{i}. Since $D \bar{L}_{i}=\bar{L}_{i}^{2}$ is perfect, it follows that $D^{k} L_{i}+z\left(L_{i}\right)=D L_{i}+z\left(L_{i}\right)$; hence $D^{3} L_{i}=\left(D^{2} L_{i}\right)^{2}=\left(z\left(L_{i}\right)+D^{2} L_{i}\right)^{2}=\left(z\left(L_{i}\right)+D L_{i}\right)^{2}=\left(D L_{i}\right)^{2}=D^{2} L_{i}$, so that $D^{2} L_{i}$ is a perfect ideal.

Let E be an algebraically closed extension of F, let L_{E}, Δ^{E} be the extensions of L, Δ respectively over E. If $0 \subset z\left(L_{i}\right) \subset L_{i}$, then there is an element z of $z\left(D^{2} L_{i}\right)$ that is not contained in \bar{L}^{\perp} and an irreducible constituent Γ of Δ^{E} for which $\Gamma(z) \neq 0$. Hence, by Schur's Lemma, $\Gamma(z)=\zeta I, 0 \neq \zeta \in E$. If the degree $d(\Gamma)$ of Γ is not divisible by the characteristic of F, then $(z, z)_{\Gamma}=\operatorname{tr}(\Gamma(z) \Gamma(z))=d(\Gamma) \zeta^{2} \neq 0$. Hence $D^{2} L_{i}$ is the direct sum of the ideal $F z$ and the ideal $(F z)^{\perp}(\Gamma) \cap D^{2} L_{i}$, and therefore $D^{3} L_{i} \subseteq(F z)^{\perp}(\Gamma) \cap D^{2} L_{i} \subset D^{2} L_{i}$, a contradiction. It follows that $0 \subset z\left(\bar{L}_{i}\right) \subset \bar{L}_{i}$ implies that the characteristic of the field of reference is not zero.

If $D L_{i}$ is not decomposable and if there is a decomposition $L_{i}=A \dot{+} B$ of L_{i} into the direct sum of the two ideals A, B, then there is the direct decomposition $L_{i}^{2}=A^{2}+B^{2}$ of L_{i}^{2}. It follows that either A or B is abelian, say A is abelian. Hence $A \subseteq z\left(L_{i}\right) \subseteq L_{i}^{2}=(A+B)^{2}=$ $B^{2} \subseteq B, A=0$. Hence L_{i} is indecomposable.

It remains to show that L_{i}^{2} is indecomposable. For this purpose we need
Lemma 4. Let L be a fully reducible linear Lie-algebra over a field of reference F that is not of characteristic 2 , such that the radical L^{\perp} of L with respect to its natural representation Δ is contained in the centre $z(L)$ of L, and for every irreducible constituent Δ_{i} of Δ the Δ_{i}-radical of L does not coincide with L. Then every Cartan subalgebra of L is abelian.

Proof of Lemma 4. Let H be a nilpotent subalgebra of L that is its own normalizer. It follows that $L^{\perp} \subseteq z(L) \subseteq H$. Let Δ^{B} be the representation of H obtained by restriction
of Δ. Then \dagger

$$
\begin{equation*}
H^{\perp}\left(\Delta^{I}\right)=H \cap L^{\perp}(\Delta) \tag{26}
\end{equation*}
$$

Let Γ be an absolutely irreducible constituent of Δ^{H}. Then for any element z of $z(H) \cap H^{2}$ we have, by Schur's Lemma, $\Gamma z=\zeta I$ for some element ζ of an extension of F. By [4, p. 29], for any element h of H the matrix $\Gamma(h)$ has only one characteristic root, say $\lambda(h)$, of maximal multiplicity $d(\Gamma)$, so that

$$
(z, h)_{\Gamma}=\operatorname{tr}(\Gamma z \Gamma h)=\zeta \operatorname{tr}(\Gamma(h))=d(\Gamma) \zeta \lambda(h)
$$

Here either the degree of Γ is divisible by the characteristic of F or $d(\Gamma)=1, \Gamma\left(H^{2}\right)=0$, $\Gamma(z)=0, \zeta=0$. At any rate $(z, h)_{\Gamma}=0$. Hence $(z, h)_{\Delta}=0, z \subseteq H^{\perp}\left(\Delta^{H}\right), z \subseteq L^{\perp}(\Delta) \subseteq z(L)$. By assumption, for each irreducible constituent Δ_{i} of Δ we have $L^{\perp}\left(\Delta_{i}\right) \subset L$; hence $H^{\perp}\left(\Delta_{i}^{F}\right) \subset H$. Since the characteristic of F is not 2, it follows that there is an element h of H such that $(h, h)_{\Delta_{i}} \neq 0$. There is an absolutely irreducible constituent Γ of Δ_{i}^{H} for which $(h, h)_{\Gamma} \neq 0$. On the other hand we know that the matrix $\Gamma(h)$ has only one characteristic root $\lambda(h)$ of multiplicity $d(\Gamma)$, so that $0 \neq(h, h)_{\Gamma}=\operatorname{tr}\left((\Gamma h)^{2}\right)=d(\Gamma) \lambda(h)^{2}, d(\Gamma)$ is not divisible by the characteristic of $F, d(\Gamma)=1$, by [4, p. 97, Satz 12]. Hence $\Gamma(z)=0, \Delta_{i}(z)$ is a singular matrix. Hence, by Schur's Lemma, $\Delta_{i}(z)$ is a nilpotent matrix, Δ_{i} induces a nil representation of the ideal $F z$ of $L, \Delta_{i} z=0$, by Lemma 2. Since L is fully reducible, it follows that $\Delta z=0$, $z=0, H^{2} \cap z(H)=0, H^{2}=0$, q.e.d.

Proof of the remainder of Theorem 3. By Theorem 2 and its proof we can assure that L satisfies the assumption of Lemma 4. Moreover we can assume that $0 \subset z(\bar{L}) \subset \bar{L}^{2} \subset \bar{L}=\bar{L}_{i}$.

If there is a Cartan subalgebra H of L then, by Lemma 4, it is abelian. Since H is nilpotent and its own normalizer, it follows from [4, pp. 28-29] that there is a decomposition $L=H+\hat{H}$ of L into the direct sum of H and another linear subspace \hat{H} such that $H \hat{H}=\hat{H}$. Hence $H+L^{2}=L$. Let $\bar{H}=H / L^{\perp}$, so that $\bar{H}+\bar{L}^{2}=\bar{L}$ and \bar{H} is abelian. If there is a decom. position $\bar{L}^{2}=\bar{A}+\bar{B}$ of \bar{L}^{2} into the direct sum of the two ideals \bar{A}, \bar{B} of \bar{L}^{2}, then it follows from $D \bar{L}^{2}=\bar{L}^{2}$ that $D \bar{A}=\bar{A}, D \bar{B}=\bar{B}$; hence \bar{A}, \bar{B} are ideals of \bar{L}. Moreover it follows from the relations $\bar{A} \cap \bar{B}=0, \bar{A}+\bar{B}=\bar{L}^{2}$ that $\bar{A}^{\perp}+\bar{B}^{\perp}=\bar{L}, \bar{A}^{\perp} \cap \bar{B}^{\perp}=\left(\bar{L}^{2}\right)^{\perp}=z(\bar{L})$, so that $\bar{A}^{\perp}=$ $\bar{B}_{1}+\bar{A}^{\perp} \cap \bar{L}^{2}, \bar{B}^{\perp}=\bar{A}_{1}+\bar{B}^{\perp} \cap \bar{L}^{2}$, where \bar{A}_{1}, \bar{B}_{1} are linear subspaces of \bar{H}. Hence $\bar{A}_{1} \cap \bar{B}_{1}=0$, $\bar{A}_{1}+\bar{B}_{1}+\bar{L}^{2}=\bar{L}$, and since \bar{H} is abelian, it follows that \bar{L} is the direct sum of the orthogonal ideals $\bar{A}+\bar{A}_{1}, \bar{B}+\bar{B}_{1}$. Since \bar{L} is orthogonally indecomposable, it follows that either \bar{A} or \bar{B} vanishes. Hence \bar{L}^{2} is indecomposable.

If there is no Cartan subalgebra of L then, by [4, pp. 32-33], it follows that the field of reference is finite. Let $\mathscr{E}\left(\bar{L}^{2}\right)$ be the associative algebra over F that is generated by the adjoint linear transformations of \bar{L}^{2}. Let $\mathscr{C}\left(\bar{L}^{2}\right)$ be the linear associative algebra consisting of all linear transformations of \bar{L}^{2} that are elementwise permutable with $\mathscr{E}\left(\bar{L}^{2}\right)$. Since \bar{L}^{2} is perfect, it follows that there is, up to the order of the components, only one decomposition $\bar{L}^{2}=\dot{S}_{i=1}^{2} \bar{A}_{i}$ of \bar{L}^{2} into the direct sum of indecomposable ideals $\neq 0$. Hence the factor algebra of $\mathscr{C}\left(\bar{L}^{2}\right)$ over its radical is isomorphic to a ring sum of finitely many division algebras E_{1}, E_{2}, \ldots, E_{s} of finite dimension over F. By a theorem of Maclagan-Wedderburn, all the E_{i} 's
\dagger From [4, pp. 28-29] it follows that there is a decomposition $L=H+\hat{H}$ of L into the direct sum of H and another linear subspace \hat{H} such that $H \hat{H}=\hat{H}$. For every invariant bilinear form f we find that

$$
f(H, \hat{H})=f(H, H \hat{H})=f\left(H^{2}, \hat{H}\right)=f\left(H^{2}, H \hat{H}\right)=f\left(H^{3}, \hat{H}\right)=\ldots=f\left(H^{c+1}, \hat{H}\right)=0
$$

and hence (26) is satisfied.
are finite extensions of F. Since the numbers prime to the product P of the degrees of the extensions E_{i} over F are unbounded, it follows from [4, pp. 32-34] that there is an extension E of F of degree prime to P, such that the extended Lie-algebra L_{E} over E contains a Cartan subalgebra. By the method of the construction of E, there is, up to the order of the components, only one decomposition of \bar{L}_{R}^{2} into the direct sum of indecomposable ideals $\neq 0$, viz., the decomposition $\left(\bar{L}^{2}\right)_{E}=\dot{\Sigma}_{i=1}^{t}\left(\bar{A}_{i}\right)_{E}$. As we have seen before, there is a decomposition $\bar{L}_{E}=\dot{\Sigma}_{i=1}^{t} \bar{B}_{i}$ of \bar{L}_{E} into the direct sum of the mutually orthogonal ideals \bar{B}_{i} such that $\left(\bar{A}_{i}\right)_{E}$ is contained in \bar{B}_{i}, for $i=1,2, \ldots, s$. We have $\left(\sum_{i=2}^{t}\left(\bar{A}_{i}\right)_{E}\right)^{\perp}=\bar{B}_{1}+z\left(\bar{L}_{E}\right)=\left(\left(\sum_{i=2}^{t} \bar{A}_{i}\right)^{\perp}\right)_{E}$ and there is a linear subspace \bar{X} of $\left(\sum_{i=2}^{t} \bar{A}_{i}\right)^{\perp}$ such that $\left.\bar{B}_{1}+z\left(\bar{L}_{E}\right)=\left(\bar{A}_{1}\right)_{E}+z\left(\bar{L}_{E}\right)\right)+\bar{X}_{E}$, $\left(\bar{A}_{1}\right)_{E}+\bar{X}_{E}$ is an ideal of \bar{L}_{E} and $\left(\left(\bar{A}_{1}\right)_{E}+\bar{X}_{E}\right)^{\perp} \cap\left(\left(\bar{A}_{1}\right)_{E}+\bar{X}_{E}\right)=\left(\bar{A}_{1}^{\perp}\right)_{E} \cap\left(\bar{X}^{\perp}\right)_{E} \cap\left(\left(\bar{A}_{1}\right)_{E}+\bar{X}_{E}\right)$ $=0$; hence $\bar{B}=\bar{A}_{1}+\bar{X}$ is an ideal of \bar{L} such that $\bar{B}^{1} \cap \bar{B}=0$ and therefore there is the orthogonal decomposition $\bar{L}=\bar{B}+\bar{B}^{\perp}$ of \bar{L}. It follows that $t=1, \widetilde{L}^{2}$ is indecomposable, q.e.d.

REFERENCES

1. Artin, E., Seminar über Lie'sche Ringe, unpublished typewritten notes, Hamburg 1933.
2. Dieudonné, J., On semi-simple Lie-algebras, Proc. Amer. Math. Soc., 4, (1953), 931-932.
3. Schenkman, E., A theory of subinvariant Lie-algebras, Amer. Journ. of Math., 53, 1951, 453-474.
4. Zassenhaus, H., Über Lie'sche Ringe mit Primzahlcharakteristik, Abh. Math. Sem. Univ. Hamburg, 13 (1939), 1-100.

University of Notre Dame,
Notre Dame, Indiana, U.S.A.

