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To what extent is the structure of a Lie-algebra L over a field F determined by the
bilinear form

f(a, b) =(a,b)a (1)

on L that is derived from a matrix representation

a-> A (a) (ae L)

of L with finite degree d(A) by forming the trace of the matrix products

f(a, b) = tr(AaAb) (a, b e L)1 (2)

Such a bilinear form is a function with two arguments in L, values in F and the properties :

f(a1+a2!b) =f(al!b)+f(al,b) 1 (3)
f(a, b1 + b2) = /(«, bj) +f(a, b2) > (bilinearity)

f(Xa,b) =f(a,Xb)=Xf(a,b) J (4)

f(a,b) = f(b,a) (symmetry) (5)

f(ab,c) =f(a,bc) (invariance under L) ...(6)

(Xe F ; a, av b, bv c e L).
It is clear from the definition that the trace bilinear form (1) depends only on the class

of equivalent representations to which A belongs.
For any subset K of L, the set KL of all elements x of L satisfying f(K, x) = 0 f is a

linear subspace of L, because of the bilinearity of /. This linear subspace is called the
orthogonal subspace of K. It coincides with the orthogonal subspace of the linear subspace
{FK} generated by K. If Kx C K2 then K{ 2 K\. By the symmetry of/ we have K C (K1)*-.
If K is an ideal of L, then it follows from the invariance of/ that the orthogonal subspace K1

is also an ideal. The ideal Lx = U-(A) is called the radical of the representation A. For any
ideal A of L contained in i 1 , a symmetric invariant bilinear form fA is induced on the factor
algebra LjA by setting

f*(alA,blA) =f(a,b) (a,beL) (7)

We observe that the kernel of J, i.e. the ideal La ofL formed by the elements x that are mapped
onto 0 by A, lies in the radical of A. By the first isomorphism theorem, L/L^ is isomorphic
to a Lie-subalgebra of the Lie-algebra formed by the matrices of degree d(A) over F. Hence
L/LA and a fortiori L/Ll are finite-dimensional Lie-algebras.

It will be the aim of the investigation to determine the structure of the factor algebra
L/L1 in terms of simple algebras.

THEOBEM 1. / / the characteristic of F is distinct from 2 and 3, then, for any solvable ideal
A of L, the ideal LA is contained in the radical of any matrix representation A.

t For any two subsets Kv Ka of L, denote by f(Kv K2) the set of all values /(»,, x2), where xi denotes
any element of Kt (i = 1, 2). Hence j(K, K-L) = f(K±, K) = 0.
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Before we enter into the proof of Theorem 1, let us prove

LEMMA 1. For any irreducible re-presentation A of a Lie-algebra L over the field of reference
F all of the irreducible components of the representation AT obtained by restricting A to the sub-
invariant subalgebra T are equivalent,
and

LEMMA 2. / / the irreducible representation A of the Lie-algebra L over the field of reference
F induces by restriction to the ideal A of L a nilrepresentation AA of A, then AA is a null
representation of A.

Proof of Lemma 1. By assumption there is a chain L = Lo 2 Lx 2 • • • 2 Lm = T of
Lie-algebras over F from L to T such that Lt is an ideal of Lt_x(i = 1,2,..., m). Let M be
a representation space of A. Since it is of finite dimension over F, it must contain an
irreducible Zi1-.F-subspace m. Also there is a maximal Lx-.F-subspace Mx of M such that
m C Mx and all irreducible components of the representation of L1 with representation space
Mx are equivalent to the representation F of Lx with representation space m. Let s be an
element of L, x an element of Lv u an element of Mx; then

x(su) = x(su)-s(xu)+s(xu) = (xs)u + s (xu) (8)

Hence x (su) is contained in sM1 + Mx and thus sMx + Mx is an Lx-F-module such that the
mapping of u onto su is an operator homomorphism of Mx onto (sM1 + Mx)jMx. It follows
that the irreducible components of the representation of Lx with representation space
(sMx +M1)jMi are equivalent to F. By the Jordan-Holder Theorem, the same applies to the
irreducible components of the representation of Lx with representation space sM1+M1.
Because of the maximality of Mx we have sMx + Mx = Mx, sM1 £ Mx, LMX c Mv Since M
is an irreducible i-JP-space, it follows that Mx = M and thus every irreducible component
of ALi is equivalent to F.

The proof of Lemma 1 can now be completed by induction on m and by an application
of the Jordan-Holder Theorem.

Proof of Lemma 2. Without restricting the generality we can assume that A is a faithful
representation. Hence AA is faithful. By [4, p. 34, Satz 11], the Lie-algebra A is nilpotent.
By [4, p. 29], every irreducible component of AA is a null representation. Let M be a
representation space of A. I t contains a minimal J.-i^-subspace i= 0, say m. Hence Am = 0.
Let Mx be the linear subspace of M consisting of all elements u of M satisfying Au = 0.
Applying (8) for s of L, x of A, u of Mx, we find that su belongs to Mx. Hence Mx is a non-
vanishing invariant subspace of the i-J-space M. Since M is irreducible, it follows that
Mx = M, AM = 0 and this proves Lemma 2.

Proof of Theorem!. (1) Let F be algebraically losed, L1 ^ L, A be irreducible and faithful
and A (AA) = 0. By Lemma 1, the irreducible representation A induces on A a representation
AA all of whose irreducible constituents are equivalent. Since A is nilpotent, it follows from
[4, p. 29] that each irreducible representation of A maps each element of A onto a matrix
with only one characteristic root (of maximal multiplicity). Hence, for any element a of A,
the matrix A(a) has only one characteristic root, say a(a), of maximal multiplicity d(A).

If the characteristic of F is 0, then by the trace argument we have

a(a+6) = a(a)+«(6) (9)

If the characteristic of F does not vanish, then it is by assumption greater than 3 and,
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since A(AA) = 0, it follows that (9) again holds by [4, p. 95, formula (66)]. We observe
also that

A(Xa) = XA(a) (XeF,aeA), (10)

so that a is a linear form on A.

As a next step we want to show that, for any element x of L,

*{xA) = 0 (11)

It suffices to show (11) under the additional assumption that

(x,x)a * 0 (12)
Indeed, we know that there are elements y, z of L for which (y, z)a ¥> 0, and from the

identity
(y + z, y + z)A = (y, y)A + 2 (y, z)A + (z, z)A

it follows, in view of the assumption that the characteristic of F is not 2, that at least one of
the three elements (y+z, y + z)A, (y, y)A, (z, z)A does not vanish. Hence there is an element x0

of L satisfying (x0, xo)A ¥= 0. For any element x of L we have the identity
(x, x)A + (x0, x0)A = i ( (x + x0, x + xo)A + (x - x0, x - x0)A),

so that at least one of the three elements (x,x)A, (x+x0, x+xo)A, (x-xo,x-xo)A does not
vanish. Therefore, if we have shown already that <X(XQA) = 0 and that at least one of the
three conditions oc(xA) = 0, <x( (x+xo)A) = 0, a( (x—xo)A) = 0 is satisfied, it follows from
the linearity of a that (11) is true without restrictions on the element x of L.

Now let us assume (12).
We want to show that for any subalgebra U of A satisfying xU C JJ we have <x(xU) = 0.

We observe that V = Fx + U is a subalgebra of £ containing U as an ideal. The representation
A induces a representation Av on V. Let F be an irreducible constituent of Ay with represen-
tation space in. Since (x, x)A is the trace of (Ax)2, which can be formed by adding up the
traces of (Fx)2 over all irreducible constituents of Av, it follows from (12) that F may be chosen
in such a way that

(x,x)r * 0 (13)

(a) If V is nilpotent then, by [4, p. 29], the matrix F(x) has only one characteristic root £,
so that (x, x)r = d(F)t* and thus, by (13), we have d{F) * 0 in F, t? ± 0. From [4, p. 97,
Satz 12] it follows that d(F) = 1, F(xV) = 0, <x(xU) = 0.

(b) If U = Fu and

xu = Aw (A * 0), (14)

then there is a characteristic root £ of F(x) and an element v ^ 0 of m such that

xv = £v (15)

Set v0 - v and vi+1 = uvf for i = 0, 1, 2, .... I t follows by induction that

xvt = (f + »A)», (» = 0, 1, 2 ...) (16)

Indeed (15) is (16) for i = 0. Let (16) be proved for some subscript i; then it follows from
(14) that

xvi+1 = x(uvt) = (xu)v{ + u (xVf) = uv{+u(t;+i\)v{ = Xvi+1+ (£ + i\)v{+l = (£+ (i + l)X)vi+v

Since m is finite-dimensional, it follows that there is a first element among the elements
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v0, vv ... that is linearly dependent on the preceding elements, say vg. Hence the linearly
independent elements v0, vv ..., vg_1 span a linear subspace of m which is invariant under V.
Since m is irreducible, it follows that the g elements v0, ..., vg_± form a basis of m. Hence

since the characteristic of F is different from 2 and 3.

From (13) it follows that g & 0 in F. Hence

tr(P(ant)) = g<x(xu) = tr{FxTu -TuTx) = 0, a(xu) = 0, a(xll) = 0.

(c) If C/C/ = 0 and if there is a basis ult u2, ..., u^ of U over F such that xu{ = AM,- +M<+1

(A ^ 0, i - 1, 2, ..., fx ; uu+1 = 0), and if we have shown already that tx(xu() = 0 for i = k,
h + 1,..., fi + 1, then we find that the linear form a vanishes on the ideal Fuk + Fuk+1 +.. . + Fu^^
of V, so that F induces on this ideal a nil representation. By Lemma 2 this nil represen-
tation is a null representation. If k > 1, then we can apply (b) to the Lie-algebra
F(Fx) +r(Fuk_1), substituting F(x) for x and .T(Mfc_1) for u, and obtain afw^j) = 0. Hence,
by induction, a(%) = a(w2) = ... = a(wj = a(zt^+1) = 0, a(xll) = 0.

(d) If UU = 0, then let us consider a decomposition

of U into the direct sum of linear subspaces U,, invariant under the linear transformation

I ) of U, that cannot be further decomposed into invariant subspaces. To each of the

subalgebras Fx + Uj, either (a) or (c) is applicable and thus we have a (xUj) = 0 ; moreover
a(xU) = 0 because of the linearity of a.

We may set U = A A and in this event we find that a (x (A A)) = 0. As had been shown
before, it follows that a.(L(AA) ) = 0. Hence the irreducible representation A induces on
the ideal L(AA) of L a nil representation and this nil representation is a null representation
by Lemma 2. Since it is faithful by assumption, it follows that

L(AA) = 0 (17)

/ a\
(e) Denoting by a;* the linear transformation I 1 of A and by S the set of the charac-

teristic roots of a;*, it follows that there is a decomposition A = StcS ^* °f -̂  into the direct
sum of the characteristic subspaces Ak of x* consisting of all elements a of A satisfying an
equation (a;* -k^a = 0 for some exponent fi. Moreover, by [4, p. 32], we have AjAk C Aj+k,
where we set Ah = 0 if h is not a characteristic root of x*. From (17) it follows that AA is
contained in Ao. Since the characteristic of F is distinct from 2, it follows that
AyAk C AAr\Aik ^ Aor^A2k = 0 if k i= 0 ; hence Ak is an abelian subalgebra of A. In
this event Ak admits a decomposition into the direct sum of abelian subalgebras of A to which
(c) is applicable, so that <x(xAk) = 0 if k & 0. If k = 0, then (a) is applicable and we find
again that <*(xA0) = 0. Hence «(xUk) = 0 for all k of S and hence a(xA) = 0 because of the
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linearity of a.
It now follows that a (LA) = 0, as has been shown above. The irreducible representation

A induces a nil representation on the ideal LA. By Lemma 2, this nil representation is a null
representation and, since A is faithful, it follows that LA = 0.

Let B be any solvable ideal of L so that DkB = 0 for some exponent k. There is the
chain of ideals

B2DB = BB2 D2B 2 ... 2 DkB = 0.

If k > 0, then Dk-XB is an abelian ideal of L and then it follows that LDk~1B = 0, as
was shown above. If k > 1, then the ideal A = Dk~2B satisfies the condition A (AA) = 0,
so that LA = 0, as was shown above. Since Dk~1B = AA C LA = 0, it follows that Dk~lB = 0.
Hence LB = 0. LB C U-.

(2) Let F be algebraically closed and A be irreducible. If L1 — L, then it is obvious
that LA C JJ-. Let L1 & L. The representation A induces a faithful irreducible represen-
tation of the Lie-algebra AL. We denote the Lie-multiplication in AL by Z o Y = XY - YX.
Since A is a solvable ideal of L, it follows that AA is a solvable ideal of AL and hence it
follows, as was shown at the close of (1), that AL o AA C (AL)1. But AL o AA = A (LA)
and {AL)L = A (Ll); hence A {LA) C A (JJ-), LA^LA+L1 = L1.

(3) Let F be algebraically closed. Let

.(18)

be a complete reduction of the representation A with irreducible constituents Ax, ..., Ar.
We have

ti(AaAb) = S^jtrfJjaJ^),

(o,6)j = Sj.x ( M k ; (19)

hence

(20)

Since it was shown in (2) that LA C L 1 ^ ) , it follows from (20) that LA C i>(J).
(4) Let 2? be an algebraically closed extension of the field of reference. The product

algebra LE = L xE over F is a Lie algebra over E such that any J^-basis B of L is an iJ-basis
of LE. The representation A can be uniquely extended to a representation AE of L^ by setting
J £ ( 2 A(6)6) = S A(6)6 with coefficients A(6) in E. The product algebra AE = A xE over F

bfB beB

is a solvable ideal of LE ; hence it follows from (3) that LEAE !•= LE and thus
LA £LEr.L = L1.

From the proof of Theorem 1 and another application of Lemma 2 we derive the

COROLLARY OF THEOREM 1. Under the same assumptions, for an irreducible representation
A of L either the radical of A coincides ivith L or the radical of A does not coincide ivith L and LA
lies in the kernel of A.
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The example of the solvable linear Lie-algebras formed by all 2 x 2-matrices over any
field of characteristic 2 shows that Theorem 1 does not hold for fields of characteristic 2.
The example of the solvable linear Lie-algebras formed by the linear combinations of the
matrices

/0 0 0 \ /0 0 0 \ /0 - 1 0\
0 1 0 I, 1 0 0 , 0 0 l ) ;

\0 0 - 1 / \0 1 0 / \0 0 0/

over any field of reference of characteristic 3 shows that the corollary of Theorem 1 does not
hold any longer.

The following theorem states that, as far as the structure of LJU- and the non-degenerate
symmetric invariant bilinear form induced on L/L1 is concerned, it suffices to assume that A
is fully reducible and faithful, that L1 lies in the centre of L and that every solvable ideal of
L lies in the centre.

THEOREM 2. / / the characteristic of the field of reference is distinct from 2 and 3, then for
any Lie-algebra L with a matrix representation A there is a subalgebra U with a fully reducible
representation W and kernel Uv such that

U+L1 = L (21)

(a, b)v = (a, b)a for a,beU, (22)

UU1^) QUVQ UL(W), (23)

UA C JJV for any ideal A of U for which WA is solvable (24)

For the proof of Theorem 2 we need the following

LEMMA 3. For any ideal A of a finite-dimensional Lie-algebra L over the field of reference
F, there is a subalgebra U of L such that U +A = L and Ur\A is nilpotent. If LjA is nilpotent,
then U can be chosen as a nilpotent subalgebra (cf. [3, Theorem 4]).

Proof of Lemma 3. If L = 0, then Lemma 3 is clear. Let L &• 0 and the theorem be
proved already for Lie-algebras of dimension less than dirnp L. For any element a of A we

form the adjoint linear transformation ad (a) = [ ) of L. The set of all elements x of L
\ax)

that are annihilated by some power of ad (a) forms a subalgebra Lo, by [4, p. 31]; moreover,
L is the direct sum of Lo and another linear subspace Lo such that ad (a) (Lo) = Lo. Now let
a be an element of L for which ad (a) induces a nilpotent linear transformation of L/A (e.g.
an element of ^4). Then it follows that Lo = [ad(a)]rZ0 £ [ad(a)]rZ< = A, if r is large enough ;
hence Lo +A = L. If dim .̂ Lo < dim^ L, then, by the induction assumption, it follows that
there is a subalgebra U of Lo such that U + Lor\A = £oand Ur\ (Lor\A) = Ur\A is nilpotent.
But U +A = U + (Lor\A) +A = Lo+A = L. Moreover, if LjA is nilpotent, then, since by
the second isomorphism theorem Loj(Lor^A) is isomorphic to L/A, it follows that LJ(LQr\A)
is nilpotent, so that it can be assumed that V is nilpotent.

If the subalgebra Lo always coincides with L, then the adjoint representation of L induces a
nil representation of A. The adjoint representation of A is a constituent of a nil represen-
tation ; hence it is itself a nil representation and hence A is nilpotent, by Engel's Theorem.
In this case we may set U = L, if LjA is not nilpotent. If L/A is nilpotent, then for every
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element a of L the adjoint linear transformation induces a nilpotent linear transformation of
LjA. Thus by assumption the adjoint representation of L is a nil representation and by
Engel's Theorem it follows that L is nilpotent. In this case we set U = L.

Proof of Theorem 2. By Lemma 3 there is a subalgebra U of L satisfying (21) such that
Ur\JJ- is nilpotent. The representation Au induced by A by restriction to U has a complete
reduction

A* ~

with irreducible constituents Av Az, ..., Ar. For the fully reducible representation W that is
obtained by adding only those irreducible constitutents A{ for which the .^-radical does not
coincide with L, we clearly obtain (22). Since Ul(V) = Ur\Ll is a nilpotent ideal and there-
fore Ux = ULCP) is a solvable ideal of U, (23) follows by an application of the corollary of
Theorem 1 ; (24) is proved similarly.

After these preparations we have the following

STRUCTURE THEOREM (THEOREM 3). (a) For any Lie-algebra L over a field F of
characteristic distinct from 2 and 3 and for any matrix representation A of L, the factor algebra L
of L over the A-radical of L permits a decomposition

Z-JZ-Ji (25)

into the direct sum of mutually orthogonal and indecomposable ideals LvL2,...,Lr distinct from 0.
(b) The ideals LtLt are perfect ideals and uniquely determined up to the order. The centre

z (L{) of L{ is of the same dimension over the field of reference as the factor algebra L{/Lf of Lt

over Lf.
(c) / / the ideal Lt is abelian, then it is one-dimensional.
(d) If the centre of L{ vanishes, then Lt - La is simple non-abelian.
(e) Only if the characteristic of F does not vanish can there be non-abelian components L(

with non-vanishing centre z {Lt). In this event the ideal L? is the sum of the minimal non-vanishing
perfect ideals Liv ..., Lim{ of L contained in L(. The algebra L\ is directly indecomposable but
there is the decomposition

Ijlz{Lt) =tjL1(Lij+z(Li))lz(Li)

of the factor algebra Lflz(L{) into the direct sum of its minimal non-vanishing ideals, each of
ivhich is simple non-abelian

(/) Every minimal non-vanishing perfect ideal of L coincides ivith one of the ideals L(j.
If and only if its centre vanishes, we have Ltj = L{. The minimal non-vanishing perfect ideals
are mutually orthogonal.

Proof of Theorem 3. From the definition of L it follows that the trace bilinear form of A
induces on L a symmetric invariant bilinear form such that the orthogonal space of L vanishes,
i.e. a non-degenerate bilinear form. Hence, for every linear subspace X of L, the dimension
of X plus the dimension of the orthogonal subspace X1 is equal to the dimension of L. Hence
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(X1)1 = X. If X is non-degenerate, i.e. if Xr^X1 = 0, then we have in any event the direct
decomposition L = X + X-1-. Thus there is a decomposition (25) of the finite-dimensional
Lie-algebra L into the direct sum of r mutually orthogonal non-vanishing ideals Lv L2, ...,
Lr, such that there is no further decomposition of L{ into the direct sum of mutually ortho-
gonal non-vanishing ideals (i = 1, 2, ..., r). Note that every ideal of Lt is also an ideal of L
and that the trace bilinear form of A induces on Lt a non-degenerate symmetric invariant
bilinear form.

If L( is abelian, then, since the characteristic of F is distinct from 2, it follows that there
is an element x of Lt for which (x, x)a ¥= 0, so that L( is orthogonally decomposable into the
direct sum of the ideal Fx and the orthogonal complement (Fx^r^Lf, and this implies that
Lf = Fx. Note that Lf = 0 implies that Lf is a perfect ideal.

Let Lf # 0. For the Lie-algebra M = L{ with non-degenerate bilinear form / satisfying
(2)-(5), we find that

/(if2, z(M)) = f(M, Mz(M)) = f(M, 0) = 0.

Conversely, if/(if2, x) = 0 for the element x of if, then /(if2, x) = f(M, Mx) = 0, Mz_= 0,
x lies in z (M); hence z (M) = (if2)1, z(M)1 = 3P. If for an element x of the centre of £, we
have (x, x)A =t 0, then there is the orthogonal decomposition of Lt into the ideal Fx and its
orthogonal complement. Since this is impossible and since the characteristic of the field of
reference is distinct from 2, it follows that z{Lt) is contained in (z(L())

L = Lf. The dimensions
of zjZ,) and of Lf add up to the dimension of Lit so that z (Lt) is isomorphic to the factor algebra
of L{ over Lf.

By Theorem 1 every solvable ideal of L lies in z{L). For every solvable ideal A of Lf, it
follows from Theorem 1 that LfA C (Lf)L/~\L( = z(Lt) ; hence A lies in the second centre of
Lf, a solvable ideal of L, and hence A lies in z(L{). It follows that the factor algebra Lflz(Li)
contains no abelian ideal ^ 0 . Moreover Lf/z(L{) ^ 0 . The trace bilinear form of J induces a
non-degenerate symmetric invariant bilinear form/* on Lt* = L\\z(L>).

There is a decomposition

of JL,* into the direct sum of mutually orthogonal ideals L{j* which permit no further proper
orthogonal decomposition. For an ideal A* oiL^*, set JB* = A*1r\Lii*, so that

ij*) =f*(A*r^B*, (A*r^B*)Lii*) £f*(A*,B*) =0, ( ^ r ^ * ) 2 = 0.

Thus A*r\B* is an abelian ideal of Lit* and therefore of Lt*. Hence A*rsB* = 0, Lt* =
A* +B*, so that, by assumption, A* = £#*, and therefore L{i* is simple non-abelian. If X*
is any minimal non-vanishing ideal of Lt* then, as shown above, X*2 ^ 0 ; hence X*L(* ¥=
0, X*Ltj* * 0 for some index j , X*Lti* C X*r\Ltj*, X*rsL{j* * 0, X*r^Lit* = X* = Lit*.
It follows that the components Lit* are simple non-abelian ideals characterized as the minimal
non-vanishing ideals of X,*f.

_The ideal Ltj* ofLf formed by the cosets in L(j* contains a minimal perfect ideal L(i ^ 0
of Lf. It is clear that Lit* 2 (Lij-\-z(Li) )jz(Li) and hence

(I, , + z (Z,.) )/z (L{) = i,,*, Zw* = X,, + z (LJ, (I,,*)2 = (Z,,)2 = £"„.

t Compare [1], [2].
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Thus L{i is uniquely determined by Lif* as the derived algebra of the algebra Lti* formed by
the cosets modulo z(Lt) belonging to L{j*.

Conversely, if A is a minimal perfect ideal & 0 of L then, because A A = A,w& find that
the i-th component ideal At = (A +~^ljyiiLi)/-^L{ lies in L\ and is homomorphicto.4. Hence,
if At 74 0, then At is a minimal perfect ideal & 0 of Lt. Thus Ai = Lti for some j ,
AiAi = Ai C A{A C Ait AtA = A(, At C .4. Since 4̂ is itself a minimal perfect ideal ¥> 0
of L, it follows that A = At = Lti.

Since the trace bilinear form of A induces on L\\z(L>) a non-degenerate bilinear form, it
follows by an argument similar to an earlier one that

0 = (D%,Lt^(D%)±) = (DLt, D

<^ (D2!,)1 is solvable, Z<^ (D2!,)1 C Z(Z,),

t)\
D2Z+ = DZ+, D2Z,- = DLf. For the perfect ideal DLt we find that

DZ{ = z(Zt)

By Theorem 2, for the purpose of the structural investigation of L we can assume that every
solvable ideal of L and also Lx are contained in the centre of L. Let Lf be the ideal of L
consisting of the cosets of L{ modulo Lx. The elements of the cosets of z (Lt) modulo L1 form
the centre z(Lf) of £,-. Since DLt = L\ is perfect, it follows that DkLi+z(Li) = DL{ +z{Lt);
hence D3£4 = (D2Lt)

2 = (z(Lt) +D2£,)2 = (2(L.) + DL,)2 = {DL(f = D2Lt, so that D2L( is
a perfect ideal.

Let E be an algebraically closed extension of F, let LE, AE be the extensions of L, A
respectively over E. If 0 c z(L{) c Lit then there is an element z of z(D2Lj) that is not
contained in Z1 and an irreducible constituent F of AE for which .T(2) ^ 0. Hence, by
Schur's Lemma, F(z) = £/, 0 ^ ^ e J5. If the degree d (F) of T is not divisible by the charac-
teristic of F, then (z, z)r = tr(r(z)r(z)) = d(F)t,2 ^ 0. Hence D2Lt is the direct sum of the
ideal Fz and the ideal (Fz^^rsD2^, and therefore D 3 ^ C (JPz)i(r)^JD2£< c D2i, , a
contradiction. I t follows that 0 C z (L{) c Lt implies that the characteristic of the field of
reference is not zero.

If DLf is not decomposable and if there is a decomposition L{ = A + B of £>,• into the direct
sum of the two ideals A, B, then there is the direct decomposition L\ = A2+B2 of L\. I t
follows that either A or B is abelian, say A is abelian. Hence A C z{Lt) C £? = (,4 +JS)2 =
£ 2 C B, A = 0 . Hence i j is indecomposable.

It remains to show that Lf is indecomposable. For this purpose we need

LEMMA 4. Let L be a fully reducible linear Lie-algebra over a field of reference F that is
not of characteristic 2, such that the radical L1 of L with respect to its natural representation A
is contained in the centre z (L) of L, and for every irreducible constituent A{ of A the Arradical of
L does not coincide with L. Then every Cartan subalgebra of L is abelian.

Proof of Lemma 4. Let H be a nilpotent subalgebra of L that is its own normalizer.
It follows that Ll C z(L) £ H. Let AB be the representation of H obtained by restriction
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of A. Then|

Hl(AH) = Hr^L^iA) (26)

Let F be an absolutely irreducible constituent of AH. Then for any element z of z(H)rsH2 we
have, by Schur's Lemma, Fz = £/ for some element £ of an extension of F. By [4, p. 29],
for any element h of H the matrix F(h) has only one characteristic root, say A(h), of maximal
multiplicity d(F), so that

(z,h)r = tv(FzFh) = £tr (F(h)) = d(F)£\(h).

Here either the degree of P is divisible by the characteristic of F or d(F) = 1, F(H2) = 0,
F(z) = 0,£ = 0. At any rate (z, h)r = 0. Hence (z, h)a = 0,z C fli(JH))Z c £i(/ |) c Z(I) .
By assumption, for each irreducible constituent A( of A we have / / ( J f l c l ; hence
Hx (A$) C / / . Since the characteristic of F is not 2, it follows that there is an element h of / /
such that (h, h)j, ^t 0. There is an absolutely irreducible constituent F of A\l for which
(h, h)r ¥= 0. On the other hand we know that the matrix F(h) has only one characteristic
root A (A.) of multiplicity d(F), so that 0 * (h, h)r = tr ( (Fh)2) = d{F)X{h)2,d(F) is not divisible
by the characteristic of F,d{F) = 1, by [4, p. 97, Satz 12]. Hence F{z) = 0, A{(z) is a singular
matrix. Hence, by Schur's Lemma, A((z) is a nilpotent matrix, At induces a nil representation
of the ideal Fz of L, A{z = 0, by Lemma 2. Since L is fully reducible, it follows that Az = 0,
z = 0, H2rsz(H) = 0, H* = 0, q.e.d.

Proof of the remainder of Theorem 3. By Theorem 2 and its proof we can assure that L
satisfies the assumption of Lemma 4. Moreover we can assume that 0 C z(L) C L2 c L = L{.

If there is a Cartan subalgebra H of L then, by Lemma 4, it is abelian. Since H is
nilpotent and its own normalizer, it follows from [4, pp. 28-29] that there is a decomposition
L = H + H of L into the direct sum of H and another linear subspace H such that HH = H.
Hence H+L2 = L. Le t / / = H/L1, so t h a t / / + Z 2 = L and H is abelian. If there is a decom-
position L2 = A + B of L2 into the direct sum of the two ideals A, B of//2, then it follows from
DL2 = L2 that DA = A, DB = B ; hence A, B are ideals of L. Moreover it follows from the
relations ArsB = 0, A+B = L2 that Al+Bl = L, A^-r^B1 = (I2)1 = z(Z), so that Ax =
5X +^4i^Z2, 5 1 = A1 + B^r^L", where Alr Bx are linear subspaces of H. Hence A1r^B1 = 0,
Ax + B1 +LS = L, and since H is abelian, it follows that L is the direct sum of the orthogonal
ideals A +AV B+Bv Since L is orthogonally indecomposable, it follows that either A or
B vanishes. Hence L2 is indecomposable.

If there is no Cartan subalgebra of L then, by [4, pp. 32-33], it follows that the field of
reference is finite. Let (o(L2) be the associative algebra over F that is generated by the
adjoint linear transformations of L2. Let *<? (L2) be the linear associative algebra consisting of
all linear transformations of L2 that are elementwise permutable with $ (Z2). Since Z2 is
perfect, it follows that there is, up to the order of the components, only one decomposition
L2 = 2 j = l A( of Z2 into the direct sum of indecomposable ideals ^ 0. Hence the factor algebra
of ^(L2) over its radical is isoniorphic to a ring sum of finitely many division algebras Et,
E2, •-., E, of finite dimension over F. By a theorem of Maclagan-Wedderburn, all the /£,-'s

f From [4, pp. 28-29] it follows that thero is a decomposition L = H+H of L into tho direct sum of H
and another linear subspaeo H such that HH = H. For every invariant bilinear form / we find that

J(H,H) =f(H,HH) =f(H\B) =J(H\HH) =f(H\H) = ... = f(Hc+\ H) = 0
and hence (20) is satisfied.
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are finite extensions of F. Since the numbers prime to the product P of the degrees of the
extensions Et over F are unbounded, it follows from [4, pp. 32-34] that there is an extension
E of F of degree prime to P, such that the extended Lie-algebra LE over E contains a Cartan
subalgebra. By the method of the construction of E, there is, up to the order of the com-
ponents, only one decomposition of L% into the direct sum of indecomposable ideals ^ 0,
viz., the decomposition (L2)E = j j = 1 (A{)E. AS we have seen before, there is a decomposition
•LE = SJ _ j &i of LE into the direct sum of the mutually orthogonal ideals B( such that {A{)E is
contained inBo for i = 1,2,...,«. We have (£< = 2 (-I,^)1 = B1+z(LE) = ((S- = 2 A^E and
there is a linear subspace X of (2 ' = 2 •^*)1 S u c n ^ a * B1+Z(LE) = (AJE+Z^E) )+XE,

(AJE +XE is an ideal of ZE and ( ( A ^ +XE)lr^ ( ( ^ ^ j - Z ^ ) = (A{)Er^ (X±)Ers ( ( J j ^ + XE)
= 0; hence B = Ax+X is an ideal of L such that BLr\B = 0 and therefore there is the
orthogonal decomposition L = B'+B1 of L. It follows that t = 1, £2 is indecomposable, q.e.d.
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