ON TRACE BILINEAR FORMS ON LIE-ALGEBRAS

by HANS ZASSENHAUS

(Received 17th October, 1958)

To what extent is the structure of a Lie-algebra L over a field F determined by the bilinear form

 $f(a, b) = (a, b)_{\Delta}$ (1)

on L that is derived from a matrix representation

$$a \to \Delta(a) \quad (a \in L)$$

of L with finite degree $d(\Delta)$ by forming the trace of the matrix products

Such a bilinear form is a function with two arguments in L, values in F and the properties :

 $(\lambda \in F; a, a_1, b, b_1, c \in L).$

It is clear from the definition that the trace bilinear form (1) depends only on the class of equivalent representations to which Δ belongs.

For any subset K of L, the set K^{\perp} of all elements x of L satisfying $f(K, x) = 0 \dagger$ is a linear subspace of L, because of the bilinearity of f. This linear subspace is called the *orthogonal subspace of K*. It coincides with the orthogonal subspace of the linear subspace $\{FK\}$ generated by K. If $K_1 \subseteq K_2$ then $K_1^{\perp} \supseteq K_2^{\perp}$. By the symmetry of f we have $K \subseteq (K^{\perp})^{\perp}$. If K is an ideal of L, then it follows from the invariance of f that the orthogonal subspace K^{\perp} is also an ideal. The ideal $L^{\perp} = L^{\perp}(\Delta)$ is called the *radical of the representation* Δ . For any ideal A of L contained in L^{\perp} , a symmetric invariant bilinear form f^A is induced on the factor algebra L/A by setting

$$f^{A}(a|A, b|A) = f(a, b) \quad (a, b \in L).$$
(7)

We observe that the kernel of Δ , i.e. the ideal L_{Δ} of L formed by the elements x that are mapped onto 0 by Δ , lies in the radical of Δ . By the first isomorphism theorem, L/L_{Δ} is isomorphic to a Lie-subalgebra of the Lie-algebra formed by the matrices of degree $d(\Delta)$ over F. Hence L/L_{Δ} and a fortiori L/L^{\perp} are finite-dimensional Lie-algebras.

It will be the aim of the investigation to determine the structure of the factor algebra L/L^{1} in terms of simple algebras.

THEOREM 1. If the characteristic of F is distinct from 2 and 3, then, for any solvable ideal A of L, the ideal LA is contained in the radical of any matrix representation Δ .

† For any two subsets K_1 , K_2 of L, denote by $f(K_1, K_2)$ the set of all values $f(x_1, x_2)$, where x_i denotes any element of K_i (i = 1, 2). Hence $f(K, K^{\perp}) = f(K^{\perp}, K) = 0$.

TRACE BILINEAR FORMS ON LIE-ALGEBRAS

Before we enter into the proof of Theorem 1, let us prove

LEMMA 1. For any irreducible representation Δ of a Lie-algebra L over the field of reference F all of the irreducible components of the representation Δ^T obtained by restricting Δ to the subinvariant subalgebra T are equivalent, and

LEMMA 2. If the irreducible representation Δ of the Lie-algebra L over the field of reference F induces by restriction to the ideal A of L a nilrepresentation Δ^A of A, then Δ^A is a null representation of A.

Proof of Lemma 1. By assumption there is a chain $L = L_0 \supseteq L_1 \supseteq ... \supseteq L_m = T$ of Lie-algebras over F from L to T such that L_i is an ideal of L_{i-1} (i = 1, 2, ..., m). Let M be a representation space of Δ . Since it is of finite dimension over F, it must contain an irreducible L_1 -F-subspace m. Also there is a maximal L_1 -F-subspace M_1 of M such that $m \subseteq M_1$ and all irreducible components of the representation of L_1 with representation space M_1 are equivalent to the representation Γ of L_1 with representation space m. Let s be an element of L, x an element of L_1 , u an element of M_1 ; then

Hence x(su) is contained in $sM_1 + M_1$ and thus $sM_1 + M_1$ is an L_1 -*F*-module such that the mapping of u onto su is an operator homomorphism of M_1 onto $(sM_1 + M_1)/M_1$. It follows that the irreducible components of the representation of L_1 with representation space $(sM_1 + M_1)/M_1$ are equivalent to Γ . By the Jordan-Hölder Theorem, the same applies to the irreducible components of the representation of L_1 with representation space $(sM_1 + M_1)/M_1$ are equivalent to Γ . By the Jordan-Hölder Theorem, the same applies to the irreducible components of the representation of L_1 with representation space $sM_1 + M_1$. Because of the maximality of M_1 we have $sM_1 + M_1 = M_1$, $sM_1 \subseteq M_1$, $LM_1 \subseteq M_1$. Since M is an irreducible L-*F*-space, it follows that $M_1 = M$ and thus every irreducible component of Δ^{L_1} is equivalent to Γ .

The proof of Lemma 1 can now be completed by induction on m and by an application of the Jordan-Hölder Theorem.

Proof of Lemma 2. Without restricting the generality we can assume that Δ is a faithful representation. Hence Δ^A is faithful. By [4, p. 34, Satz 11], the Lie-algebra A is nilpotent. By [4, p. 29], every irreducible component of Δ^A is a null representation. Let M be a representation space of Δ . It contains a minimal A-F-subspace $\neq 0$, say m. Hence Am = 0. Let M_1 be the linear subspace of M consisting of all elements u of M satisfying Au = 0. Applying (8) for s of L, x of A, u of M_1 , we find that su belongs to M_1 . Hence M_1 is a non-vanishing invariant subspace of the L-F-space M. Since M is irreducible, it follows that $M_1 = M$, AM = 0 and this proves Lemma 2.

Proof of Theorem 1. (1) Let F be algebraically losed, $L^{\perp} \neq L, \Delta$ be irreducible and faithful and A(AA) = 0. By Lemma I, the irreducible representation Δ induces on A a representation Δ^{A} all of whose irreducible constituents are equivalent. Since A is nilpotent, it follows from [4, p. 29] that each irreducible representation of A maps each element of A onto a matrix with only one characteristic root (of maximal multiplicity). Hence, for any element a of A, the matrix $\Delta(a)$ has only one characteristic root, say $\alpha(a)$, of maximal multiplicity $d(\Delta)$.

If the characteristic of F is 0, then by the trace argument we have

If the characteristic of F does not vanish, then it is by assumption greater than 3 and,

since A(AA) = 0, it follows that (9) again holds by [4, p. 95, formula (66)]. We observe also that

so that α is a linear form on A.

As a next step we want to show that, for any element x of L,

It suffices to show (11) under the additional assumption that

$$(x, x)_{\Delta} \neq 0$$
.....(12)

Indeed, we know that there are elements y, z of L for which $(y, z)_{d} \neq 0$, and from the identity

$$(y+z, y+z)_{\Delta} = (y, y)_{\Delta} + 2(y, z)_{\Delta} + (z, z)_{\Delta}$$

it follows, in view of the assumption that the characteristic of F is not 2, that at least one of the three elements $(y+z, y+z)_{\mathcal{A}}, (y, y)_{\mathcal{A}}, (z, z)_{\mathcal{A}}$ does not vanish. Hence there is an element x_0 of L satisfying $(x_0, x_0)_{\mathcal{A}} \neq 0$. For any element x of L we have the identity

$$(x, x)_{\Delta} + (x_0, x_0)_{\Delta} = \frac{1}{2} ((x + x_0, x + x_0)_{\Delta} + (x - x_0, x - x_0)_{\Delta}),$$

so that at least one of the three elements $(x, x)_{A}$, $(x + x_{0}, x + x_{0})_{A}$, $(x - x_{0}, x - x_{0})_{A}$ does not vanish. Therefore, if we have shown already that $\alpha(x_{0}A) = 0$ and that at least one of the three conditions $\alpha(xA) = 0$, $\alpha((x + x_{0})A) = 0$, $\alpha((x - x_{0})A) = 0$ is satisfied, it follows from the linearity of α that (11) is true without restrictions on the element x of L.

Now let us assume (12).

We want to show that for any subalgebra U of A satisfying $xU \subseteq U$ we have $\alpha(xU) = 0$. We observe that V = Fx + U is a subalgebra of L containing U as an ideal. The representation Δ induces a representation Δ^{V} on V. Let Γ be an irreducible constituent of Δ^{V} with representation space m. Since $(x, x)_{\Delta}$ is the trace of $(\Delta x)^2$, which can be formed by adding up the traces of $(\Gamma x)^2$ over all irreducible constituents of Δ^{V} , it follows from (12) that Γ may be chosen in such a way that

 $(x, x)_{\Gamma} \neq 0.$ (13)

(a) If V is nilpotent then, by [4, p. 29], the matrix $\Gamma(x)$ has only one characteristic root ξ , so that $(x, x)_{\Gamma} = d(\Gamma)\xi^2$ and thus, by (13), we have $d(\Gamma) \neq 0$ in $F, \xi^2 \neq 0$. From [4, p. 97, Satz 12] it follows that $d(\Gamma) = 1, \Gamma(xU) = 0, \alpha(xU) = 0$.

(b) If U = Fu and

then there is a characteristic root ξ of $\Gamma(x)$ and an element $v \neq 0$ of m such that

$$xv = \xi v.$$
(15)

Set
$$v_0 = v$$
 and $v_{i+1} = uv_i$ for $i = 0, 1, 2, \dots$ It follows by induction that

 $xv_i = (\xi + i\lambda)v_i$ (*i* = 0, 1, 2...).(16)

Indeed (15) is (16) for i = 0. Let (16) be proved for some subscript i; then it follows from (14) that

 $xv_{i+1} = x(uv_i) = (xu)v_i + u(xv_i) = uv_i + u(\xi + i\lambda)v_i = \lambda v_{i+1} + (\xi + i\lambda)v_{i+1} = (\xi + (i+1)\lambda)v_{i+1}.$

Since m is finite-dimensional, it follows that there is a first element among the elements

https://doi.org/10.1017/S204061850003389X Published online by Cambridge University Press

64

 v_0, v_1, \ldots that is linearly dependent on the preceding elements, say v_g . Hence the linearly independent elements $v_0, v_1, \ldots, v_{g-1}$ span a linear subspace of m which is invariant under V. Since m is irreducible, it follows that the g elements v_0, \ldots, v_{g-1} form a basis of m. Hence

$$\begin{split} (x, x)_{\Gamma} &= \operatorname{tr} \left((\Gamma x)^2 \right) = \sum_{i=0}^{g-1} (\xi + i\lambda)^2 \\ &= g\xi^2 + g(g-1)\xi\lambda + \frac{g(g-1)(2g-1)}{6}\lambda^2 \\ &= g\left(\xi^2 + (g-1)\xi\lambda + \frac{(g-1)(2g-1)}{6}\lambda^2\right), \end{split}$$

since the characteristic of F is different from 2 and 3.

From (13) it follows that $g \neq 0$ in F. Hence

$$\operatorname{tr}(\Gamma(xu)) = g\alpha(xu) = \operatorname{tr}(\Gamma x \Gamma u - \Gamma u \Gamma x) = 0, \quad \alpha(xu) = 0, \quad \alpha(xU) = 0.$$

(c) If UU = 0 and if there is a basis $u_1, u_2, ..., u_{\mu}$ of U over F such that $xu_i = \lambda u_i + u_{i+1}$ $(\lambda \neq 0, i = 1, 2, ..., \mu; u_{\mu+1} = 0)$, and if we have shown already that $\alpha(xu_i) = 0$ for i = k, $k+1, ..., \mu+1$, then we find that the linear form α vanishes on the ideal $Fu_k + Fu_{k+1} + ... + Fu_{\mu+1}$ of V, so that Γ induces on this ideal a nil representation. By Lemma 2 this nil representation is a null representation. If k > 1, then we can apply (b) to the Lie-algebra $\Gamma(Fx) + \Gamma(Fu_{k-1})$, substituting $\Gamma(x)$ for x and $\Gamma(u_{k-1})$ for u, and obtain $\alpha(u_{k-1}) = 0$. Hence, by induction, $\alpha(u_1) = \alpha(u_2) = ... = \alpha(u_{\mu}) = \alpha(u_{\mu+1}) = 0$, $\alpha(xU) = 0$.

(d) If UU = 0, then let us consider a decomposition

$$U = \sum_{j=1}^{s} U_j$$

of U into the direct sum of linear subspaces U_j , invariant under the linear transformation $\binom{u}{xu}$ of U, that cannot be further decomposed into invariant subspaces. To each of the subalgebras $Fx + U_j$, either (a) or (c) is applicable and thus we have $\alpha(xU_j) = 0$; moreover $\alpha(xU) = 0$ because of the linearity of α .

We may set U = AA and in this event we find that $\alpha(x(AA)) = 0$. As had been shown before, it follows that $\alpha(L(AA)) = 0$. Hence the irreducible representation Δ induces on the ideal L(AA) of L a nil representation and this nil representation is a null representation by Lemma 2. Since it is faithful by assumption, it follows that

L(AA) = 0.(17)

(e) Denoting by x^* the linear transformation $\binom{a}{xa}$ of A and by S the set of the charac-

teristic roots of x^* , it follows that there is a decomposition $A = \sum_{k \in S} A_k$ of A into the direct sum of the characteristic subspaces A_k of x^* consisting of all elements a of A satisfying an equation $(x^* - k)^{\mu}a = 0$ for some exponent μ . Moreover, by [4, p. 32], we have $A_jA_k \subseteq A_{j+k}$, where we set $A_h = 0$ if h is not a characteristic root of x^* . From (17) it follows that AA is contained in A_0 . Since the characteristic of F is distinct from 2, it follows that $A_kA_k \subseteq AA \cap A_{2k} \subseteq A_0 \cap A_{2k} = 0$ if $k \neq 0$; hence A_k is an abelian subalgebra of A. In this event A_k admits a decomposition into the direct sum of abelian subalgebras of A to which (c) is applicable, so that $\alpha(xA_k) = 0$ if $k \neq 0$. If k = 0, then (a) is applicable and we find again that $\alpha(xA_0) = 0$. Hence $\alpha(xU_k) = 0$ for all k of S and hence $\alpha(xA) = 0$ because of the E

linearity of α .

It now follows that $\alpha(LA) = 0$, as has been shown above. The irreducible representation Δ induces a nil representation on the ideal LA. By Lemma 2, this nil representation is a null representation and, since Δ is faithful, it follows that LA = 0.

Let B be any solvable ideal of L so that $D^k B = 0$ for some exponent k. There is the chain of ideals

$$B \supseteq DB = BB \supseteq D^2B \supseteq \dots \supseteq D^kB = 0.$$

If k > 0, then $D^{k-1}B$ is an abelian ideal of L and then it follows that $LD^{k-1}B = 0$, as was shown above. If k > 1, then the ideal $A = D^{k-2}B$ satisfies the condition A(AA) = 0, so that LA = 0, as was shown above. Since $D^{k-1}B = AA \subseteq LA = 0$, it follows that $D^{k-1}B = 0$. Hence LB = 0. $LB \subseteq L^{1}$.

(2) Let F be algebraically closed and Δ be irreducible. If $L^{\perp} = L$, then it is obvious that $LA \subseteq L^{\perp}$. Let $L^{\perp} \neq L$. The representation Δ induces a faithful irreducible representation of the Lie-algebra ΔL . We denote the Lie-multiplication in ΔL by $X \circ Y = XY - YX$. Since A is a solvable ideal of L, it follows that ΔA is a solvable ideal of ΔL and hence it follows, as was shown at the close of (1), that $\Delta L \circ \Delta A \subseteq (\Delta L)^{\perp}$. But $\Delta L \circ \Delta A = \Delta(LA)$ and $(\Delta L)^{\perp} = \Delta(L^{\perp})$; hence $\Delta(LA) \subseteq \Delta(L^{\perp})$, $LA \subseteq L_{\Delta} + L^{\perp} = L^{\perp}$.

(3) Let F be algebraically closed. Let

$$\mathcal{A} \sim \begin{pmatrix} \mathcal{A}_1 & \ast & \cdot & \ast \\ \mathcal{A}_2 & \cdot & \cdot \\ & \ddots & \cdot \\ & & \ddots & \ast \\ & & & \mathcal{A}_r \end{pmatrix}$$
(18)

be a complete reduction of the representation Δ with irreducible constitutents $\Delta_1, \ldots, \Delta_r$. We have

hence

Since it was shown in (2) that $LA \subseteq L^{1}(\Delta_{i})$, it follows from (20) that $LA \subseteq L^{1}(\Delta)$.

(4) Let E be an algebraically closed extension of the field of reference. The product algebra $L_E = L \times E$ over F is a Lie algebra over E such that any F-basis B of L is an E-basis of L_E . The representation Δ can be uniquely extended to a representation Δ^E of L_E by setting $\Delta^E(\sum_{b \in B} \lambda(b)b) = \sum_{b \in B} \lambda(b)b$ with coefficients $\lambda(b)$ in E. The product algebra $A_E = A \times E$ over F is a solvable ideal of L_E ; hence it follows from (3) that $L_E A_E \subseteq L_E^{\perp}$ and thus $LA \subseteq L_E^{\perp} \cap L = L^{\perp}$.

From the proof of Theorem 1 and another application of Lemma 2 we derive the

COROLLARY OF THEOREM 1. Under the same assumptions, for an irreducible representation Δ of L either the radical of Δ coincides with L or the radical of Δ does not coincide with L and LA lies in the kernel of Δ .

66

The example of the solvable linear Lie-algebras formed by all 2×2 -matrices over any field of characteristic 2 shows that Theorem 1 does not hold for fields of characteristic 2. The example of the solvable linear Lie-algebras formed by the linear combinations of the matrices

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

over any field of reference of characteristic 3 shows that the corollary of Theorem 1 does not hold any longer.

The following theorem states that, as far as the structure of L/L^{\perp} and the non-degenerate symmetric invariant bilinear form induced on L/L^{\perp} is concerned, it suffices to assume that Δ is fully reducible and faithful, that L^{\perp} lies in the centre of L and that every solvable ideal of L lies in the centre.

THEOREM 2. If the characteristic of the field of reference is distinct from 2 and 3, then for any Lie-algebra L with a matrix representation Δ there is a subalgebra U with a fully reducible representation Ψ and kernel U_{Ψ} such that

 $U + L^{\perp} = L$,(21)

 $(a, b)_{\Psi} = (a, b)_{\Delta}$ for $a, b \in U$,(22)

 $UA \subseteq U_{\Psi}$ for any ideal A of U for which ΨA is solvable.(24)

For the proof of Theorem 2 we need the following

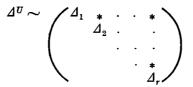
LEMMA 3. For any ideal A of a finite-dimensional Lie-algebra L over the field of reference F, there is a subalgebra U of L such that U + A = L and $U \cap A$ is nilpotent. If L/A is nilpotent, then U can be chosen as a nilpotent subalgebra (cf. [3, Theorem 4]).

Proof of Lemma 3. If L = 0, then Lemma 3 is clear. Let $L \neq 0$ and the theorem be proved already for Lie-algebras of dimension less than $\dim_F L$. For any element *a* of *A* we form the adjoint linear transformation $\operatorname{ad}(a) = \begin{pmatrix} x \\ ax \end{pmatrix}$ of *L*. The set of all elements *x* of *L* that are annihilated by some power of $\operatorname{ad}(a)$ forms a subalgebra L_0 , by [4, p. 31]; moreover, *L* is the direct sum of L_0 and another linear subspace \hat{L}_0 such that $\operatorname{ad}(a)(\hat{L}_0) = \hat{L}_0$. Now let *a* be an element of *L* for which $\operatorname{ad}(a)$ induces a nilpotent linear transformation of L/A (e.g. an element of *A*). Then it follows that $\hat{L}_0 = [\operatorname{ad}(a)]^r \hat{L}_0 \subseteq [\operatorname{ad}(a)]^r L = A$, if *r* is large enough; hence $L_0 + A = L$. If $\dim_F L_0 < \dim_F L$, then, by the induction assumption, it follows that there is a subalgebra *U* of L_0 such that $U + L_0 \cap A = L_0$ and $U \cap (L_0 \cap A) = U \cap A$ is nilpotent. But $U + A = U + (L_0 \cap A) + A = L_0 + A = L$. Moreover, if L/A is nilpotent, then, since by the second isomorphism theorem $L_0/(L_0 \cap A)$ is isomorphic to L/A, it follows that $L_0/(L_0 \cap A)$ is nilpotent, so that it can be assumed that *U* is nilpotent.

If the subalgebra L_0 always coincides with L, then the adjoint representation of L induces a nil representation of A. The adjoint representation of A is a constituent of a nil representation; hence it is itself a nil representation and hence A is nilpotent, by Engel's Theorem. In this case we may set U = L, if L/A is not nilpotent. If L/A is nilpotent, then for every

element a of L the adjoint linear transformation induces a nilpotent linear transformation of L/A. Thus by assumption the adjoint representation of L is a nil representation and by Engel's Theorem it follows that L is nilpotent. In this case we set U = L.

Proof of Theorem 2. By Lemma 3 there is a subalgebra U of L satisfying (21) such that $U \cap L^{\perp}$ is nilpotent. The representation Δ^{U} induced by Δ by restriction to U has a complete reduction



with irreducible constituents $\Delta_1, \Delta_2, ..., \Delta_r$. For the fully reducible representation Ψ that is obtained by adding only those irreducible constitutents Δ_i for which the Δ_i -radical does not coincide with L, we clearly obtain (22). Since $U^{\perp}(\Psi) = U \cap L^{\perp}$ is a nilpotent ideal and therefore $U^{\perp} = U^{\perp}(\Psi)$ is a solvable ideal of U, (23) follows by an application of the corollary of Theorem 1; (24) is proved similarly.

After these preparations we have the following

STRUCTURE THEOREM (THEOREM 3). (a) For any Lie-algebra L over a field F of characteristic distinct from 2 and 3 and for any matrix representation Δ of L, the factor algebra \overline{L} of L over the Δ -radical of L permits a decomposition

into the direct sum of mutually orthogonal and indecomposable ideals L_1, L_2, \ldots, L_r distinct from 0.

(b) The ideals $\overline{L}_i \overline{L}_i$ are perfect ideals and uniquely determined up to the order. The centre $z(\overline{L}_i)$ of \overline{L}_i is of the same dimension over the field of reference as the factor algebra $\overline{L}_i/\overline{L}_i^2$ of \overline{L}_i over \overline{L}_i^2 .

(c) If the ideal \overline{L}_i is abelian, then it is one-dimensional.

(d) If the centre of \overline{L}_i vanishes, then $\overline{L}_i = \overline{L}_{i1}$ is simple non-abelian.

(e) Only if the characteristic of F does not vanish can there be non-abelian components \overline{L}_i with non-vanishing centre $z(\overline{L}_i)$. In this event the ideal \overline{L}_i^2 is the sum of the minimal non-vanishing perfect ideals $\overline{L}_{i1}, \ldots, \overline{L}_{imi}$ of \overline{L} contained in \overline{L}_i . The algebra \overline{L}_i^2 is directly indecomposable but there is the decomposition

$$\overline{L}_i^2/z(\overline{L}_i) = \dot{\sum}_{j=1}^{m_i} (\overline{L}_{ij} + z(\overline{L}_i))/z(\overline{L}_i)$$

of the factor algebra $\overline{L}_i^2/z(\overline{L}_i)$ into the direct sum of its minimal non-vanishing ideals, each of which is simple non-abelian

(f) Every minimal non-vanishing perfect ideal of \overline{L} coincides with one of the ideals \overline{L}_{ij} . If and only if its centre vanishes, we have $\overline{L}_{ij} = \overline{L}_i$. The minimal non-vanishing perfect ideals are mutually orthogonal.

Proof of Theorem 3. From the definition of \overline{L} it follows that the trace bilinear form of Δ induces on \overline{L} a symmetric invariant bilinear form such that the orthogonal space of \overline{L} vanishes, i.e. a non-degenerate bilinear form. Hence, for every linear subspace \overline{X} of \overline{L} , the dimension of \overline{X} plus the dimension of the orthogonal subspace \overline{X}^{\perp} is equal to the dimension of \overline{L} . Hence

 $(\overline{X}^{\perp})^{\perp} = \overline{X}$. If \overline{X} is non-degenerate, i.e. if $\overline{X} \cap \overline{X}^{\perp} = 0$, then we have in any event the direct decomposition $\overline{L} = \overline{X} \stackrel{\cdot}{+} \overline{X}^{\perp}$. Thus there is a decomposition (25) of the finite-dimensional Lie-algebra \overline{L} into the direct sum of r mutually orthogonal non-vanishing ideals \overline{L}_1 , \overline{L}_2 , ..., \overline{L}_r , such that there is no further decomposition of \overline{L}_i into the direct sum of mutually orthogonal non-vanishing ideals (i = 1, 2, ..., r). Note that every ideal of \overline{L}_i is also an ideal of \overline{L} and that the trace bilinear form of Δ induces on \overline{L}_i a non-degenerate symmetric invariant bilinear form.

If \overline{L}_i is abelian, then, since the characteristic of F is distinct from 2, it follows that there is an element \overline{x} of \overline{L}_i for which $(\overline{x}, \overline{x})_{\mathcal{A}} \neq 0$, so that \overline{L}_i is orthogonally decomposable into the direct sum of the ideal Fx and the orthogonal complement $(Fx)^{\perp} \cap \overline{L}_i$, and this implies that $\overline{L}_i = F\overline{x}$. Note that $\overline{L}_i^2 = 0$ implies that \overline{L}_i^2 is a perfect ideal.

Let $\overline{L}_i^2 \neq 0$. For the Lie-algebra $M = \overline{L}_i$ with non-degenerate bilinear form f satisfying (2)-(5), we find that

$$f(M^2, z(M)) = f(M, Mz(M)) = f(M, 0) = 0.$$

Conversely, if $f(M^2, x) = 0$ for the element x of M, then $f(M^2, x) = f(M, Mx) = 0$, Mx = 0, x lies in z(M); hence $z(M) = (M^2)^1$, $z(M)^1 = M^2$. If for an element \bar{x} of the centre of \bar{L}_i we have $(\bar{x}, \bar{x})_{d} \neq 0$, then there is the orthogonal decomposition of \bar{L}_i into the ideal $F\bar{x}$ and its orthogonal complement. Since this is impossible and since the characteristic of the field of reference is distinct from 2, it follows that $z(\bar{L}_i)$ is contained in $(z(\bar{L}_i))^1 = \bar{L}_i^2$. The dimensions of $z(\bar{L}_i)$ and of \bar{L}_i^2 add up to the dimension of \bar{L}_i , so that $z(\bar{L}_i)$ is isomorphic to the factor algebra of \bar{L}_i over \bar{L}_i^2 .

By Theorem 1 every solvable ideal of \overline{L} lies in $z(\overline{L})$. For every solvable ideal \overline{A} of \overline{L}_i^2 , it follows from Theorem 1 that $\overline{L}_i^2 \overline{A} \subseteq (L_i^2)^{\perp} \cap \overline{L}_i = z(\overline{L}_i)$; hence \overline{A} lies in the second centre of \overline{L}_i^2 , a solvable ideal of \overline{L} , and hence \overline{A} lies in $z(\overline{L}_i)$. It follows that the factor algebra $\overline{L}_i^2/z(\overline{L}_i)$ contains no abelian ideal $\neq 0$. Moreover $\overline{L}_i^2/z(\overline{L}_i) \neq 0$. The trace bilinear form of Δ induces a non-degenerate symmetric invariant bilinear form f^* on $L_i^* = \overline{L}_i^2/z(\overline{L}_i)$.

There is a decomposition

$$L_i^* = \sum_{j=1}^{m_i} L_{ij}^*$$

of L_i^* into the direct sum of mutually orthogonal ideals L_{ij}^* which permit no further proper orthogonal decomposition. For an ideal A^* of L_{ij}^* , set $B^* = A^{*\perp} \cap L_{ij}^*$, so that

$$f^*((A^* \cap B^*)^2, L_{ij}^*) = f^*(A^* \cap B^*, (A^* \cap B^*)L_{ij}^*) \subseteq f^*(A^*, B^*) = 0, \ (A^* \cap B^*)^2 = 0.$$

Thus $A^* \cap B^*$ is an abelian ideal of L_{ij}^* and therefore of L_i^* . Hence $A^* \cap B^* = 0$, $L_{ij}^* = A^* + B^*$, so that, by assumption, $A^* = L_{ij}^*$, and therefore L_{ij}^* is simple non-abelian. If X^* is any minimal non-vanishing ideal of L_i^* then, as shown above, $X^{*2} \neq 0$; hence $X^*L_i^* \neq 0$, $X^*L_{ij}^* \neq 0$ for some index j, $X^*L_{ij}^* \subseteq X^* \cap L_{ij}^*$, $X^* \cap L_{ij}^* \neq 0$, $X^* \cap L_{ij}^* = X^* = L_{ij}^*$. It follows that the components L_{ij}^* are simple non-abelian ideals characterized as the minimal non-vanishing ideals of $L_i^*^{\dagger}$.

The ideal \overline{L}_{ij}^* of \overline{L}_i^2 formed by the cosets in L_{ij}^* contains a minimal perfect ideal $\overline{L}_{ij} \neq 0$ of \overline{L}_i^2 . It is clear that $L_{ij}^* \supseteq (\overline{L}_{ij} + z(\overline{L}_i))/z(\overline{L}_i)$ and hence

$$(\bar{L}_{ij} + z(\bar{L}_i))/z(\bar{L}_i) = L_{ij}^*, \qquad \bar{L}_{ij}^* = \bar{L}_{ij} + z(\bar{L}_i), \qquad (\bar{L}_{ij}^*)^2 = (\bar{L}_{ij})^2 = \bar{L}_{ij}.$$

† Compare [1], [2].

Thus \overline{L}_{ij} is uniquely determined by L_{ij}^* as the derived algebra of the algebra \overline{L}_{ij}^* formed by the cosets modulo $z(\overline{L}_i)$ belonging to L_{ij}^* .

Conversely, if \overline{A} is a minimal perfect ideal $\neq 0$ of \overline{L} then, because $\overline{A}\overline{A} = \overline{A}$, we find that the *i*-th component ideal $\overline{A}_i = (\overline{A} + \sum_{j \neq i} \overline{L}_j) \cap \overline{L}_i$ lies in \overline{L}_i^2 and is homomorphic to \overline{A} . Hence, if $\overline{A}_i \neq 0$, then A_i is a minimal perfect ideal $\neq 0$ of \overline{L}_i . Thus $\overline{A}_i = \overline{L}_{ij}$ for some j, $\overline{A}_i \overline{A}_i = \overline{A}_i \subseteq \overline{A}_i \overline{A} \subseteq \overline{A}_i$, $\overline{A}_i \overline{A} = \overline{A}_i$, $\overline{A}_i \subseteq \overline{A}$. Since \overline{A} is itself a minimal perfect ideal $\neq 0$ of \overline{L} , it follows that $\overline{A} = \overline{A}_i = \overline{L}_{ij}$.

Since the trace bilinear form of Δ induces on $\overline{L}_i^2/z(\overline{L}_i)$ a non-degenerate bilinear form, it follows by an argument similar to an earlier one that

$$\begin{split} 0 &= (D^2 L_i, \, \bar{L}_i \cap (D^2 L_i)^{\perp}) = (DL_i, \, DL_i (L_i \cap (D^2 L_i)^{\perp}) \,), \\ D\bar{L}_i (\bar{L}_i \cap (D^2 L_i)^{\perp}) &\subseteq \bar{L}_i \cap (D\bar{L}_i)^{\perp} = z(\bar{L}_i), \\ \bar{L}_i \cap (D^2 \bar{L}_i)^{\perp} \text{ is solvable, } \bar{L}_i \cap (D^2 \bar{L}_i)^{\perp} \subseteq z(\bar{L}_i), \\ \bar{L}_i \cap (D^2 \bar{L}_i)^{\perp} = z(\bar{L}_i) = \bar{L}_i \cap (D\bar{L}_i)^{\perp}, \end{split}$$

 $D^2 \overline{L}_i^1 = D \overline{L}_i^1$, $D^2 \overline{L}_i = D \overline{L}_i$. For the perfect ideal $D \overline{L}_i$ we find that

$$D\overline{L}_i = z(\overline{L}_i) + \sum_{j=1}^{m_i} \overline{L}_{ij} = D^2 \overline{L}_i = \sum_{j=1}^{m_i} \overline{L}_{ij}.$$

By Theorem 2, for the purpose of the structural investigation of \overline{L} we can assume that every solvable ideal of L and also L^{\perp} are contained in the centre of L. Let L_i be the ideal of Lconsisting of the cosets of \overline{L}_i modulo L^{\perp} . The elements of the cosets of $z(\overline{L}_i)$ modulo L^{\perp} form the centre $z(L_i)$ of L_i . Since $D\overline{L}_i = \overline{L}_i^2$ is perfect, it follows that $D^k L_i + z(L_i) = DL_i + z(L_i)$; hence $D^3 L_i = (D^2 L_i)^2 = (z(L_i) + D^2 L_i)^2 = (z(L_i) + DL_i)^2 = (DL_i)^2 = D^2 L_i$, so that $D^2 L_i$ is a perfect ideal.

Let E be an algebraically closed extension of F, let L_E , Δ^E be the extensions of L, Δ^E respectively over E. If $0 \subset z(L_i) \subset L_i$, then there is an element z of $z(D^2L_i)$ that is not contained in \overline{L}^1 and an irreducible constituent Γ of Δ^E for which $\Gamma(z) \neq 0$. Hence, by Schur's Lemma, $\Gamma(z) = \zeta I$, $0 \neq \zeta \in E$. If the degree $d(\Gamma)$ of Γ is not divisible by the characteristic of F, then $(z, z)_{\Gamma} = \operatorname{tr}(\Gamma(z)\Gamma(z)) = d(\Gamma)\zeta^2 \neq 0$. Hence D^2L_i is the direct sum of the ideal Fz and the ideal $(Fz)^1(\Gamma) \cap D^2L_i$, and therefore $D^3L_i \subseteq (Fz)^1(\Gamma) \cap D^2L_i \subset D^2L_i$, a contradiction. It follows that $0 \subset z(\overline{L}_i) \subset \overline{L}_i$ implies that the characteristic of the field of reference is not zero.

If DL_i is not decomposable and if there is a decomposition $L_i = A + B$ of L_i into the direct sum of the two ideals A, B, then there is the direct decomposition $L_i^2 = A^2 + B^2$ of L_i^2 . It follows that either A or B is abelian, say A is abelian. Hence $A \subseteq z(L_i) \subseteq L_i^2 = (A + B)^2 = B^2 \subseteq B$, A = 0. Hence L_i is indecomposable.

It remains to show that L_i^2 is indecomposable. For this purpose we need

LEMMA 4. Let L be a fully reducible linear Lie-algebra over a field of reference F that is not of characteristic 2, such that the radical L^{\perp} of L with respect to its natural representation Δ is contained in the centre z(L) of L, and for every irreducible constituent Δ_i of Δ the Δ_i -radical of L does not coincide with L. Then every Cartan subalgebra of L is abelian.

Proof of Lemma 4. Let H be a nilpotent subalgebra of L that is its own normalizer. It follows that $L^{\perp} \subseteq z(L) \subseteq H$. Let Δ^{H} be the representation of H obtained by restriction

Let Γ be an absolutely irreducible constituent of Δ^H . Then for any element z of $z(H) \cap H^2$ we have, by Schur's Lemma, $\Gamma z = \zeta I$ for some element ζ of an extension of F. By [4, p. 29], for any element h of H the matrix $\Gamma(h)$ has only one characteristic root, say $\lambda(h)$, of maximal multiplicity $d(\Gamma)$, so that

$$(z, h)_{\Gamma} = \operatorname{tr}(\Gamma z \Gamma h) = \zeta \operatorname{tr}(\Gamma(h)) = d(\Gamma) \zeta \lambda(h).$$

Here either the degree of Γ is divisible by the characteristic of F or $d(\Gamma) = 1$, $\Gamma(H^2) = 0$, $\Gamma(z) = 0, \zeta = 0$. At any rate $(z, h)_{\Gamma} = 0$. Hence $(z, h)_{\Delta} = 0, z \subseteq H^{\perp}(\Delta^H), z \subseteq L^{\perp}(\Delta) \subseteq z(L)$. By assumption, for each irreducible constituent Δ_i of Δ we have $L^{\perp}(\Delta_i) \subset L$; hence $H^{\perp}(\Delta_i^H) \subset H$. Since the characteristic of F is not 2, it follows that there is an element h of Hsuch that $(h, h)_{d_i} \neq 0$. There is an absolutely irreducible constituent Γ of Δ_i^H for which $(h, h)_{\Gamma} \neq 0$. On the other hand we know that the matrix $\Gamma(h)$ has only one characteristic root $\lambda(h)$ of multiplicity $d(\Gamma)$, so that $0 \neq (h, h)_{\Gamma} = \text{tr}((\Gamma h)^2) = d(\Gamma)\lambda(h)^2, d(\Gamma)$ is not divisible by the characteristic of $F, d(\Gamma) = 1$, by [4, p. 97, Satz 12]. Hence $\Gamma(z) = 0, \Delta_i(z)$ is a singular matrix. Hence, by Schur's Lemma, $\Delta_i(z)$ is a nilpotent matrix, Δ_i induces a nil representation of the ideal Fz of $L, \Delta_i z = 0$, by Lemma 2. Since L is fully reducible, it follows that $\Delta z = 0$, $z = 0, H^2 \cap z(H) = 0, H^2 = 0$, q.e.d.

Proof of the remainder of Theorem 3. By Theorem 2 and its proof we can assure that L satisfies the assumption of Lemma 4. Moreover we can assume that $0 \subset z(\overline{L}) \subset \overline{L}^2 \subset \overline{L} = \overline{L}_i$.

If there is a Cartan subalgebra H of L then, by Lemma 4, it is abelian. Since H is nilpotent and its own normalizer, it follows from [4, pp. 28-29] that there is a decomposition $L = H \dotplus \hat{H}$ of L into the direct sum of H and another linear subspace \hat{H} such that $H\hat{H} = \hat{H}$. Hence $H + L^2 = L$. Let $\overline{H} = H/L^1$, so that $\overline{H} + \overline{L}^2 = \overline{L}$ and \overline{H} is abelian. If there is a decomposition $\overline{L}^2 = \overline{A} \dotplus \overline{B}$ of \overline{L}^2 into the direct sum of the two ideals \overline{A} , \overline{B} of \overline{L}^2 , then it follows from $D\overline{L}^2 = \overline{L}^2$ that $D\overline{A} = \overline{A}$, $D\overline{B} = \overline{B}$; hence \overline{A} , \overline{B} are ideals of \overline{L} . Moreover it follows from the relations $\overline{A} \cap \overline{B} = 0$, $\overline{A} + \overline{B} = \overline{L}^2$ that $\overline{A}^1 + \overline{B}^1 = \overline{L}$, $\overline{A}^1 \cap \overline{B}^1 = (\overline{L}^2)^1 = z(\overline{L})$, so that $\overline{A}^1 =$ $\overline{B}_1 \dotplus \overline{A}^1 \cap \overline{L}^2$, $\overline{B}^1 = \overline{A}_1 \dotplus \overline{B}^1 \cap \overline{L}^2$, where \overline{A}_1 , \overline{B}_1 are linear subspaces of \overline{H} . Hence $\overline{A}_1 \cap \overline{B}_1 = 0$, $\overline{A}_1 \dotplus \overline{B}_1 \dotplus \overline{L}^2 = \overline{L}$, and since \overline{H} is abelian, it follows that \overline{L} is the direct sum of the orthogonal ideals $\overline{A} + \overline{A}_1$, $\overline{B} + \overline{B}_1$. Since \overline{L} is orthogonally indecomposable, it follows that either \overline{A} or \overline{B} vanishes. Hence \overline{L}^2 is indecomposable.

If there is no Cartan subalgebra of L then, by [4, pp. 32-33], it follows that the field of reference is finite. Let $\mathscr{C}(\bar{L}^2)$ be the associative algebra over F that is generated by the adjoint linear transformations of \bar{L}^2 . Let $\mathscr{C}(\bar{L}^2)$ be the linear associative algebra consisting of all linear transformations of \bar{L}^2 that are elementwise permutable with $\mathscr{C}(\bar{L}^2)$. Since \bar{L}^2 is perfect, it follows that there is, up to the order of the components, only one decomposition $\bar{L}^2 = \sum_{i=1}^{t} \bar{A}_i$ of \bar{L}^2 into the direct sum of indecomposable ideals $\neq 0$. Hence the factor algebra of $\mathscr{C}(\bar{L}^2)$ over its radical is isomorphic to a ring sum of finitely many division algebras E_1 , E_2 , ..., E_s of finite dimension over F. By a theorem of Maclagan-Wedderburn, all the E_i 's

† From [4, pp. 28-29] it follows that there is a decomposition $L = H + \hat{H}$ of L into the direct sum of H and another linear subspace \hat{H} such that $H\hat{H} = \hat{H}$. For every invariant bilinear form f we find that

 $f(H, \hat{H}) = f(H, H\hat{H}) = f(H^2, \hat{H}) = f(H^2, H\hat{H}) = f(H^3, \hat{H}) = \dots = f(H^{c+1}, \hat{H}) = 0$

and hence (26) is satisfied.

https://doi.org/10.1017/S204061850003389X Published online by Cambridge University Press

are finite extensions of F. Since the numbers prime to the product P of the degrees of the extensions E_i over F are unbounded, it follows from [4, pp. 32-34] that there is an extension E of F of degree prime to P, such that the extended Lie-algebra L_E over E contains a Cartan subalgebra. By the method of the construction of E, there is, up to the order of the components, only one decomposition of \overline{L}_E^2 into the direct sum of indecomposable ideals $\neq 0$, viz., the decomposition $(\overline{L}^2)_E = \hat{\Sigma}_{i=1}^t (\overline{A}_i)_E$. As we have seen before, there is a decomposition $\overline{L}_E = \hat{\Sigma}_{i=1}^t \overline{B}_i$ of \overline{L}_E into the direct sum of the mutually orthogonal ideals \overline{B}_i such that $(\overline{A}_i)_E$ is contained in \overline{B}_i , for i = 1, 2, ..., s. We have $(\sum_{i=2}^t (\overline{A}_i)_E)^1 = \overline{B}_1 + z(\overline{L}_E) = ((\sum_{i=2}^t \overline{A}_i)^1)_E$ and there is a linear subspace \overline{X} of $(\sum_{i=2}^t \overline{A}_i)^1$ such that $\overline{B}_1 + z(\overline{L}_E) = (\overline{A}_1)_E + z(\overline{L}_E)$ $) + \overline{X}_E$, $(\overline{A}_1)_E + \overline{X}_E$ is an ideal of \overline{L}_E and $((\overline{A}_1)_E + \overline{X}_E)^1 \cap ((\overline{A}_1)_E + \overline{X}_E) = (\overline{A}_1)_E \cap ((\overline{A}_1)_E + \overline{X}_E)$ = 0; hence $\overline{B} = \overline{A}_1 + \overline{X}$ is an ideal of \overline{L} such that $\overline{B}^1 \cap \overline{B} = 0$ and therefore there is the orthogonal decomposition $\overline{L} = \overline{B}^+ \overline{B}^1 \circ \overline{L}$. It follows that $t = 1, \overline{L}^2$ is indecomposable, q.e.d.

REFERENCES

1. Artin, E., Seminar über Lie'sche Ringe, unpublished typewritten notes, Hamburg 1933.

2. Dieudonné, J., On semi-simple Lie-algebras, Proc. Amer. Math. Soc., 4, (1953), 931-932.

3. Schenkman, E., A theory of subinvariant Lie-algebras, Amer. Journ. of Math., 53, 1951, 453-474.

4. Zassenhaus, H., Über Lie'sche Ringe mit Primzahlcharakteristik, Abh. Math. Sem. Univ. Hamburg, 13 (1939), 1-100.

UNIVERSITY OF NOTRE DAME, NOTRE DAME, INDIANA, U.S.A.