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PSEUDO-CONFLUENT MAPPINGS AND A
CLASSIFICATION OF CONTINUA

A.LELEK AND E. D. TYMCHATYN

In this paper we introduce a new class of mappings and apply it to study
some local properties of continua. A solution is obtained to a problem raised
in (14] by the first author (see 4.4 below). By a mapping we always mean a
continuous function.

1. Definitions and preliminaries. Recall that, given three subsets 4, B, C
of a topological space, the set C is said to be connected between A and B provided
A,BC Cand C# M\JN,whereA CM,BC Nand MN\N =0 = M N N.
The set Cis connected provided C is connected between {x} and {y} for each pair
of pointsx,y € C. Let f: X — Y be a mapping of a topological space X onto a
topological space V. The mapping f is said to be confluent (see [10, p. 223]),
pseudo-confluent, or weakly confluent provided, for each connected closed non-
empty set C C Y, the following conditions are satisfied, respectively:

(¢) for each pair of points x € f~'(C) and y € C, the set f~1(C) is connected
between {x} and f~1(y);

(p) for each pair of points y, ¥ ¢ C, the set f~1(C) is connected bhetween
f=*(y) and f=1(y");

(w) there exists a point xy € f~'(C) such that, for each point y € C, the
set f~1(C) is connected between {x,} and f~'(y).

Clearly, (c) implies both (p) and (w). It follows from Proposition 1.1 that
(w) also implies (p).

1.1. If A, B, C are subsets of a topological space, xq 1s a point of it and the set C
1s connected between A and {x,} as well as between B and {x,}, then C is connected
between A and B.

Proof. Suppose on the contrary that C = M \U N, where 4 C M, BCN
and NN =0 = MM N. Then x, € M or xo € N, which implies that C is
not connected between B and {x,} or C is not connected between A and {xo},
respectively.

1.2. COROLLARY. Each confluent mapping is weakly confluent, and each weakly
confluent mapping is pseudo-confluent.

Remark. There exist pseudo-confluent mappings that are not weakly con-
fluent. A rather simple example of such a mapping will be described in the
present paper (see 3.6).
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Given a point x, € X, the quasi-component Q(X, xo) of X containing x, is
understood to mean the set of all the points x € X such that X is connected
between {x,} and {x}. Equivalently, Q(X, x) is the common part of all the
closed-open subsets of X which contain x,. Thus the quasi-components of X
are closed subsets of X, and two quasi-components which intersect are equal.

1.3. If A, B are compact sets and a set C is connected between A and B, then there
exists a quasi-component Q of C suchthat AM Q # B = BM Q (see [9, Theorem 1,
p. 168]).

In particular, if a, b are points of C, then C 1s connected between {a} and {b} if
and only if a and b belong to the same quasi-component of C.

The proof given in [9] is valid for the weaker hypothesis of 1.3. That is, the
entire space need not be compact. The second part of 1.3 is also a direct con-
sequence of the definition of quasi-components and the fact that two inter-
secting quasi-components coincide.

1.4. COROLLARY. Let f: X — ¥ be a mapping of a topological space X onto a
topological space Y such that f~*(y) 1s compact for y € Y. Then f is confluent,
pseudo-confluent, or weakly confluent if and only if, for each connected closed non-
empty set C C Y, the following conditions are satisfied, respectively:

(c") for each quasi-component Q of f~2(C), we have C = f(Q),

(p’) for each pair of points y, y' € C, there exists a quasi-component Q of
f7UC) such that y, v’ € f(Q);

(W) there exists a quasi-component Q of f~2(C) such that C = f(Q).

Remarks. Condition (w’) is essentially stronger than (w) since it follows from
(w') that the point x, whose existence is claimed in (w) can be selected from
each set f~'(y,), where y, € C. We shall use this observation in finding some
other equivalent conditions (compare 2.3 and 3.4). Easy examples show
(cf. 3.5) that (w) does not imply (w’) if not all of the sets f~!(y) are compact.
On the other hand, if X is a compact Hausdorff space, so are the sets f~1(C) for
closed C C Y, and then their quasi-components are connected and coincide
with components |9, Theorem 2, p. 169]. Consequently, for compact Hausdorff
spaces, the word ‘‘quasi-component’’ can be replaced by ‘“‘component’” every-
where in 1.4 (compare 5.3). This indicates that, for compact Hausdorff spaces,
our notions of confluent mappings and weakly confluent mappings are the
same as those previously introduced in [1] and [12], respectively. Also, for
compact Hausdorff spaces, one concludes that, in particular, the composite of
two pseudo-confluent mappings is itself pseudo-confluent. More precisely, we
have the following proposition whose direct proof is omitted.

1.5. Let X, Y, Z be compact Hausdorff spaces, f: X — Y be « mapping of X
onto Y, and g: Y — Z be a mapping of Y onto Z. If both f and g are confluent,
pseudo-confluent, or weakly confluent, then the composite gf: X — Z is confluent,
pseudo-confluent, or weakly confluent, respectively (see (1, 111, p. 214;12, p. 100]).
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2. Mappings of hereditarily normal spaces. The next two propositions
are very much analogous and we prove them jointly.

2.1. Let f: X — Y be a closed mapping of a hereditarily normal space X onto a
topological space YV, and let x € X, y € Y be points. Then the following two
conditions are equivalent:

(1) ¢f U C Y is an open set connected between {f(x)} and {y}, then the set
f=H(U) is connected between {x} and f~1(y);

(if) if Z C Y is a set connected between {f(x)} and |y}, then the set f~'(Z) is
connected between {x} and f~'(y).

2.2. Let f: X — Y be a closed mapping of a hereditarily normal space X onto a
topological space V, and let y, y' € Y be points. Then the following two conditions
are equivalent:

(1) of U C Yisan open set connected between {v} and {y'}, then the set f~'(U) 1s
connected between f~1(y) and f~1(y);

(ii) if Z C Y is a set connected between {y} and {y'}, then the set f~'(Z) is
connected between [~1(y) and f~1(y).

Proof. Obviously, (ii) implies (i) in both 2.1 and 2.2. Let us suppose (ii) of
2.2 is violated, which means there exists a set Z C V connected between {y}
and {y'} such that

fUZ) = M\UN,f'(y) CM,f(y)CNand MNN =0 = MMNN.

It follows [8, Theorem 1, p. 130] that there is an open subset G C X such
that M C Gand G\ N = 0. Thus

fUZ) = M\UN C G\ (X\G),

whence (G\G) N\ f~*(Z) =B, and G\J (X\G) is not connected between
f~(y) and f~'(¥'). Since f is a closed mapping, the set U = Y\f(G\G) is open
in Y. But we have f(G\G) M Z = B, whence Z C U, which implies that U also
is connected between {y} and {y’}. Because

fHU) CXNG\G) = G (X\G),

we conclude that the set f~1(U) is not connected between f~!(y) and f~1(y"), so
that condition (i) of 2.2 is violated. This completes the proof of 2.2. To
complete the proof of 2.1, one can use exactly the same argument, with
f~1(»") replaced by {x} and y’ replaced by f(x).

2.3. Let f: X — Y be a closed mapping of a hereditarily normal space X onto a
topological space YV, and let yo € YV be a point such that f~1(yy) is compact. Then
the following two conditions are equivalent:

(i) for each open set U C Y, there exists a point xo € [~ (yo) such thatif y € ¥
and the set U is connected between {y,} and {y}, then the set {~'(U) is connected
between {xo} and f~(y);
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(ii) for each set Z C Y, there exists a point xo € f~'(y,) such thatif y € Vand
the set Z 1s connected between {y,} and {y}, then the set f~'(Z) 1s connected between
{x0} and f~1(y).

Proof. 1t is obvious that (ii) implies (i). Suppose, on the contrary, that (i)
holds and (ii) does not, which means that there exists a set Z C ¥ with the
following property: for each point x € f~1(y,), there is a point y(x) € Y such
that Z is connected between {y,} and {y(x)} but f~'(Z) is not connected be-
tween {x} and f~'[y(x)]. As in the proof of 2.2, we obtain an open subset
G(x) C X such that

(1) f1(2) CGE)VIX\GK)], x€Gx) and fyx)]C X\G(x).

Thus the compact set f~!(y,) is covered by the open sets G(x), where
x € f~1(yy), and there exists a finite sequence of points xi, ..., x, of f~1(y,)
such that

(2) f~yo) CGlx) U...UG(xy,).
Since f is a closed mapping, the set
®) U= 1\ U CENGG]

is open in ¥, and Z C U, by (1). Hence the set U is connected between {y,}

and {y(x,;)} fori =1,...,n. Let xo € f~'(y) be a point whose existence is
guaranteed by (i). Consequently, the set f~1(U) is connected between {x,} and
fUy(xy)] fort =1,...,n By (2), there exists an integer 8 = 1, ..., n such

that xy € G(x;), and it follows from (3) that
[G)\G ()] N f~H(U) = 8,

whence f~1(U) C G(x;) Y [X\G(x4)]. By (1), we get f~[y(x)] C X\G (%),
contradicting the fact that the set f~'(U) is connected between {x,} and
Sy (xx)]. The proof of 2.3 is now complete.

3. Mappings onto locally connected spaces. Confluent mappings as well
as pseudo-confluent or weakly confluent ones can be characterized by means of
properties of arcs and connected subsets of the range spaces provided they
fulfill some additional conditions. By an arc we mean a topological copy of the
closed unit interval [0, 1] of the real line, and by a conttnuum we mean a
connected compact metric space. A mapping f: X — Vis called perfect provided
f is closed and f~!(y) is compact for each point y € V.

3.1. THEOREM. Let f: X — V be a perfect mapping of a hereditarily normal
space X onto a locally connected complete metric space Y. Then the following four
conditions are equivalent:
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(1) f1s confluent;
(ii) for each arc A C YV and each quasi-component Q of f~1(A), we have
4 = f(Q);
(iii) for each connected set C C YV and each quasi-component Q of f~1(C), we

have C = f(Q);
(iv) for each set Z C Y, each point z € Z and each point x € f~1(z), we have

(4) Q(Z,2) = flO(f(2), x)].

Proof. By 1.4, (i) implies (ii), and (iii) implies (i). Clearly, (iv) implies (iii).
To prove that (ii) implies (iv), let us consider a set Z C Y and a point x € X
such thatz = f(x) € Z. Lety € Q(Z,3),y # z,and let U C Y be an arbitrary
open set connected between {z} and {y}. Denote by U, the component of U
which contains z. Since U is locally connected, U, is a quasi-component of U
[9, Theorem 18, p. 235], and so y € U,, by 1.3. Moreover, U, is an open subset
of ¥, so that thereexistsanarc A C Ujjoiningyand z [8, p. 408; 9, pp. 253-254].
It follows from (ii) and from the inclusion 4 C U that

A4 = flO(f1(4), x)] CARU(U), x)],

whence y € fIQ(f~1(U), x)], i.e., f~1(y) N Q(f~(U), x) # @. We conclude that
the set f~1(U) is, by 1.3, connected between {x} and f~!(y). By 2.1, the set
f~H(Z) also is connected between {x} and f~1(y) because the set Z is connected
between {z} and {y}. Since f~!(y) is compact, there exists, by 1.3, a quasi-
component of f~1(Z) which meets {x} and f~'(y). This quasi-component is
Q7' (2),x), and we get y € flQ(f~'(Z), x)]. As a result, the inclusion
Q(Z,z) CAO((2),x)]

holds. We notice that the reverse inclusion is always true for x € f~1(z) since
the connectedness of f~1(Z) between {x} and {x’} implies, for continuous
functions f, the connectedness of Z between {f(x)} and {f(x")}. Formula (4) is
then proved, and so is 3.1.

3.2. LEMMA. Let f: X — A be a mapping of a topological space X onto un arc A
with end-points ay, as such that f~1(a) is compact for a € A, and let Q be a quasi-
component of X. Then A = f(Q) if and only if ay, a» € f(Q).

Proof. Assume that a1, ¢z € f(Q), i.e., there exist points x;, x» € Q such that
a; = f(x1) and a2 = f(x2). The space X is connected between {x,} and {x.}.
Let @ € 4 be a point such that a; ¥ a 7 a,. Denote by A, and 4, the subarcs
of A with end-points «;, « and «, as, respectively. If f~1(4,) were not connected
between {x;} and f~1(a), we would have

fY(A4) = M\UN,x, € M,f*(a) CNand M NN =0 =MNN,
whence f=1(4) = M \J [N U f~1(4.)], where x» € f~1(4.) and

MO (A4s) CHA) N fHA) = f7H(A) N f7H(4s) = f(a) C N,
M N fHAy) = M N f1(A4,) Cf1(4:) N f1(4,) = fa) CN.

https://doi.org/10.4153/CJM-1975-136-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1975-136-4

PSEUDO-CONFLUENT MAPPINGS 1341

Consequently, we would have
MNNUf Y A4,)]CMNN=@and MNNUFI(4d,) CMNN =90,

which contradicts the connectedness of X = f~1(4) between {x,} and {x.}.
Thus f~1(4,) is connected between {x;} and f~'(«). By 1.3, the quasi-component
Q(f~1(44), x1) meets f~!(a), and therefore

a € flO(f71(41), x1)] CAOWX, x1)] = f(Q).

Remark. Without the compactness of the sets f~!(a), the conclusion of 3.2 is
not necessarily true (see 3.5 below).

3.3. THEOREM. Let f: X — YV be a perfect mapping of a hereditarily normal
space X onto a locally connected complete metric space Y. Then the following four
conditions are equivalent:

(1) f is pseudo-confluent;
(i1) for each arc A C Y, there exists a quasi-component Q of f~1(A) such that
A = f(Q);

(iii) for each commected set C C YV and each pair of points y, v' ¢ C, there
exists « quasi-component Q of f~(C) such that vy, vy € f(Q);

(iv) for each set Z C Y and each point z € Z, we have

6) 0z = Y fOG¢(2), =)

Proof. Again, as in the proof of 3.1, (iii) implies (i), by 1.4, and (i) implies
(ii), by 1.4 and 3.2. Clearly, (iv) implies (iii). To prove that (ii) implies (iv),
let us consider aset Z C Yand apointz € Z. Lety € Q(Z,2), y # 2, and let
U C Y bean arbitrary open set connected between {y} and {z}. Then, as in the
proof of 3.1, there exists an arc A C U joining y and z. By (ii), the set f[~1(4)
is connected between f~'(y) and f~1(z), and hence so is the set f~1(U). It follows
from 2.2 (for ¥y’ = z) that the set f~1(Z), too, is connected between the compact
sets f~1(y) and f~!(z). By 1.3, a quasi-component of f~1(Z) meets both f~1(y)
and f~1(z), whence y € flQ(f~'(Z), x)] for at least one point x ¢ f~!(z). Thus

0z C U fGT(2), =),

and, as in the proof of 3.1, the reverse inclusion always holds. We get (5),
which completes the proof of 3.3.

3.4. THEOREM. Let f: X — YV be a perfect mupping of « hereditarily normal
space X onto a locally connected complete metric space Y. Then the following four
conditions are equivalent:

(1) f 1s weakly confluent;
(i1) for each continuum C C Y which is the union of a finite collection of arcs,
there exists a quasi-component Q of f~1(C) such that C = f(Q);
(iii) for each connected non-empty set C C Y, there exists a quasi-component

Q of f~1(C) such that C = f(Q);
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(iv) for each set Z C Y and each point z € Z, there exists a point xo € f~1(2)
such that

(6) Q(Z,2) = lQ(f71(Z), x0)]-

Proof. By 1.4, (i) implies (ii), and (iii) implies (i). Clearly, (iv) implies (iii).
To prove that (ii) implies (iv), consider a set Z C Y and a point z € Z. We
need to show that condition (i) of 2.3 is satisfied for y, = z. Suppose it is not.
Then there exists an open set U C Y with the following property: for each
pointx € f~1(z), thereisa point y(x) € Y such that Uis connected between {z}
and {y(x)} but f~1(U) is not connected between {x} and f~'[y(x)]. Conse-
quently, there exists, for each x € f~1(z), a closed-open subset V(x) of f~1(U)
such that x € V(x) and f~[y(x)] C f~2(U)\V(x). Sinee f~1(z) is compact,
there exist points xy, . . ., x, of f~1(z) such that

(7) f7e) C V) Y. U Vix),

and, as in the proof of 3.1, there exists, foreach7 = 1,... ,n,anarc 4, C U
joining y(x;) and z. But the set

C—_—AIUUA,,

is a continuum in ¥ which is the union of a finite collection of arcs. By (ii), we
have a quasi-component Q of f~*(C) such that C = f(Q). Since z € C, there
exists a point x* € Q with z = f(x*), and thus, by (7), we also have at least one
integer k. = 1, ..., nsuch that x* € V(x;). On the other hand, C C U whence
f7HC) Cf~Y(U), and y(xx) € 4, C C = f(Q). Therefore f~y(xx)] M Q # 9,
which implies that the set f~1(C) is connected between {x*} and f~![y(x;)], and
so is the set f~'(U). This is a contradiction because V(x,) is a closed-open
neighborhood of x* in f~!(U) which is disjoint with f~![y(x;)]. Condition (i) of
2.3 then holds for y, = z, and it follows from 2.3 that there exists a point
x9 € f~1(z) such that, for each point y € Q(Z, z), the set f~!(Z) is connected
between {x,} and f~!(y). By 1.3, the quasi-component Q(f~'(Z), xo) meets
f~(y). Thus

Q(Z,2) CflO((Z), x0)],

and the reverse inclusion is always true, proving (6). The proof of 3.4 is now
complete.

Remark. That the assumption of the local connectedness of Y cannot be
removed from any of Theorems 3.1, 3.3, or 3.4, can be seen on Example 3.7 at
the end of this section.

3.5. Example. There exists a weakly confluent, hence also pseudo-confluent,
mapping f: X — [0, 1] of a metric space X onto [0, 1] such that the sets f[~'(0) and
f7Y(1) are degenerate, each quasi-component of X is compuct and none of them 1is
mapped by f onto [0, 1].
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Moreover, the mapping f satisfies condition (w) for each connected non-
empty set C C [0, 1].

Proof. We define X to be a subset of the plane, given by the formula

={0,0), (1LO)} U {©2™0):n=12..]}
Uil —2"0):n=12...])

VU {@2™:2"<x<1— 27,

n=1

and let f{(x, y)] = x for (x,y) € X.

3.6. Example. There exists a pseudo-confluent mapping f: [0, 1] — 1" of [0, 1]
onto a simple triod T such that f is not weakly confluent.

Proof. We have T"= 4, U 4, \U A,, where 4, is an arc with end-points
ay b (1 =0,1,2) such that b is the only common point of any two of the arcs
Ay, A1 and A4.,. Itis enough to let f be a mapping such that f(0) = ayand f maps
the intervals [0, 1/3], [1/3, 2/3] and [2/3, 1] homeomorphically onto the arcs
Ag\J Ay, A1\J A, and A:\J A,, respectively. Then condition (ii) of 3.3 is
satisfied. Condition (ii) of 3.4, however, is not satisfied for any continuum
C C T of the form C = 4,\U A, \J A4/, where A/ is a proper subarc of 4,
with the point b being one of its end-points (z = 1, 2).

Remarks. The existence of a mapping described in Example 3.6 is related to a
more general phenomenon. Namely, each dendrite having only a finite number
of end-points is the image of [0, 1] under a pseudo-confluent mapping (see
[6, Theorem 2, p. 247]; cf. 4.8 in our next section). Moreover, if the dendrite is
not an arc, then no such mapping is weakly confluent (2, Corollary 11.3].

3.7. Example. There exists a confluent mapping f: X — V of an arc-like
continuum X onto an arc-like continuum Y and a connected open set U C Y such
that the set f~1(U) has only two quasi-components and neither of them 1is mapped
by f onto U.

Proof. Let X be the subset of the plane defined by
= {(x,1): x| £ 1} U {(sin;—j—i,y) 1<y = 2}

Ui, y): =13V {(x,sinx—I——I) 1l <x £ 2} ,
and let R be an equivalence relation in X, given by

={(¢¢, 1), @, 0): [ = P YU L0, ¢ 1): |t = 1}
Ui p):p e X}

Then the natural projection f of X onto the quotient space ¥V = X/R is a
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confluent mapping (17, Example 3.6, p. 105]. Let po = (0, 2), p1 = (1, 1),
pe = (2,0), and define U = Y\{f(p1)}. The set U is connected and the set
f~Y(U) = X\{p1} is composed of two quasi-components Qy, Qs containing the
points pg, ps, respectively. On the other hand, we have f(po) € U\f(Q:) and
f(p2) € U\f(Qo). The mapping f does not satisfy condition (iii) of 3.3, thus also
neither of 3.1 nor of 3.4.

4. Mappings of hereditarily locally connected continua. We say that
a continuum is of Class A provided each connected subset of it is arcwise
connected. Clearly, all the dendrites belong to Class A. We also distinguish a
larger class of continua which has been introduced in [11]. A continuum X is
said to be finitely Suslinian provided each collection of pairwise disjoint sub-
continua of X having diameters greater than a positive number is finite. It is
known that each continuum of Class A is regular (19, Theorem 6, p. 323], each
regular continuum is finitely Suslinian, and each finitely Suslinian continuum is
hereditarily locally connected [11, 1.4 and 1.7, pp. 132-133]. Since, for subsets
of hereditarily locally connected continua, their quasi-components coincide
with components [9, Theorem 9 (ii), p. 272], our Propositions 4.1, 4.2 and 4.3
are consequences of Theorems 3.1, 3.4 and 3.3, respectively.

4.1. Let f: X — V be a confluent mapping of « hereditarily locally connected
continuum X onto a continuum Y. Then, for each connected set C C YV and each
component K of f~1(C), we have C = f(K) (see [4, Theorem 1.3, p. 6]).

A version of the above theorem was announced earlier in [3] where, however,
the word “‘hereditarily’” was omitted by mistake.

4.2. Let f: X = Y be a weakly confluent mapping of « hereditarily locally
connected continuum X onto a continuum Y. Then, for each connected set C C Y,
there exists a component K of f~1(C) such that C = f(K).

4.3. Let f: X — YV be a pseudo-confluent mapping of a herediturily locally con-
nected continuum X onto a continuum Y. Then, for each connected non-empty set
C C Y and each pair of points y, y' € C, there exists a« component K of f~1(C)
such that y, v' € f(K).

Since all the continua of Class A are hereditarily locally connected, we have
the following result which generalizes a previous theorem [4, Theorem 1.4, p. 6]
and also provides an affirmative solution to a problem [14, Problem II, p. 326].

4.4. CorOLLARY. The pseudo-confluent image of a continuum of Cluss A
belongs to Class A.

The next three theorems generalize some results of [15] (see also [13, p. 169]).

4.5. THEOREM. The pseudo-confluent image of a regular continuum 1is regular.

Proof. Let f: X — Y be a pseudo-confluent mapping of a regular continuum
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X onto a continuum Y. Given two points y, ¥ € Y, there exists an open subset
G C X such that f~'(y) C G, GNf1(y) =0 and the set G\G is finite
[9, Theorem 9, p. 287]. Then U = Y\f(G\G) is an open subset of ¥ which
contains y and y’. Moreover, we have f~1(U) C G U (X\G), so that, as in the
proof of 2.2, the set f~1(U) is not connected between f~1(y) and f~1(y’). Since ¥
is locally connected, the points y and y’ lie in distinct components of U, by 3.3,
condition (iii). Also, since Y is locally connected, the components of the open
set U coincide with the quasi-components. Hence, U is not connected between
{y} and {y’}. Since Y\U = f(G\G) is finite, ¥ is regular [20, (4.3), p. 97].

4.6. THEOREM. The pseudo-confluent image of a finitely Suslinian continuum is
Sfinitely Suslinian.

Proof. Suppose f: X — V is a pseudo-confluent mapping of a continuum X
onto a continuum Y that is not finitely Suslinian, i.e., there exists a number

€0 > 0 and an infinite sequence of pairwise disjoint subcontinua Cy, Cs, . . . of ¥
such that diam C; > ¢ for 7 =1,2,... Consequently, there are points
vy v{ € C; with dist(y;, /) > e fori =1,2,... By 1.4, we get continua

K, C f~Y(C;) such that y;, v/ € f(K,). The sets K, are pairwise disjoint. By
the continuity of f, their diameters must all be greater than some positive
number 8. Thus X is not finitely Suslinian.

4.7. THEOREM. The pseudo-confluent image of a hereditarily locally connected
continuum 1s hereditarily locally connected.

Proof. Suppose f: X — ¥ is a pseudo-confluent mapping of a continuum X
onto a continuum Y that is not hereditarily locally connected. Then there
exists a non-degenerate continuum Cy C ¥ and an infinite sequence of sub-
continua C;, Cs, ... of Y such that

Co=LmC; and CoNC;,=00G=12,...)
50
[9, Theorem 2, p. 269]. Since C, is non-degenerate, infinitely many of the
continua C; have diameters greater than a positive number ¢,. As in the proof
of 4.6, we get an infinite sequence of continua K; C f~'(C;;) whose diameters
are all greater than a positive number 8y, and 7; < 7, < ... An infinite subse-
quence K, K;,, ... (j1 < j» < ...)converges to a continuum K,. The diameter
of Ky is at least 8y, hence K is non-degenerate. Each point x € K, is the limit of
a sequence of points x;, where x; € K}, so that f(x;) € f(K;) C Cy;, and

f&) = lim f(x;) € Lim Cy;, = Cy,
k—>co koo

i.e., f(Ko) C Cy. As a result, the subcontinua K ;,, K,,, . . . of X do not meet
their limit Ky, and thus X is not hereditarily locally connected (ibidem). This
completes the proof of 4.7.

Let f: X — Y be a mapping of a space X onto a space Y. The mapping f is
said to be an inverse-arc function (see [6, p. 245]) provided, for eacharc 4 C 7,
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there exists an arc L. C X such that 4 = f(L). By 3.3, conditions (i) and (ii),
we have the following easy equivalence.

4.8. A mapping of a hereditarily arcwise connected continuum onto a locally
connected continuum is pseudo-confluent if and only if it is an 1nverse-arc function.

4.9. CoroLLARY. The 1mage of a continuum of Class A under an inverse-arc
function belongs to Class A.

Since all the dendrites are continua of Class A, our Corollary 4.9 strengthens
the result of [7] and generalizes an earlier one [6, Theorem 8, p. 254]. We give
yet another generalization of it at the end of this paper (see 5.5).

5. Other classes of continua. It is known that each hereditarily locally
connected continuum is rational [20, Theorem (3.3), p. 94], and each rational
continuum is Suslinian {11, 1.3, p. 132]. We recall that, as in [11], a continuum
X is said to be Suslinian provided each collection of pairwise disjoint non-
degenerate subcontinua of X is countable. Several results discussed in [15] are
generalized by the next two theorems.

5.1. THEOREM. The locally connected pseudo-confluent image of « rational
continuum 1s rational.

Proof. The proof of 5.1 is a copy of the proof of 4.5 with the only difference
being that the set G\G is countable rather than finite. Since the range continuum
Y is now assumed to be locally connected, the use of 3.3 is justified and Y turns
out to be rational in the same way as it was proved to be regular in 4.5.

Remarks. 1t can be shown [16] that the pseudo-confluent mappings, even the
weakly confluent mappings, do not necessarily preserve the rationality of a
continuum if the image is not locally connected. On the other hand, if the
image is a locally connected continuum, the pseudo-confluency is equivalent to
condition (ii) of 3.3. Thus the theorem which follows also generalizes a theorem

of [7).

5.2. THEOREM. The pseudo-confluent image of « Suslinian continuum is
Suslinian.

Proof. The proof of 5.2 is analogous to that of 4.6.
Proposition 5.3 is a generalized version of 4.8.

5.3. Letf: X — Y be a mapping of a compact Hausdorff space X onto a compact
metric space Y. Then f is pseudo-confluent if and only if, for each irreducible
continuum C C Y, there exists a component K of f~1(C) such that C = f(K).

Proof. The condition is obviously necessary in order that f be pseudo-
confluent (cf. 1.4). To see that it is also sufficient, let us consider a continuum
C C Y and a pair of points y, ' € C. There exists a continuum C’ C C which is
irreducible between y and y' [9, Theorem 1, p. 192] and the existence of a com-
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ponent of f~1(C”) which is mapped by f onto C’ implies that condition (p’) of 1.4
holds. Consequently, f is pseudo-confluent.

5.4. If X is a compact metric space and dim X = 2, then there exists a weakly
confluent mapping of X onto a 2-cell (see [18, Théoréme I, p. 328]).

We say that a one-dimensional continuum X is acyclic provided each mapping
of X into the circle is homotopic to a constant mapping.

5.5. THEOREM. The pseudo-confluent image of a ome-dimensional acyclic
continuum 1s at most one-dimensional.

Proof. Suppose on the contrary that f: X — Visa pseudo-confluent mapping
of a one-dimensional acyclic continuum X onto a continuum Y of dimension
dim ¥ = 2. By 5.4, there exists a weakly confluent mapping g: ¥V — 12 of V
onto the 2-cell I2. It follows from 1.2 and 1.5 that the composite gf: X — I?isa
pseudo-confluent mapping. We note that each subcontinuum of X is acyclic
[9, Theorem 2, p. 354]. Thus, by 5.3, each irreducible continuum contained in
I? is the image under gf of an acyclic continuum. However, there exists an
irreducible continuum in I? which is not the continuous image of any acyclic
continuum [5, Section 2, p. 542], a contradiction.

Remarks. Notice that the pseudo-confluent mappings may raise the dimen-
sion of one-dimensional continua that are not acyclic since, for instance, the
2-cell is the monotone image of a locally connected one-dimensional con-
tinuum. By 4.8, a result of [7] concerning the dendrites is generalized in
Theorem 5.5. On the other hand, 5.5 generalizes a solution, reported in [12] and
due to H. Cook, of a problem posed there (see {12, Problem 1, p. 102; 7]). The
method of the proof in the case of pseudo-confluent mappings does not differ
very much from that for weakly confluent ones which were treated previously;
specifically, we owe to H. Cook the idea of combining the results of [5] and [18].
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