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PSEUDO-CONFLUENT MAPPINGS AND A 
CLASSIFICATION OF CONTINUA 

A. LELEK AND E. D. TYMCHATYN 

In this paper we introduce a new class of mappings and apply it to s tudy 
some local properties of continua. A solution is obtained to a problem raised 
in [14] by the first au thor (see 4.4 below). By a mapping we always mean a 
continuous function. 

1. Def in i t ions a n d pre l iminar i e s . Recall tha t , given three subsets A, B, C 
of a topological space, the set C is said to be connected between A and B provided 
A,B C C a n d C V M W N, where A C M, B C iVand MC\ N = 0 = M C\ N. 
The set C is connected provided C is connected between {%} and {y} for each pair 
of points x, y Ç C. L e t / : X —> F be a mapping of a topological space X onto a 
topological space Y. The m a p p i n g / is said to be confluent (see [10, p. 223]), 
pseudo-confluent, or weakly confluent provided, for each connected closed non­
empty set C C Y, the following conditions are satisfied, respectively: 

(c) for each pair of points x £ f~l(C) and y £ C, the s e t / _ 1 ( C ) is connected 
between {x} a n d / - 1 ( ; y ) ; 

(p) for each pair of points y, y' £ C, the s e t / _ 1 ( C ) is connected between 

f-1(^)and/-1(y); 
(w) there exists a point xy Ç f~1(C) such that , for each point j G C, the 

s e t / _ 1 ( C ) is connected between jx0} and f~l(y). 
Clearly, (c) implies both (p) and (w). I t follows from Proposition 1.1 tha t 

(w) also implies (p) . 

1.1. If A, B, C are subsets of a topological space, XQ is a point of it and the set C 
is connected between A and {x0} as well as between B and {x()}, then C is connected 
between A and B. 

Proof. Suppose on the contrary t ha t C = M W N, where A C M, B C N 
and M H N = 0 = M H AT. Then x0 G M or x0 G N, which implies t ha t C is 
not connected between B and jx0j or C is not connected between A and jx0}, 
respectively. 

1.2. COROLLARY. Each confluent mapping is weakly confluent, and each weakly 
confluent mapping is p s eudo-confluent. 

Remark. There exist pseudo-confluent mappings tha t are not weakly con­
fluent. A rather simple example of such a mapping will be described in the 
present paper (see 3.6). 
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Given a point x0 Ç X, the quasi-component Q(X, x0) of X containing x0 is 
understood to mean the set of all the points x £ X such tha t X is connected 
between jx0} and {x}. Equivalently, Q(X,XQ) is the common par t of all the 
closed-open subsets of X which contain x0. Thus the quasi-components of X 
are closed subsets of X, and two quasi-components which intersect are equal. 

1.3. If A, B are compact sets and a set Cis connected between A and By then there 
exists a quasi-component Qof C such that AC\Q 9^ 0 ^ BC\ Q (see [9, Theorem 1, 
p. 168]). 

In particular, if a, b are points of C, then C is connected between {a} and \b) if 
and only if a and b belong to the same qua si-component of C. 

The proof given in [9] is valid for the weaker hypothesis of 1.3. T h a t is, the 
entire space need not be compact. The second par t of 1.3 is also a direct con­
sequence of the definition of quasi-components and the fact tha t two inter­
secting quasi-components coincide. 

1.4. COROLLARY. Let f: X —» Y be a mapping of a topological space X onto a 
topological space Y such that f~l{y) is compact for y £ Y. Then f is confluent, 
pseudo-confluent, or weakly confluent if and only if, for each connected closed non­
empty set C C Y, the following conditions are satisfied, respectively: 

(c') for each quasi-component Q of f~l{C), we have C = f(Q); 
(p ;) for each pair of points y, y' Ç C, there exists a quasi-component Q of 

f~l(C) such that y, y' £ f(Q); 
(w') there exists a quasi-component Q of f~l(C) such that C — f(Q). 

Remarks. Condition (w') is essentially stronger than (w) since it follows from 
(w') t ha t the point x0 whose existence is claimed in (w) can be selected from 
each set f~l (yo), where y0 G C. We shall use this observation in finding some 
other equivalent conditions (compare 2.3 and 3.4). Easy examples show 
(cf. 3.5) t ha t (w) does not imply (w') if not all of the se ts / - 1 ( ;y) are compact . 
On the other hand, if X is a compact Hausdorff space, so are the sets f~l(C) for 
closed C C Y, and then their quasi-components are connected and coincide 
with components [9, Theorem 2, p. 169]. Consequently, for compact Hausdorff 
spaces, the word "quasi-component" can be replaced by ' ' component" every­
where in 1.4 (compare 5.3). This indicates tha t , for compact Hausdorff spaces, 
our notions of confluent mappings and weakly confluent mappings are the 
same as those previously introduced in [1] and [12], respectively. Also, for 
compact Hausdorff spaces, one concludes that , in particular, the composite of 
two pseudo-confluent mappings is itself pseudo-confluent. More precisely, we 
have the following proposition whose direct proof is omitted. 

1.5. Let X, Y, Z be compact Hausdorff spaces, f: X —» Y be a mapping of X 
onto Y, and g: Y —> Z be a mapping of Y onto Z. If both f and g are confluent, 
pseudo-confluent, or weakly confluent, then the composite gf\ X —> Z is confluent, 
p s eudo-confluent, or weakly confluent, respectively (see [1, I I I , p. 214; 12, p. 100]). 
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2. Mappings of hereditarily normal spaces. The next two propositions 
are very much analogous and we prove them jointly. 

2.1. Let J: X —•> Y be a closed mapping of a hereditarily normal space X onto a 
topological space Y, and let x £ X, y £ Y be points. Then the following two 
conditions are equivalent: 

(i) if U C Y is an open set connected between \f{x)} and \y), then the set 
f~l(U) is connected between {%) and f~l{y) ; 

(ii) if Z C Y is a set connected between {f(x)\ and {y\, then the set f~l(Z) is 
connected between {x} and f~l(y). 

2.2. Let f: X —• Y be a closed mapping of a hereditarily normal space X onto a 
topological space Y, and let y, y' £ Y be points. Then the following two conditions 
are equivalent: 

(i) if U C Y is an open set connected between {y} and \y'}, then the setf~l(U) is 
connected between f~l(y) and f~l{y'); 

(ii) if Z C Y is a set connected between {y} and {y'\, then the set f~1(Z) is 
connected between f~l(y) and f~l{y'). 

Proof. Obviously, (ii) implies (i) in both 2.1 and 2.2. Let us suppose (ii) of 
2.2 is violated, which means there exists a set Z C Y connected between {3;} 
and \y') such tha t 

f~l(Z) = M KJ N,f-l(y) C M,f-l(yf) <ZNa.nAMC\N = Q = M(^N. 

I t follows [8, Theorem 1, p. 130] tha t there is an open subset G (Z X such 
tha t M C G and G H N = 0. T h u s 

/ - i ( Z ) = M \J N C G \J (X\G), 

whence (G\G) H f~ l (Z ) = 0, and G U (X\G) is not connected between 
f~l(y) a n d / ~ 1 ( > ; / ) - S i n c e / i s a closed mapping, the set U = Y\f(G\G) is open 
in Y. But we h a v e / ( C \ G ) Pi Z = 0, whence Z C U, which implies t ha t [ /also 
is connected between {y} and {y'\. Because 

t\U)C X\(G\G) = G W ( Z \ G ) , 

we conclude tha t the setf~l(U) is not connected b e t w e e n / - 1 (3/) a n d / - 1 (3/), so 
t ha t condition (i) of 2.2 is violated. This completes the proof of 2.2. T o 
complete the proof of 2.1, one can use exactly the same argument , with 
/ -1(3>') replaced by {x} and y' replaced b y / ( x ) . 

2.3. Let f: X —» Y be a closed mapping of a hereditarily normal space X onto a 
topological space Y, and let y0 6 Y be a point such that f~l(y()) is compact. Then 
the following two conditions are equivalent: 

(i) for each open set U C T, there exists a point x0 G / - 1 (3*0) such that if y G Y 
and the set U is connected between {yo} and {y}, then the set f~1(U) is connected 
between \x0} andf~l(y); 
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(ii) for each set Z C Y, there exists a point x0 G f~l(yo) such that if y G Y and 
the set Z is connected between {yo} and {y}, then the setf~l{Z) is connected between 
{xo} andf~l(y). 

Proof. I t is obvious tha t (ii) implies (i). Suppose, on the contrary, t ha t (i) 
holds and (ii) does not, which means tha t there exists a set Z C Y with the 
following proper ty: for each point x G f~l(yo), there is a point y{x) G Y such 
tha t Z is connected between {3/0} and {y{x)\ b u t / - 1 ( Z ) is not connected be­
tween {x} and f~l[y(x)]. As in the proof of 2.2, we obtain an open subset 
G(x) C X such tha t 

(1) f~l(Z) C G(x) U [X\fi(x)l x G G(x) and f-'bix)] C X\G{x). 

T h u s the compact set /"H^o) is covered by the open sets G(x), where 
x G f~l(yo), and there exists a finite sequence of points x\, . . . , xn of f~l(yo) 
such t ha t 

(2) / - ' ( yo ) C G ( * 0 U . . . U G(*„). 

S i n c e / is a closed mapping, the set 

(3) [7 = Y\ Û /[GfoAGCK,)] 

is open in F, and Z C t/, by (1). Hence the set £/ is connected between \y0} 
and {^(Xi)) for i — 1, . . . , n. Let x0 G f~l(yo) be a point whose existence is 
guaranteed by (i). Consequently, the s e t / - 1 (£7) is connected between {XQ} and 
f~~l[y(xt)] for i = 1, . . . , n. By (2), there exists an integer k = 1, . . . , n such 
tha t Xo G G(Xfc), and it follows from (3) t ha t 

[GWk)\G(xk)]nf^(U) = 0 , 

whence / -*(£ / ) C G(*,) U [ A G f e ) ] . By (1), we get f-l[y(xk)] C A G f e ) , 
contradicting the fact tha t the set f~l(U) is connected between jx0j and 
f~l[y(xk)]. The proof of 2.3 is now complete. 

3. M a p p i n g s o n t o local ly c o n n e c t e d spaces . Confluent mappings as well 
as pseudo-confluent or weakly confluent ones can be characterized by means of 
properties of arcs and connected subsets of the range spaces provided they 
fulfill some additional conditions. By an arc we mean a topological copy of the 
closed unit interval [0, 1] of the real line, and by a continuum we mean a 
connected compact metric space. A mapp ing / : X —-> F i s called perfect provided 
/ is closed a n d / - 1 (3;) is compact for each point y G F. 

3.1. T H E O R E M . Let / : X —-• F be a perfect mapping of a hereditarily normal 
space X onto a locally connected complete metric space Y. Then the following four 
conditions are equivalent: 
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(i) f is confluent; 

(ii) for each arc A C Y and each quasi-component Q of f~l(A), we have 

A = f(Q); 
(iii) for each connected set C C Y and each quasi-component Q of f~l(C), we 

have C = f(Q); 
(iv) for each set Z C F, each point z £ Z and each point x G f~l{z), we have 

(4) Q(Z,z) = / [ < 2 ( / - ' ( Z ) , x ) ] . 

Proof. By 1.4, (i) implies (ii), and (iii) implies (i). Clearly, (iv) implies (iii). 
T o prove t ha t (ii) implies (iv), let us consider a set Z C Y and a point x G X 
such tha t z — f{x) G Z. Let y G Q(Z, z),y 9e z, and let U C F be an arb i t ra ry 
open set connected between {z} and {y}. Denote by Uo the component of U 
which contains z. Since U is locally connected, Uo is a quasi-component of U 
[9, Theorem 18, p. 235], and so y G C/0, by 1.3. Moreover, f/0 is an open subset 
of F, so t ha t there exists an arc A C î/o joining y and z [8, p . 408; 9, pp. 253-254]. 
I t follows from (ii) and from the inclusion A C U t ha t 

A =AQ(t1(A),x)] CAQ(f~l(U)tx)], 

whence y G f[Q(f~l(U), x)], i.e.J~l(y) H Q(tl(U),x) ^ 0. We conclude tha t 
the set f~x(U) is, by 1.3, connected between {x} a n d / _ 1 ( ^ ) . By 2.1, the set 

f~l{Z) also is connected between {x} and / _ 1 ( ;y ) because the set Z is connected 
between {z} and {y}. Since f~l(y) is compact , there exists, by 1.3, a quasi-
component of f~l(Z) which meets \x) and f~l(y). This quasi-component is 
Q(f~l(Z), x), and we get y G f[Q(f~~l{Z), x)]. As a result, the inclusion 

Q(Z,z) CAQ(tl(Z),x)] 

holds. We notice tha t the reverse inclusion is always t rue for x G f~l(z) since 
the connectedness of f~l(Z) between [x] and {xf\ implies, for continuous 
funct ions / , the connectedness of Z between {/(#)} a n d {/(#')}• Formula (4) is 
then proved, and so is 3.1. 

3.2. LEMMA. Letf: X —+ A be a mapping of a topological space X onto an arc A 
with end-points ai, a2 such that f~l(a) is compact for a G A, and let Q be a quasi-
component of X. Then A = f(Q) if and only if au a2 G f(Q). 

Proof. Assume tha t <7i, a2 G f(Q), i.e., there exist points Xi, x2 G Q such tha t 
ai = / ( x i ) and a2 = f{x2). T h e space X is connected between {xx} and {x2\. 
Let a G A be a point such t ha t a\ 9e- a ^ a2. Denote by A\ and A2 the subarcs 
of A with end-points c/i, a and a, a2, respectively. lif~l(Ai) were not connected 
between {xi} a n d / - 1 (a) , we would have 

/ - H ^ i ) = MV N, x, G M J-1 {a) C N and M C\ N = 0 = M C\ Â, 

w h e n c e / - 1 ^ ) = MU [ i V U / ' H ^ ) ] , where x2 G f~1(A2) and 

i n m ) c /^on/ -^ ) =/-l(i41)n/-H 2̂) = tl{a) c A, 
i n / - H i 2 ) = Mnf-i(A2) ctKAi) nf-i(A2) = f~1(a) c N. 
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Consequently, we would have 

M n [ i V U / - 1 ( i 2 ) ] C M n i V = 0 a n d MnNyjf~l(A2) C M H i V = 0, 

which contradicts the connectedness of X = f~l(A) between {x\) and {x2 | . 
T h u s / _ 1 ( / l i ) is connected between {xi} and f~l(a). By 1.3, the quasi-component 
Q{j~l{Ai), X\) m e e t s / - 1 (a) , and therefore 

a£AQ(f-1(Ai),x1)] Cf[Q(X}Xl)] = f(Q). 

Remark. Wi thou t the compactness of the s e t s / - 1 (a), the conclusion of 3.2 is 
not necessarily true (see 3.5 below). 

3.3. T H E O R E M . Let f: X —> Y be a perfect mapping of a hereditarily normal 
space X onto a locally connected complete metric space Y. Then the following four 
conditions are equivalent: 

(i) / is pseudo-confluent; 
(ii) for each arc A C Y, there exists a quasi-component Q of f~l{A) such that 

A = f(Q); 
(iii) for each connected set C C Y and each pair of points y, y1 G C, there 

exists a quasi-component Q of f~l(C) such that y, y' G / ( (?) / 
(iv) for each set Z C Y and each point z G Z, we have 

(5) Q(Z,z) = U f[Q{T\Z),x)\. 
ztf-Hz) 

Proof. Again, as in the proof of 3.1, (iii) implies (i), by 1.4, and (i) implies 
(ii), by 1.4 and 3.2. Clearly, (iv) implies (iii). To prove tha t (ii) implies (iv), 
let us consider a set Z C Y and a point s ^ Z. Let y G Q(Z, 2), y 7e z, and let 
U C F be an arbi t rary open set connected between \y\ and [z\. Then, as in the 
proof of 3.1, there exists an arc A C U joining y and z. By (ii), the s e t / - 1 ( ^4 ) 
is connected b e t w e e n / - 1 (y) a n d / - 1 (2), and hence so is the s e t / - 1 (U). I t follows 
from 2.2 (for y' = z) t h a t the s e t / - 1 ( Z ) , too, is connected between the compact 
s e t s / - 1 (y) a n d / - 1 (2). By 1.3, a quasi-component o f / - 1 ( Z ) meets b o t h / - 1 (3;) 
a n d / - 1 ( 2 ) , whence y G f[Q(f~l(Z), x)] for at least one point x G f~l(z). Thus 

Q{Z,z)C U f[Q(f\Z),x)], 
x£f~Hz) 

and, as in the proof of 3.1, the reverse inclusion always holds. We get (5), 
which completes the proof of 3.3. 

3.4. T H E O R E M . Let f: X —• Y be a perfect mapping of a hereditarily normal 
space X onto a locally connected complete metric space Y. Then the following four 
conditions are equivalent: 

(i) / is weakly confluent; 
(ii) for each continuum C C Y which is the union of a finite collection of arcs, 

there exists a quasi-component Q of / - 1 ( C ) such that C = f(Q); 
(iii) for each connected non-empty set C C Y, there exists a quasi-component 

Q of f~l(C) such that C = f(Q); 
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(iv) for each set Z C Y and each point z Ç Z, there exists a point x0 £ / l(z) 
such that 

(6) Q(Z,z) =f[Q(t1(Z),x0)l 

Proof. By 1.4, (i) implies (ii), and (iii) implies (i). Clearly, (iv) implies (iii). 
To prove tha t (ii) implies (iv), consider a set Z C Y and a point z £ Z. We 
need to show tha t condition (i) of 2.3 is satisfied for y0 = z. Suppose it is not. 
Then there exists an open set U C Y with the following proper ty : for each 
p o i n t x £ f~l{z), there is a point y(x) £ Y such t h a t U is connected between {z} 
and {y(x)J bu t f~l(U) is not connected between [x\ and f~l[y(x)]. Conse­
quently, there exists, for each x £ f~l{z), a closed-open subset V(x) of f~l{U) 
such tha t x £ V(x) and / _ 1 [ ^ ( ^ ) ] C / _ 1 ( k O \ f (#)• Sinee f~l(z) is compact , 
there exist points Xi, . . . , xn of f~l{z) such tha t 

(7) / -»(z) C V(Xl) U . . . U F ( x J , 

and, as in the proof of 3.1, there exists, for each i = 1, . . . , w, an arc A t C U 
joining y(xt) and z. But the set 

C = 4 i U . . . U 4 n 

is a cont inuum in F which is the union of a finite collection of arcs. By (ii), we 
have a quasi-component Q of f~l{C) such t h a t C = / ( Q ) . Since s G C, there 
exists a point x* G Ç with z = f(x*), and thus , by (7), we also have a t least one 
integer k = 1, . . . , n such tha t x* £ V(xk). On the other hand, C C t / w h e n c e 
f~l(C) Cf-'iU), and ;yfe) M . C C = f(Q). Therefore f~'[y{xk)] C\ Q * 0, 
which implies t ha t the s e t / _ 1 ( C ) is connected between {x*} a n d / - 1 ^ ^ ) ] , and 
so is the set / _ 1 ( C / ) . This is a contradict ion because F(xA) is a closed-open 
neighborhood of x* in f~1(U) which is disjoint w i th / _ 1 [ ^ (x^ ) ] . Condition (i) of 
2.3 then holds for y0 = zy and it follows from 2.3 t ha t there exists a point 
Xo G f~l(z) such tha t , for each point y G Q(Zy z), the s e t / _ 1 ( Z ) is connected 
between jx0j and f^iy). By 1.3, the quasi-component Q(f~l(Z), x0) meets 
/ - 1 (30-Thus 

Q(Z,z) Cf[Q(J'-1(Z)9xo)l 

and the reverse inclusion is always t rue, proving (6). The proof of 3.4 is now 
complete. 

Remark. T h a t the assumption of the local connectedness of Y cannot be 
removed from any of Theorems 3.1, 3.3, or 3.4, can be seen on Example 3.7 a t 
the end of this section. 

3.5. Example. There exists a weakly confluent, hence also pseudo-confluent, 
mapping f: X —» [0, 1] of a metric space X onto [0, 1] such that the sets f~1(0) and 
/ _ 1 ( 1 ) are degenerate, each quasi-component of X is compact and none of them is 
mapped by f onto [0, 1]. 
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Moreover, the mapping f satisfies condition (w) for each connected non­
empty set C C [0, 1]. 

Proof. We define X to be a subset of the plane, given by the formula 

X= {(0,0), ( l , 0 ) ) U { ( 2 - n , 0 ) : n = 1,2, . . .} 

U { ( l - 2 " n , 0 ) : n = 1,2, . . . ) 

U U {(*, 2~w): 2~n ^ x ^ 1 - 2~w}, 

and let/[(x, y)] = x for (x, y) £ X. 

3.6. Example. There exists a pseudo-confluent mapping f: [0, 1] —•> T of [0, 1] 
anfo a simple triod T such that f is not weakly confluent. 

Proof. We have T = AQ U Ai^J A2, where A t is an arc with end-points 
a 1, b (i = 0, 1, 2) such that b is the only common point of any two of the arcs 
AQ, Ai and A2. It is enough to le t /be a mapping such that /(0) = a0 and /maps 
the intervals [0, 1/3], [1/3, 2/3] and [2/3, 1] homeomorphically onto the arcs 
AQ U AI, AI VJ A2 and A2^J AQ, respectively. Then condition (ii) of 3.3 is 
satisfied. Condition (ii) of 3.4, however, is not satisfied for any continuum 
C C T of the form C — A0^J A\ \J A2', where A / is a proper su bare of A t 

with the point b being one of its end-points (i = 1,2). 

Remarks. The existence of a mapping described in Example 3.6 is related to a 
more general phenomenon. Namely, each dendrite having only a finite number 
of end-points is the image of [0, 1] under a pseudo-confluent mapping (see 
[6, Theorem 2, p. 247]; cf. 4.8 in our next section). Moreover, if the dendrite is 
not an arc, then no such mapping is weakly confluent [2, Corollary 11.3]. 

3.7. Example. There exists a confluent mapping f: X —* Y of an arc-like 
continuum X onto an arc-like continuum Y and a connected open set U C Y such 
that the setf~1(U) has only two quasi-component s and neither of them is mapped 
by f onto U. 

Proof. Let X be the subset of the plane defined by 

X = {(*, l ) : |x | S l\yj{(smy-^--,y) : 1 < y =g 2} 

U { ( l , y ) : | y | ^ 1) U { (*, sin — - ) : 1 < * g 2} , 

and let R be an equivalence relation in X, given by 

R = {((*, 1), (1,/)): |*| ^ 1} U ( ( ( l , ( ) , 0, 1)): |<| ^ 1! 

Then the natural projection / of X onto the quotient space Y = X/R is a 
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confluent mapping [17, Example 3.6, p. 105]. Let pQ = (0, 2) , pi = ( 1 , 1 ) , 
pi = (2, 0) , and define U — Y\{f(pi)}. T h e set U is connected and the set 
f~l{U) = X\{pi] is composed of two quasi-components Ço, Qi containing the 
points po, p2, respectively. On the other hand, we have f(po) 6 U\f(Qz) and 
f(p2) G U\f(Qo). T h e m a p p i n g / d o e s not satisfy condition (iii) of 3.3, thus also 
neither of 3.1 nor of 3.4. 

4. Mappings of hereditarily locally connected continua. We say that 
a cont inuum is of Class A provided each connected subset of it is arcwise 
connected. Clearly, all the dendri tes belong to Class A. We also distinguish a 
larger class of continua which has been introduced in [11]. A cont inuum X is 
said to be finitely Suslinian provided each collection of pairwise disjoint sub­
continua of X having diameters greater than a positive number is finite. I t is 
known that each cont inuum of Class A is regular [19, Theorem 6, p. 323], each 
regular cont inuum is finitely Suslinian, and each finitely Suslinian cont inuum is 
hereditarily locally connected [11, 1.4 and 1.7, pp. 132-133]. Since, for subsets 
of hereditarily locally connected continua, their quasi-components coincide 
with components [9, Theorem 9 (ii), p. 272], our Propositions 4 .1 , 4.2 and 4.3 
are consequences of Theorems 3.1, 3.4 and 3.3, respectively. 

4.1 . Let f: X —» Y be a confluent mapping of a hereditarily locally connected 
continuum X onto a continuum Y. Then, for each connected set C C Y and each 
component K of f~l(C), we have C = )\K) (see [4, Theorem 1.3, p. ()]). 

A version of the above theorem was announced earlier in [3] where, however, 
the word ' 'heredi tar i ly" was omit ted by mistake. 

4.2. Let f: X —> Y be a weakly confluent mapping of a hereditarily locally 
connected continuum X onto a continuum Y. Then, for each connected set C C Y, 
there exists a component K of f~l(C) such that C = f(K). 

4.3. Let f: X —» Y be a pseudo-confluent mapping of a hereditarily locally con­
nected continuum X onto a continuum Y. Then, for each connected non-empty set 
C C Y and each pair of points y, y' Ç C, there exists a component K of f~l(C) 
such that y, y' G f(K). 

Since all the cont inua of Class A are hereditari ly locally connected, we have 
the following result which generalizes a previous theorem [4, Theorem 1.4, p. 6] 
and also provides an affirmative solution to a problem [14, Problem I I , p. 326]. 

4.4. COROLLARY. The pseudo-confluent image of a continuum of Class A 
belongs to Class A. 

The next three theorems generalize some results of [15] (see also [13, p. 169]). 

4.5. T H E O R E M . The pseudo-confluent image of a regular continuum is regular. 

Proof. L e t / : X —> F be a pseudo-confluent mapping of a regular cont inuum 
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X onto a continuum F. Given two points y, y' £ F, there exists an open subset 
G CX such t ha t f-^y) C G, GC\f-l{yf) = 0 and the set G\G is finite 
[9, Theorem 9, p. 287]. Then U = Y\f(G\G) is an open subset of Y which 
contains y and y'. Moreover, we h a v e / - 1 ( £ / ) C G U (X\G)} so that , as in the 
proof of 2.2, the s e t / _ 1 ( ^ ) is not connected b e t w e e n / - 1 (3/) a n d / _ 1 ( y ) . Since Y 
is locally connected, the points y and y' lie in distinct components of U, by 3.3, 
condition (iii). Also, since Y is locally connected, the components of the open 
set U coincide with the quasi-components. Hence, U is not connected between 
{y} and { / } . Since Y\U = f(G\G) is finite, F i s regular [20, (4.3), p. 97]. 

4.6. T H E O R E M . The pseudo-confluent image of a finitely Suslinian continuum is 
finitely Suslinian. 

Proof. Suppose / : X —> F is a pseudo-confluent mapping of a continuum X 
onto a cont inuum F tha t is not finitely Suslinian, i.e., there exists a number 
eo > 0 and an infinite sequence of pairwise disjoint subcontinua Ci, C2, . . . of F 
such tha t diam d > eo for i = 1 , 2 , . . . Consequently, there are points 
yu y( 6 Ci with dis t (^j , y I) > e0 for i = 1, 2, . . . By 1.4, we get continua 
Ki df^l{Ci) such tha t yu y( £ f(Kt). The sets i£* are pairwise disjoint. By 
the continuity of / , their diameters must all be greater than some positive 
number <50. Thus X is not finitely Suslinian. 

4.7. T H E O R E M . The pseudo-confluent image of a hereditarily locally connected 
continuum is hereditarily locally connected. 

Proof. Suppose / : X —> F is a pseudo-confluent mapping of a continuum X 
onto a continuum F tha t is not hereditarily locally connected. Then there 
exists a non-degenerate continuum Co C F and an infinite sequence of sub­
continua Ci, C2, . . . of F such tha t 

Co = Lim Ci and Co C\ Ci = 0 (i = 1 , 2 , . . . ) 
l->oo 

[9, Theorem 2, p. 269]. Since Co is non-degenerate, infinitely many of the 
continua Ct have diameters greater than a positive number e0. As in the proof 
of 4.6, we get an infinite sequence of continua Kj Cf~l{Ci}) whose diameters 
are all greater than a positive number 5o, and i\ < i2 < . . . An infinite subse­
quence Kjl, Kj21 . . . 0*i < 72 < • • •) converges to a continuum K{). The diameter 
of Ko is a t least <50, hence K0 is non-degenerate. Each point x G KQ is the limit of 
a sequence of points xk, where xk G Kjk, so t h a t / f e ) G f(Kjk) C C*ifc and 

/ (* ) = \imf(xk) e Lim Ci;;fc = Co, 
A->oo A;->oo 

i.e., f(Ko) C C0. As a result, the subcontinua Kjl} Kj2, . . . of X do not meet 
their limit i£0, and thus X is not hereditarily locally connected (ibidem). This 
completes the proof of 4.7. 

Let / : X —> F be a mapping of a space X onto a space F. The mapping / is 
said to be an inverse-arc function (see [6, p. 245]) provided, for each arc A C F, 
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there exists an arc L C X such t h a t A = f(L). By 3.3, conditions (i) and (ii), 
we have the following easy equivalence. 

4.8. A mapping of a hereditarily arcwise connected continuum onto a locally 

connected continuum is pseudo-confluent if and only if it is an inverse-arc function. 

4.9. COROLLARY. The image of a continuum of Class A under an inverse-arc 
function belongs to Class A. 

Since all the dendrites are cont inua of Class A, our Corollary 4.9 s t rengthens 
the result of [7] and generalizes an earlier one [6, Theorem 8, p. 254]. We give 
yet another generalization of it a t the end of this paper (see 5.5). 

5. O t h e r c l a s ses of c o n t i n u a . I t is known tha t each hereditarily locally 
connected cont inuum is rational [20, Theorem (3.3), p . 94], and each rational 
cont inuum is Suslinian [11, 1.3, p . 132], We recall tha t , as in [11], a cont inuum 
X is said to be Suslinian provided each collection of pairwise disjoint non-
degenerate subcontinua of X is countable. Several results discussed in [15] are 
generalized by the next two theorems. 

5.1. T H E O R E M . The locally connected pseudo-confluent image of a rational 
continuum is rational. 

Proof. The proof of 5.1 is a copy of the proof of 4.5 with the only difference 
being tha t the set G\G is countable ra ther than finite. Since the range cont inuum 
Y is now assumed to be locally connected, the use of 3.3 is justified and Y tu rns 
out to be rational in the same way as it was proved to be regular in 4.5. 

Remarks. I t can be shown [16] tha t the pseudo-confluent mappings, even the 
weakly confluent mappings, do not necessarily preserve the rat ional i ty of a 
cont inuum if the image is not locally connected. On the other hand, if the 
image is a locally connected cont inuum, the pseudo-confluency is equivalent to 
condition (ii) of 3.3. T h u s the theorem which follows also generalizes a theorem 
of [7]. 

5.2. T H E O R E M . The p s eudo-confluent image of a Suslinian continuum is 
Suslinian. 

Proof. T h e proof of 5.2 is analogous to t ha t of 4.6. 

Proposition 5.3 is a generalized version of 4.8. 

5.3. Letf: X —> Y be a mapping of a compact Hausdorff space X onto a compact 
metric space Y. Then f is p s eudo-confluent if and only if, for each irreducible 
continuum C C Y, there exists a component K of f~l(C) such that C = f(K). 

Proof. The condition is obviously necessary in order t ha t / be pseudo-
confluent (cf. 1.4). To see that it is also sufficient, let us consider a cont inuum 
C C T a n d a pair of points y, y' £ C. There exists a cont inuum C C C which is 
irreducible between y and y' [9, Theorem 1, p . 192] and the existence of a com-
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ponent o f / - 1 ^ ' ) which is mapped b y / o n t o C implies tha t condition (p r) of 1.4 
holds. Consequently, / is pseudo-confluent. 

5.4. If X is a compact metric space and dim X ^ 2, then there exists a weakly 

confluent mapping of X onto a 2-cell (see [18, Théorème I, p. 328]). 

We say tha t a one-dimensional continuum X is acyclic provided each mapping 
of X into the circle is homotopic to a constant mapping. 

5.5. T H E O R E M . The pseudo-confluent image of a one-dimensional acyclic 
continuum is at most one-dimensional. 

Proof. Suppose on the contrary t h a t / : X —> F i s a pseudo-confluent mapping 
of a one-dimensional acyclic continuum X onto a cont inuum Y of dimension 
dim Y ^ 2. By 5.4, there exists a weakly confluent mapping g: Y —* P of Y 
onto the 2-cell P. I t follows from 1.2 and 1.5 tha t the composite gf: X —» P is a 
pseudo-confluent mapping. We note tha t each subcontinuum of X is acyclic 
[9, Theorem 2, p . 354]. Thus , by 5.3, each irreducible continuum contained in 
P is the image under gf of an acyclic continuum. However, there exists an 
irreducible continuum in P which is not the continuous image of any acyclic 
cont inuum [5, Section 2, p. 542], a contradiction. 

Remarks. Notice t ha t the pseudo-confluent mappings may raise the dimen­
sion of one-dimensional continua tha t are not acyclic since, for instance, the 
2-cell is the monotone image of a locally connected one-dimensional con­
t inuum. By 4.8, a result of [7] concerning the dendrites is generalized in 
Theorem 5.5. On the other hand, 5.5 generalizes a solution, reported in [12] and 
due to H. Cook, of a problem posed there (see [12, Problem 1, p. 102; 7]). T h e 
method of the proof in the case of pseudo-confluent mappings does not differ 
very much from tha t for weakly confluent ones which were treated previously ; 
specifically, we owe to H. Cook the idea of combining the results of [5] and [18]. 
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