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LIE ALGEBRAS WITH NILPOTENT CENTRALIZERS 

G. AI. BENKART AND I. M. ISAACS 

1. I n t r o d u c t i o n . We consider finite dimensional Lie algebras over an 
algebraically closed field F of arbi t rary characteristic. Such an algebra L will 
be called a centralizer nilpotent Lie algebra (abbreviated c.n.) provided tha t 
the centralizer C(x) is a nilpotent subalgebra of L for all nonzero x G L. 

For each algebraically closed F, there is a unique simple Lie algebra of 
dimension 3 over /'"which we shall denote S(F). This algebra has a basis e_i, e0l 

e\ such tha t [e-i eo] = e_i, [e_i e-j\ = e0 and [e0 e{\ = £i. (If char(77) ^ 2, then 
5 ( F ) == sl2{F).) I t is trivial to check tha t S(F) is a c.n. algebra for all F. 

There are two other types of simple Lie algebras we consider. If char (F) = 3, 
construct the octonion (Cayley) algebra over F. The subspace consisting of 
elements of trace zero (i.e. zero scalar par t ) is a Lie algebra C(F) under the 
operation [a b] = ab — ba. Then C(F) is simple of dimension 7. (In fact, 
C(F) ^sh{F)/F- 1.) If cha r (F) = p > 3, we write W(F) for the Wi t t 
algebra over F, so tha t W(F) is simple of dimension p. One can show tha t 
C(F) and W(F) are c.n. Lie algebras. (A proof for W(F) is sketched following 
Corollary 2.3.) 

In this paper, we show tha t S(F), C(F) and W(F) are the only simple c.n. 
algebras. In fact we prove more. In order to s ta te our result, we introduce the 
notation JV (L) to denote the unique largest nilpotent ideal of L, the nil 
radical. 

T H E O R E M A. Let L be a finite dimensional c.n. Lie algebra over an algebraically 
closed field F. Assume L is not nilpotent. Then-^¥(L) is the unique maximal 
proper ideal and LfjV{L) is either of dimension 1 or is isomorphic to S(F), 
C(F) or W(F). Also, if L is nonsolvable, then JV(L) is abelian. 

In proving the par t of Theorem A which asserts that^f /(7>) is abelian, we 
obtain the following related result. 

T H E O R E M B. Let L be a rank one nonsolvable Lie algebra over an algebraically 
closed field F. If char (F) > 0, assume also that all eigenvalues of ad h lie in the 
prime subfield of F for some h Ç L such that F • h is a Cartan subalgebra. Fhen 
L/jV(IS) is isomorphic to one of S(F), C(F) or W(F) and JV(L) is abelian. 

This result generalizes theorems of Kaplansky [4] which consider the case 
where L is simple (and our proof depends on Kaplansky 's work) . Theorem B 
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is essentially included in a result of Ermolaev [1], however our proof seems 
more elementary and direct. 

In the final section of this paper we show how to construct nonsolvable c.n. 
Lie algebras L wlth^V(L) ^ 0. This can be done when cha r ( / / ) ^ 2. 

Perhaps some explanation of the origin of the centralizer ni lpotent hypoth
esis is appropria te . The s tudy of c.n. Lie algebras was mot ivated by the fact 
tha t research on the analogous class of finite groups has been quite fruitful. In 
fact, the paper of Feit, Hall and Thompson [2] which proved t ha t c.n. groups 
of odd order are solvable contained the germs of some of the ideas later used by 
Feit and Thompson to prove tha t all groups of odd order are solvable. There 
seems to be little connection, however, between the Lie algebra techniques 
used in this paper and the more difficult content of the Feit, Hall, Thompson 
paper. 

2. Propert ies of c.n. a lgebras . Throughou t this section let L be a c.n. 
algebra over an arbi t rary algebraically closed field F. T h e following easy lemma 
from linear algebra will be useful. 

LEMMA 2.1. Let A and B be n X n matrices over F. Fhen there exists a, fi Ç F, 

not both zero, such that a A + fiB is singular. 

Proof. If not, A~l exists and we let X be an eigenvalue of A~1B. Then 
A~lB — XI is singular and hence so is A (A~lB — \I) = B — \A. 

T H E O R E M 2.2. Let U Q L be a nilpotent subalgebra with dim U ^ 2. Then 
ad u is nilpotent on L for all u Ç U. 

Proof. Since U is nilpotent, we may decompose L into weight spaces LX(U) 
relative to U. We mus t show t h a t L0(U) is the only nonzero component . 

Suppose tha t LX(U) ^ 0. Now LX(U) is a [/-submodule of L and since 
dim U ^ 2, Lemma 2.1 yields t ha t there exists x £ U with x ^ 0 and ad x 
singular on LX(U). T h u s LX(U) P C(x) ^ 0. 

L e t s Ç Z(U)f the center of [/, with z ^ 0. Then L \ ( L 0 Pi C(x) is invar iant 
under a d z and since z G C(x) which is ni lpotent by the c.n. hypothesis, it 
follows tha t a d s is ni lpotent on LX(U) H C(x). Since LX(U) Pi C(x) ^ 0, 
it follows tha t z centralizes some nonzero element of this space and so 
LX{U) P C ( s ) ^ 0. 

Now C(s) 2 [ / a n d C ( s ) is ni lpotent and thus G(s) ÇZ />Q(£7) . We conclude 
tha t LX(U) P L0(U) T* 0 and therefore X = 0. T h e result follows. 

COROLLARY 2.3. A Lie algebra over F is a c.n. algebra if and only if each 
element x is either s.d-nilpotent or satisfies C (x) = F • x. 

Proof. In a c.n. algebra, if dim C(x) ^ 2, then since C(x) is nilpotent, 
Theorem 2.2 yields t ha t x is ad-ni lpotent as desired. 

For the converse, we must show t h a t C(y) is ni lpotent for all y 5* 0. We 
may certainly assume C(y) > F • y. Now let x £ C(y). If x £ F - y, then 
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C(x) ^ C(y) > F-x and x is ad-nilpotent by hypothesis. If x (/• F • y then 

y G C(x) and y (f F • x and so C(x) > F • x and x is ad-nilpotent in this case 

too. Thus every element of C(y) is ad-nilpotent and so C(y) is nilpotent by 

Engel 's Theorem. 

We mention tha t the sufficiency of the condition in Corollary 2.3 can be 
used to prove tha t the Wi t t algebra W(F) (for char (F) > 3) has the c.n. 
property. The algebra W(F) has a basis z/_i, u(), uu . . . , z/p_2 such tha t 

[0 otherwise. 

It follows tha t if x = Y^aiui £ W(F), then C(x) = F • x if either a_i ^ 0 or 
a0 ^ 0 and otherwise ad x is nilpotent. 

COROLLARY 2.4. / / Z, is not nilpotent, then every Cartan subalgebra has 
dimension 1. 

Proof. If H is a Car tan subalgebra of L, then H = L()(H). If dim H ^ 2, 
then every h £ H is ad-nilpotent by Theorem 2.2 and L = L0(H). The result 
follows. 

T H E O R E M 2.5. / w £<7c/z x £ Z, e ^ e r ad x z\v nilpotent or F • x is a Cartan 
subalgebra. 

Note tha t by Corollary 2.3, the conclusion of Theorem 2.5 is also sufficient 
to show tha t a Lie algebra has the c.n. property. 

Proof of Theorem 2.5. Let x £ L and decompose L into generalized eigen-
spaces L\(x) with respect to x. Assume ad x is not nilpotent so tha t Zx(x) 9e 0 
for some X 9e 0. We must show tha t Z0(x) = F • x. 

Suppose Z0(x) > F • x. Then there exists y G Z0(x) — F-x with [x 3/] Ç 
F • x. Since L\(x) is invariant under Z 0 (x) , it follows by Lemma 2.1 tha t for 
some nonzero 2; £ F • x + F - y we have C(z) C\ Zx(x) ^ 0. Now z 0L Zx(x) 
because z G Z0(x) and Z0(x) C\ Lx(x) = 0. We conclude tha t C(z) > F • z and 
hence ad z is nilpotent by Corollary 2.3. However, [z x] Ç F • [3/ x] Ç F - x 
and thus the nilpotence of ad z yields tha t [z x] = 0. Now C(x) = F-x by 
Corollary 2.3, and so we have s G F-x. Since z 9e 0, we conclude tha t C(z) = 
C(x) = F-x. On the other hand, C(z) > F - z, implying tha t dim C(z) ^ 2 
and we have a contradiction. 

COROLLARY 2.6. Every proper ideal of L is nilpotent and hence is contained in 
JS{L). 

Proof. Let I < L be an ideal. Then / cannot contain a Car tan subalgebra of 
L and hence by Theorem 2.5, each x £ / is ad-nilpotent. Therefore I is nil-
potent by Engel 's Theorem. 

We have now proved the par t of Theorem A which asserts tha t the nil 
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radical of a e n . algebra contains every proper ideal. T h u s if L is not nilpotent, 
we have tha t either L/jV {L) is of dimension 1 or is simple. 

COROLLARY 2.7. Let I be an ideal of L. Then L/I is a c.n. algebra. 

Proof. Let x = u + / £ L/I. By Corollary 2.3, it suffices to show tha t 
either ad x is nilpotent on L/I or tha t C L / / ( x ) = F • x. If ad // is ni lpotent on 
L, then certainly ad x is nilpotent. If ad u is not nilpotent, then F • u is a 
Car tan subalgebra of L by Theorem 2.5 and thus its image F • x is a Car tan 
subalgebra of L/I. In particular, CL/I(x) = F • x in this case. 

3. M o d u l e s . We consider a certain type of module which arises natural ly in 
the s tudy of c.n. Lie algebras. 

Definition 3.1. Let V be a finite dimensional module for a Lie algebra -5. 
Then V is a special S-module if 

i) every ad-ni lpotent x £ S acts nilpotently on L a n d 

ii) every x G S which is not ad-nilpotent acts nonsingularly on T. 

Note tha t if 5 is a Lie algebra over an algebraically closed field, then by 
Lemma 2.1, S cannot have a special module unless every two dimensional sub-
space of S contains an ad-nilpotent element. 

Now let L be a c.n. algebra over F where F is algebraically closed and let 
M C L be a nonsolvable subalgebra. Note t ha t M is a c.n. algebra. Let TV = 

JV(M) so tha t by Corollary 2.6, TV is a maximal ideal of M and M / N = 5 
is simple. Also, 5 is a c.n. algebra by Corollary 2.7. 

View L as an Tlf-module and let 

L = L„ 3 Li 3 . • • 3 Lk = 0 

be a composition series through M so tha t AI = L,„ for some m < k. Then 
TV = Lm+i since TV is the unique maximal ideal of M. 

LEMMA 3.2. Assume the above notation and let V = Lj/Li+\ be a composition 
factor with i ^ m. Then N • V = 0 and V may be viewed as an S-module. As 
such, it is special. 

Proof. Since N is an ideal of M, we see tha t N • L is an .U-submodule of I" 
and thus either TV • L = 0 or N • V = V. However, each element y Ç TV is 
ad-ni lpotent on L since otherwise F • y is a Car tan subalgebra of L by Theorem 
2.5 and this is impossible since y is in a proper ideal of M. I t follows tha t y 
acts nilpotently on V for all 3; G TV and thus by Engel 's theorem, TV • L < L. 
Therefore TV • V = 0 as claimed and F may be viewed as an (Jl//TV)-module. 

Now suppose x G 5 = TI//TV and write x = ẑ  + TV for some M Ç .If. If 
ad x is nilpotent on S, then F • •/* cannot be a Car tan subalgebra and thus ad u 
is nilpotent on L. I t follows in this case t ha t u acts nilpotently on V and thus 
so does x. On the other hand, if ad x is not ni lpotent on S, then ad u is not 
nilpotent on L and thus T7 • it is a Car tan subalgebra of L. I t follows tha t the 
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multiplicity of zero as an eigenvalue of ad it is one and thus u acts singularly 
on a t most one of the composition factors. The exception is Lm/Lm+\ = M/N 
and hence u (and therefore x) is nonsingular on V = L7-/L,+i since i 9^ m. 
We have now shown tha t V is a special S-module. 

In the situation of Lemma 3.2, we will be especially interested in the case 
where 5 = S(F) and so we wish to obtain information about special simple 
S (F)-modules. 

First assume cha r (F) j£ 2. Since F is algebraically closed, we have S(F) ~ 
sl2(F) and the module theory for this algebra is known ([3] and [5]). For 
the convenience of the reader, we collect some facts below and provide their 
proofs. (Although we only need information in the case tha t both e_i and eY 

act nilpotently, wTe consider the more general situation since it requires only 
very little extra work.) 

LEMMA 3.3. Let V be a simple S (F)-module where cha r (F) ^ 2 and F is 
algebraically closed. Let k = dim ( F) < 00 and let E} denote the transformation 
of V induced by Cj for j = — 1, 0, 1. Then 

a) k ^ char (F) if char (F) ^ 0. 
b) Eo has k distinct eigenvalues and the set of eigenvalues has the form 

{X + i\ 0 S i è k - 1} for some X G F. 
c) Let U\ be the eigenspace of E{} corresponding to the eigenvalue X + i. Then 

V = XI t o Uu c ^ m U i = 1 and 

EiiUi) £ Ut+ifor 0 ^ i < k - 1 

E-i(Ui) C Ut-ifor 0 < i ^ k - 1. 

d) If k 7e- char (F) , then £_ i and Ex are nil potent and X = — (k — l ) / 2 in (b). 
e) If £_ i and E\ are both nil potent, then (after a possible change of the definition 

of X if k = cha r (F ) ) we have 

E i ( ^ - i ) = 0 = £_i(C/„) 

and the containments in (c) are equalities. 

Proof. Let v £ V be an eigenvector for E() with eigenvalue X. Wri te vt = 
(Ei)*(fl) for i ^ 0 and let W(v) be the span of the v t. Wri te l(v) = dim W(v). 
Note tha t E${vt) = (X + i)vf and so nonzero Vj are eigenvectors for Eo. Since 
eigenvectors for distinct eigenvalues are linearly independent, we conclude for 
char (F) = 0 tha t vKv) = 0 and v = v0, vu . • . , fl/00-1 is a basis for W(v). 

If char (F) - p > 0, then [£ i p £,-] = ( a d E i ) p £ , - 0 for j = - 1 , 0, 1 since 
p > 2. Since V is simple, it follows tha t E\v = /x/, a scalar matrix, and hence 
z>p = [iv. I t follows tha t l(v) ^ p and if /(z;) < p, then just as in the charac
teristic zero case, we have VKV) = 0 and in all cases Vo, . . . , 7̂ z(?o—1 is a basis for 
W(t/). 

We now impose some further conditions on the choice of v. Observe tha t 
[Eo, E1E-1] = 0 and so we may take v to be a common eigenvector for E{] and 
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E\E-i and we write 

(1) E;E^{V) = av. 

If £_ i is a singular transformation, write X = \x Ç H| E_i(x) = 0}. Note 
tha t Eo(X) C X and so we may choose ^ I and thus a = 0 in this si tuation. 

We consider two cases. Hither one of E-\ or E\ is singular or both are non-
singular. If either is singular, then by the symmetry between 7^_i and E\, it is 
no loss to assume tha t £_i is singular and we have 

(2) E_i(*;) = 0 and « = 0. 

If Ei is nonsingular, then necessarily char(7v) = p > 0 by the first paragraph, 

and Ex
p = pi with M ^ 0. Then (1) yields 

Ei(E_i( i ; ) ) = az; = EiCajLt-^p-i) 

and since E\ is nonsingular, we have 

(3) E-i(v) = an~lvp-i where p = cha r (F ) and vv = iiv ^ 0. 

We may therefore assume tha t one of (2) or (3) holds. 
In either situation, computat ion yields for z ^ 1 tha t 

(4) £_!(»,-) = (Xi + i ( i - l ) / 2 + «)«,_!. 

Therefore IT(zi) is invar iant under £_ i as well as under E{) and E\ and by the 
simplicity of H we conclude tha t W(v) = V and l(v) = &. S ta tements (a) , (b) 
and (c) now followT and Ut = F • vt in (c) for 0 ^ i ^ k — 1. 

\i k 7* char(77), then we have yfc = 0 and hence Eik(vi) = 0 for all i and so 
£iA" = 0. In this case (2) must hold since (3) does not, and (2) and (4) yield 
t ha t E-\k(Vi) = 0 and so E_i is nilpotent. Also in this case, taking i = k in 
(4) and using vk = 0 and a = 0 bu t vk-\ ^ 0, we have \k + k(k — l ) / 2 = 0 
and thus X = — (k — l ) / 2 , proving (d). 

Hor (e) we assume tha t E_x and E\ are nilpotent. By definition of the vt 

we have E\(U t) = Ui+i for 0 ^ i < k — 1. Since E\ is nilpotent, we cannot 
have E/ = \xl for \x ^ 0 and so we must have vk = 0 and E\(Uk—\) = 0. By 
(2) we have E-^Uo) = 0. If also E_X(U <) = 0 for 0 < i S k - 1, then 
S j t i ^0 *s invar iant under 7£_i, E{] and E\ and this contradicts the simplicity 
of V. T h u s E-i(Ut) = Ui-\ for 0 < i ^ & — 1 and the proof is complete. 

If k < char (F) or char (70 = 0, we introduce the notat ion 

A(k) = { - (k - l ) / 2 + i\ 0 ^ i ^ k - 1) Q F 

so tha t in the si tuation of Lemma 3.3, A(k) is the set of eigenvalues of E{) if 
k 9* c h a r ( F ) . Note t ha t 0 £ A(&) if and only if jfe is odd. 

COROLLARY 3.4. Let V be a special simple S{F)-module where char (70 9^ 2 
and F 15 algebraically closed. Let k = dim V < 00. 77^w & is <^en r/wr/ A(&) is 
the set of eigenvalues of the transformation of V induced by e0. 
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Proof. I t suffices to show tha t k is even since then k 9^ c h a r ( ^ ) and by 

Lemma 3.3 (d), we have tha t A(k) is the set of eigenvalues of the transforma

tion induced by e{). (Note tha t if we knew k 7* char(F), this would au tomat i 

cally imply tha t k is even since e0 acts nonsingularly and yet 0 Ç A(k) if k is 

odd as was mentioned above.) 
Since V is special, both e_i and ex act nilpotently and so by Lemma 3.3 

(c, e) , V has a basis uo, ii\, . . . , uk-\ such tha t e\ • ut = ui+i forO ^ i < k — 1; 
e\ - uk-i = 0; e_i • ut = oiiiii-i for 0 < i ^ k — 1 with 0 ^ a* Ç F and 
e-i - Uo = 0. 

Now ad(^_i — ^i)2(^o) = 2e0 and hence e_i — e\ is not ad-nilpotent and the 
action of this element on V must be nonsingular. However, if k is odd, consider 
the element 

(fc-l)/2 /(fc-D/2 \ 

*> = X ( H a2J«2y 

= %._i + «A:_l^yt-3 + «A;-1«A-3WA--5 + . . . + («*-! . . . a2)u0. 

Then (e_i — ei) • v = 0. This contradiction proves tha t k must be even. 

For each even integer k > 0 with & < char (F) if cha r (F) > 0, there is a 
unique simple 5 ( /0 -modu le of dimension k. By Corollary 3.4, these are the 
only simple S(F)-modules which can be special. In fact, all of these modules 
are special. This will be discussed further in Section 6. 

We now consider the case where char (F) = 2. 

LEMMA 3.5. Let cha r (F ) = 2. Then S(F) has no nonzero special module. 

Proof. Suppose V ^ 0 is a special 6 ,(JF)~m°dule and let -K be the correspond
ing representation. Note tha t ad(<?i + e_i)3 = 0 and thus since V is special, 
we have tha t ir(ei + e_i) is nilpotent. Now computat ion yields 

(*) ir(e1 + e_,Y = T T ^ ) 4 + ir(e_i)4 + 7r(e0)2 + *•(*<,). 

Since (ad exY = 0 = (ad e_i)4, it follows tha t 7r(<?i)4 and 7r(e_i)4 commute 
with all elements of ir(S(F)) and so we can choose a common eigenvector 
v G V for 7r(<?i)4, 7r(^_i)4 and w(eo). Let T(e0)v = Xv. Now 7r(^i)4^ = 0 = 
7r(^_i)4^ since ir(e\) and w(e-i) are nilpotent, and (*) yields 

TT(^I + e-i)Av = X(X + 1> . 

Since w(ei + e_i) is nilpotent, this yields X(\ + 1) = 0 and so X = 0 or 
X = 1. However, since 7r(eo) is nonsingular with eigenvalue X, we cannot have 
X = 0 and so X = 1 and e0 • v = v. I t follows tha t e0 • (ex • v) = 0 = e0 • (e-iv) 
and since 7r(^0) is nonsingular, we have ex • v = 0 = e_i • v. Finally, this yields 

v = e0 • v = [>_i ei] - v = 0, 

a contradiction. 
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4. Nonso lvab le e n . a lgebras . The main effort in this section will be to 
prove the following. 

T H E O R E M 4.1. Let L be a nonsolvable c.n. Lie algebra over an algebraically 

closed field F. Then there exists h £ L such that F • h is a Cartan subalgebra and 

all eigenvalues of ad h lie in the prime sub field of F. 

When this result is combined with Theorem B (which will be proved in the 

next section), it will complete the proof of Theorem A. We need the simple 

algebra case of Theorem B in the proof of 4 .1 . This is the following result of 

Kaplansky [4]. 

T H E O R E M 4.2. (Kaplansky) . Let L be a simple rank one Lie algebra over an 

algebraically closed field F. If cha r (F ) > 0, assume also that all eigenvalues of 

ad h lie in the prime sub field of F, where h £ L is such that F • h is a Cartan 

subalgebra. Then one of the following occurs. 

a) L9ÉS(F) 

b) L ^ C(F) and cha r (F ) - 3 

c) L ^ W(F) and char(F) > 3. 

Furthermore, if char(F) ^ 3, there exists SQL with S ~ S(F) such that h Ç S 
and h corresponds under the isomorphism to a scalar multiple of the standard 
basis vector eQ with the scalar in the prime field. 

Proof. If cha r (F ) = 0, then the classical theory yields L ^ AX{F) ^ S(F). 
If char(F) = 2, then dim L = 3 by Lemma 74 of [4], and thus L ^ S(F). If 
cha r (F ) = 3 and dim L > 3, then L ^ C(F) by Theorem 9 of [4] and thus 
either (a) or (b) holds. In either case, the a rgument in [4] shows tha t there 
exist a, z G L with [h a] = a, [h z] = — z and [a z] = h. I t follows tha t F • a + 
F • h + F - z is a subalgebra isomorphic to S (F) in which a, h, z corresponds to 
e_i, e(), ei respectively. 

Now assume char (F) > 3. Then Theorem 2 of [4] yields t ha t L = S(F) or 
L ~ W(F). In particular, the a rgument shows tha t there exist one dimen
sional root spaces L\ and L_\ with [L\ L_x] = F • h. I t follows tha t L__\ + 
F - h + L\ ~ S(F) and h corresponds to \e{). 

We mention tha t in the si tuat ion of Theorem 4.2 with cha r ( / / ) = 2, one 
need not assume tha t L is simple in order to conclude t ha t L = S(F). In fact, 
it can be shown tha t it suffices to assume tha t the root space L\{h) is not an 
abelian ideal. One first proves t ha t under this assumption, dim L = 3. It is 
then possible to find a basis which demonstra tes L ~ S(F). 

Also, when c h a r ( ^ ) = 2, the last assertion of Theorem 4.2 is definitely false, 
since in S(F) we can take h = eo + «£-i with a G F. Then [h e_i] = e_i and 
[h, e\ + aeo] = (ei + ae0) + a2e_i. Then F • h is a Car tan subalgebra and 
Li(h) = F - e-i + F • (ei + aeQ). T h u s if a 9^ 0, then ad h is not semisimple 
and no isomorphism can carry e0 to a scalar multiple of h. 

Note tha t Theorems 4.1 and 4.2 together imply tha t the only simple c.n. 
Lie algebras are S(F), C(F) and W(F). 
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Proof of Theorem 4.1. Since L is nonsolvable, there exists h £ L with ad h 
not nilpotent. By Theorem 2.5, F • h is a Car tan subalgebra and so L0(fe) = 
F - h where L\(h) denotes the generalized eigenspace of ad h for the eigen
value X. 

Now [L L] = L since otherwise [L L] Ç^^V{L) by Corollary 2.G and this 
would imply tha t L is solvable. Since [L\(h), L^(h)] C Lx+fX(h) and L is the 
direct sum of the various L\(h), it follows from the fact tha t h £ [L L] t ha t 
h G [L\(h), L-\(h)] for some A. Since L^{h) = F • h, we must have A ^ 0 and 
we may replace h by \~lh and assume X = 1. 

Now let FQ Q F be the prime subfield and let 

K = ]CM€F0 F^h). 

Then X Ç L is a subalgebra and if K = L, there is nothing further to prove. 
Suppose then tha t K < L and note tha t h (z [K K}. Since F • h is a Car tan 
subalgebra of X, it follows tha t [ ] [ ] [ ] = K and X is nonsolvable. 

Let N = JV(K) and T = K/N. By Corollary 2.6, T is a simple algebra and 
T satisfies the hypotheses of Theorem 4.2 with respect to the image of h in 
K/N = T. By Theorem 4.2, T is isomorphic to one of S(F), C{F) or W(F) 
and in any case, T has a subalgebra S = S (F). Write 5 = M / N. 

Let e_i, e0, £i be the s tandard basis for 5 and let y Ç M be a preimage for g0. 
Then ad y is not nilpotent since ad e0 is not nilpotent on S, and thus F • y is a. 
Cartan subalgebra of L. We claim tha t all eigenvalues of ad y lie in the prime 
field / v 

Construct an ^/-composition series for L through M as in Lemma 3.2 and 
let V be a composition factor other than M/N. By 3.2, N • V = 0 and we may 
view L as an 5-module, and as such it is special. If cha r (F) = 2, there is no 
such module by Lemma 3.5 and it follows tha t M = L and N = 0. This is a 
contradiction since we are assuming M ÇZ K < L. 

Assume then tha t char (70 9e 2. Then Corollary 3.4 applies and e0 induces a 
transformation on L for which all eigenvalues lie in 7v This transformation 
of V is the same as tha t induced by ad y, and thus all eigenvalues of ad y 
induced on composition factors other than M/N\ie in FQ. Since the eigenvalues 
of ad y on M/N = 5 are —1,0 , 1, the proof is complete. 

COROLLARY 4.3. Let L be a nonsolvable c.n. algebra over the algebraically 
closed field F. Then L/^V(L) is isomorphic to one of S(F), C(F) or W(F). 

Proof. By Corollaries 2.6 and 2.7, L/jV{/L) is a simple c.n. algebra. The re
sult follows from Theorems 4.1 and 4.2. 

5. Proof of t h e o r e m B. 

LEMMA 5.1. Let D be a nonsingular derivation of a finite dimensional Lie 
algebra L over an algebraically closed field F. If char (F) > 0, assume in addition 
that all eigenvalues of D lie in the prime subfield of F. Then L is nilpotent. 
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Note. This result is due to Jacobson. (See, for instance, Problem 9 on page 
54 of [3] for the case char( / 7) = 0.) The same ideas work when char (F) > 0 
as shown below. 

Proof of Lemma 5.1. Let L\(D) denote the generalized eigenspace of D on L 

with respect to the eigenvalue X and let 

W = UXLX(D). 

Then {ad w\ w Ç W) is a weakly closed system of linear t ransformations of L 
(as defined on page 31 of [3]). Fur thermore , the hypothesis on eigenvalues 
implies tha t each ad w is nilpotent. Since W spans L, it follows from the 
theorem on page 33 of [3] tha t L is nilpotent. 

The following theorem is slightly more general than is needed here. The case 
U — V of this result appears in [7]. 

T H E O R E M 5.2. Let F be algebraically closed with char (70 ^ 2 and let U, V be 

simple S'(F)-modules of dimension m and n respectively with n = m mod 2. If 

char( / 7) > 0, assume also that m, n < c h a r ( F ) . Then U ® V is generated as an 

S(F)-module by the eigenspace corresponding to the eigenvalue 0 of the action of 

e0 on U ® V. 

Proof. By Lemma 3.3, the eigenvalues of e0 on each of U and V are distinct 
and the hypothesis tha t m, n < cha r (F ) if char( / ? ) ^ 0 allows us to conclude 
t ha t the sets of eigenvalues are A(w) and A(n) respectively (in the notat ion 
introduced following Lemma 3.3). Assume m ^ n. Since m = w mod 2, it 
follows tha t A(m) 3 A(n). 

Decompose U = ^U\, where U\ is the eigenspace of e0 corresponding to 
the eigenvalue X £ A(ra) and similarly decompose V = X)FM for /x Ç A(n). 
Let X Ç U ® V be the S (F) -submodule generated by all U\ ® FM with 
X + ju = 0. T o complete the proof, we show tha t U\ ® FM C X for all 
X £ A(m) and /x £ A(n). 

I t is convenient to identify A(ra) Ç F with a subset of the rational numbers 
0 , even when cha r (F ) > 0. We pu t 

A(ra) - { - (m - l ) / 2 + i\ 0 ^ i ^ m - 1} ç Q. 

We can now show tha t L\ ® FM Ç X by considering the three cases: X + /x = 0, 
X + JU > 0 and X + /x < 0. The first case is, of course, trivial by the definition 
of X. 

Suppose U\ ® FM ÇË X with X + /JL > 0. Choose X and /x such t ha t X is as 
small as possible. Now X > — /x ^ — (w — l ) / 2 ^ — (m — l ) / 2 and so 
X — 1 G A(m) and ei • £/\_i = U\ by Lemma 3.3(b). Let u £ £/x and v f FM 

and write u = ex - y with 3/ (E t/x_i. Now 

(*) w ® z; = (ei • ;y) 0 Ï> = £1 • (y ® v) — y ® (ex • v). 

If (X — 1) + jx = 0, then y ® v £ X. Otherwise, (X — 1) + /x > 0 since 
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X + M = 1> and thus by the minimality of X we have y 0 v (E X. Thus in any 
case, e\ • (y 0 v) Ç X . 

Since e\ acts nilpotently on V by Lemma 3.3(c), it follows tha t e\ • Ir
M = 0 

if ix = (n — l ) / 2 . Otherwise <?i • v £ FM+i, and since (X — 1) + (/z + 1) > 0, 
the minimality of X guarantees tha t y 0 (ex • v) Ç X. Thus (*) yields t ha t 
w 0 v (z X. We have now proved tha t U\ 0 FM ÇI X when X + /x > 0. 

T o show tha t U\ 0 FM ^ X when X + ^ < 0, we argue similarly, choosing 
X maximal such tha t the assertion is false and using e-i in place of e\. 

COROLLARY 5.3. Let U, V, W be S (F)-modules where F is algebraically 
closed and char (F) j* 2. Let 9: U 0 V —> Wbe an S(F)-module homomorphism. 
A ssume 

i) U, V are simple 
ii) dim U F^ char (7^) and dim V ^ char (F) 

iii) e0 acts nonsingularly on U, Ir, W. 
Fhen 0 is identically zero. 

Proof. If m — dim(U) and n = d i m ( F ) , then by (ii) and Lemma 3.3(c), 
the sets of eigenvalues of e0 on U and V are A(ra) and A(n) respectively. By 
(iii), 0 (/•_ A(ra) and 0 ? A(w) and thus m and w are both even. 

Since e0 is nonsingular on W, we see tha t the zero eigenspace of e0 on 
U 0 V is contained in ker 9. The result now follows from Theorem 5.2. 

Proof of Fheorem B. If cha r (F ) = 2, then by the remark following Theorem 
4.2 (which is essentially Lemma 74 of [4]), L ^ S(F) a n c l ^ ( L ) = 0. We may 
assume then, tha t char (F) ^ 2. 

Let I be a maximal proper ideal of L and let F • h be a Car tan subalgebra of 
L such tha t all eigenvalues of ad h lie in the prime subfield of F if cha r (F ) ^ 0. 
Then h (J I and /& induces a nonsingular derivation on I. By Lemma 5.1, then, 
I is nilpotent and so I ^^(L). 

Since L is nonsolvable, we have I = JV\L) and L/I is simple. Also, L/I 
satisfies the hypotheses of Theorem 4.2 with respect to the image of h in L/I. 
Thus L/' W(V) = L/I is isomorphic to S(F), C(F) or W ( F ) . W h a t remains is 
to show tha t I is abelian. 

If char(70 ^ 3, then by Theorem 4.2, L/I contains M/I, an isomorphic 
copy of S(F). Also, replacing h by a scalar multiple if necessary, we may 
assume tha t the coset h + I is the s tandard basis vector e0 of M/I ~ S(F). If 
char( i 7) = 0, take M = L so tha t in this case too, M/I = S(F) and A + / = e0. 
Write M/I = S. 

Suppose I is not abelian so tha t the center Z = Z(7) < I. Let U be minimal 
among ideals of M with Z < L7 Ç / and let C = C / ( £ / ) , the centralizer, so 
tha t C < I and C is an ideal of AT. Let F be minimal among ideals of AT with 
C < VQI. Then since V £ C, we have [U V] ^ 0. 

Since I is nilpotent and U/Z is a nonzero ideal of I/Z, we have (U/Z) F\ 
Z(I/Z) -^ 0. However, U/Z is a minimal ideal of M/Z and we conclude t ha t 
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U/Z C Z(I/Z) and thus [/ U] Q Z. Similarly [I \r] Ç C and hence U/Z and 
V/C may be viewed as modules for M/I = S. Fur thermore , by the minimal i ty 
of [ /and V we see t ha t Û = U/Z and V = L / C are simple 5-modules. 

Now let IT = [U V] C 7 so tha t IT is an ideal of M and W ?* 0. Since 
[ [ / [ / ] I1 C [Z n = 0 and [U[I VJ] Q [U C] = 0, we have [I W] = 0 and 
IT may also be viewed as an S-module. We now define 

0 : [ / 0 L - > 17 

by B(zï ® y) = [/«/] where w = /* + Z and v = v + 6/ This is a well-defined S-
module homomorphism since [Z V] = 0 = [C [/]. 

We now claim tha t dim [7 F^ char (F) and dim V ^ c h a r ( / / ) . W7e may assume 
char (F) = p > 0. The transformation induced by e0 on U is the same as t ha t 
induced by ad h and thus has eigenvalues among the nonzero elements of the 
prime field of F (since ad h is nonsingular on I). By Lemma 3.3(a), the 
number of dist inct eigenvalues is equal to dim V and thus dim Û ^ p — 1 
and similarly dim V ^ p — 1. 

Since e0 acts nonsingularly on U, V and IT, wre conclude from Corollary 5.3 
tha t 9 is identically zero and thus W — 9 ( [ / ® I ) = 0 . This is a contradic
tion and completes the proof. 

6. C o n s t r u c t i o n of a n . a lgebras . We have already remarked tha t the 
simple algebras S(F), C(F) and W(F) are a n . algebras. In this section we 
show tha t for cha r ( / / ) ^ 2, there also exist nonsimple nonsolvable a n . alge
bras. (By Lemmas 3.2 and 3.5, no such algebras can exist when cha r (F ) = 2.) 

We begin with a partial converse to Lemma 3.2. 

T H E O R E M 6.1. Let L be a Lie algebra over an algebraically closed field and let 
I Ç L be an abelian ideal which is special when viewed as a module for L/I. 
Assume that L/I is a a n . algebra. Then L is a a n . algebra. 

Proof. By Corollary 2.3, it suffices to show for each x G L t ha t either 
C(x ) = F • x or ad x is nilpotent. Now let u = x + / Ç L/I which is a a n . 
algebra and so either ad u is ni lpotent or CL/I(u) = F • u. 

Suppose (ad u)k(L/I) = 0. Then (adx)A :(L) Ç / . However, since / is a 
special (L / / ) -modu le , u acts nilpotently on / and thus (ad x)m(I) = 0 for 
some m. We conclude tha t (ad x)k+m = 0. 

Now assume ad u is not nilpotent. Since / is a special (L/I)-module, u acts 
nonsingularly on / and thus C(x) F\ I = 0. However, CL/I(u) = F • u = 
(I + F - x) JI in this case, and so C(x) Ç / + F • x and we conclude tha t 
C(x) = F - x. 

It follows from Theorem 6.1 tha t given a a n . algebra 5 and a special 5-
module V, we can construct a new a n . algebra by taking L = S © L, the 
"semi-direct p roduc t" with [V V] defined to be zero. 
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If F is algebraically closed with char (F) ^ 2, and 5 = S(F), we claim tha t 

each of the simple 5-modules having even dimension is special. This follows 

from the following five facts which we give without proof (although the first 

three can be deduced from the proof of Lemma 3.3). 

a) If 1 ^ k ^ char (F)» then there is a unique (up to isomorphism) simple 
5(F) -module Vk of dimension k. 

b) ei is nilpotent on all Vk. 

c) e0 is nonsingular on Vk when k is even. 

d) If 0 9e x £ S (F) with ad x nilpotent, then S(F) has an automorphism a 
with a(x) = ^i. 

e) If x £ 5 ( F ) and ad x is not nilpotent, then S(F) has an automorphism 
a- with a(x) = eQ. 

If cha r (F) > 3, we can also find special modules for W(F). In fact, W{F) 
has a unique simple module of dimension p — \ (for instance see [6]) and using 
the uniqueness and facts about automorphisms of W(F), one can show tha t 
this module is special. 
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