A NOTE ON HENSELIAN VALUATION RINGS
Otto Endler

(received October 25, 1967)

Let K be a field and Ka its algebraic closure. A valuation

ring A of K is called henselian, if there is only one valuation ring
C of Ka which lies over A (i.e. such that C~K = A) or,

equivalently, if Hensel's Lemma is valid for K, A (see [5], F). In
the following, we shall consider only rank one valuation rings.

Let LIK be an algebraic field extension, B a valuation ring
of L, and A = B~K the valuation ring of K lying under B. I A
is henselian, then obviously so is B. It is natural to ask for
conditions such that the converse is true, i.e. that B henselian
implies A henselian. This is true, for instance, whenever L|K is
purely inseparable (see [2], (10.7)). We intend to show that also each
of the following conditions is sufficient:

1) LIK is normal and LS # L

2) [L:K]S < o0 and Ls # L
where LS is the separable closure of L and [ : ]s the separability
degree. Condition 2) is weaker than the condition

2") [L:K] < o and [LS:L] =
recently presented by Ribenboim([4], C), which in turn is weaker
than the condition

2") [L:K] < o, and for every n> 1 there exists
exactly one separable extension Kan of

degree n,
used by Kaplansky and Schilling [3], Theorem 4.

To prove the sufficiency of condition 1) (theorem 1) we shall
need only the conjugation theorem for valuation rings and the following
well known fact (see [3], Theorem 2, or [2], (27.7)): Any field having
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more than one henselian valuation ring is separably closed. To prove
the sufficiency of condition 2) (theorem 2) we shall need only theorem 1
and Artin-Schreier's theorem in a slightly generalized form. Hence,

our proof will be much easier than the proof of the analogous theorem
in [4].

Before proving these theorems, we want to mention two examples
which show that none of the conditions

i) L #L; ii) [L:L] = o iii) L|K is normal; iv) [L:K] <

alone is sufficient.

Example 1. Let A be the p-adic valuation ring of K =Q, and
let L be the decomposition field of some valuation ring C of Ka
which lies over A. Then L = Ka’[Ls:L] =w B =CA~ L is henselian,
but A = BNK is non-henselian.

Example 2. Let L (resp. K) be the field of all algebraic (resp.
real algebraic) numbers. Then L|K is normal, [L:K]S = [L:K] = 2 <o,
every valuation ring of L is henselian, but no valuation ring of K is
henselian (see [4], A)).

Now we prove:

THEOREM 1. Let L|K be normal and LS #L. If B is a

henselian valuation ring of L, then A = B~K is a henselian
valuation ring of K.

Proof. Let C be the unique valuation ring of La lying over B.

Suppose that A is not henselian. Then there exists some valuation
ring C'# C of L_ which lies over A, and we have B' # B, where
B!' = C'~L. There exists some K-automorphism o of La such

that C =0 C', and we have o L = L. since L]K is normal. Since B is the
only henselian valuation ring of L, there exists some valuation ring
C'"" # C' of La which lies over B', and we have o C" # C,

cd C"AL = ¢(C"~L)=06B' =¢(C'~L) = CAL =B, whichis a
contradiction.

COROLLARY. Let A be a non-henselian valuation ring of K, L]K
a separable extension, and B a henselian valuationring of L lying
over A, Then LS = Ks is the least field that contains L andis

normal over K.

Proof. LS = Ks is obviously normal over K. On the other hand,

let NIK be normal and L C NC L . Then the unique valuation ring
- — a
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C of N that lies over B is henselian, and from theorem 1, it
follows that N = N, hence L C N.
S s =

In particular, applying this corollary to a henselisation (L, B)

of a non-henselian valued field (K, A)i), we see that no field between
I, and LS and distinct from LS is normal over K.

We shall use Artin- Schreier's theorem in the following form:

LEMMA. Let S be a separably closed field and let K be a
subfield of S such that 1 < [S:K] <w. Then K is really closed, S
s

is algebraically closed, and S = K(V -1).

Proof. The algebraic closure S of S is purely inseparable
I — a

over the field L = {a ¢ S[ a separable over K}, and the fixed field
K' of the Galois group of SalK is purely inseparable over K. We

have Sa = I.-K', hence [Sa:K‘] < [L:K]S = [S:K]S< 0. On the other hand
[Sa:K]S > [S:K]S > 1, hence Sa. # K'. By Artin-Schreier's theorem
(see [1], theorem 4), K' is really closed, Sa is algebraically closed,
and Sa = KY( \/:) Since K' has characteristic zero, we have
Sa=S:L and K' =K.

Now we prove:

2)
THEOREM 2. Let L|K be algebraic, [L:K]S< w, and

LS # L. If B is a henselian valuation ring of L, then A =B ~K

is a henselian valuation ring of K.

Footnotes

1) A henselisation of a valued field (K, A) is a valued field (L, B),
consisting of the decomposition field L over K of some valuation
ring C of K that lies over A and the valuation ring B = C~L.
The henselisation of (K, A) is unique up to an K-isomorphism. In
particular, (L,B) = (K, A) if and only if A is henselian. (See [5], F).

2) I was told by Mr. Ribenboim that another proof of theorem 2 was
communicated to him by Mr. Neukirch, some months ago. For the

case of a perfect field K see J. Neukirch, Bonner Math.
Schriften Nr. 25, (4.12).
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Proof. Without loss of generality we may assume [L:K]S > 1.

Let N be the least field that contains L and is normal over K; then
[L:K]S < [N:K]s < @. Suppose that N_ = N; then from the lemma it
follows that [N:K] =2, hence [N:L]= [N:K].[L:K]’1 < 1, hence
L=N-= NSQLS, in contradiction to LS # L; therefore NS # N.

Since the valuation ring C of N that lies over B is henselian, we
conclude from theorem 41 that A is henselian.

COROLLARY. Let A be a non-henselian valuation ring of K,
LIK an algebraic extension, and B a henselian valuation ring lying
over A. If [L:K]s < o, then K is really closed, L is algebraically

closed, and L = K(V -1).

Proof. [L:K] > 1, since L|K is notpurely inseparable. If
— s

[L:K]S < o, then LS = L. by theorem 2. Now the corollary results

from the lemma.

Applying this corollary to a henselisation (L, B) of a non-
henselian valued field (K, A), we see that LlK is never finite
unless K is really closed and L = Ls = La = K(V-1). One should

note that the field L of a henselisation (L,B) of a non-henselian
valued field (K, A) may be separably closed also in other cases.

Indeed, this happens whenever K has a henselian valuation ring Ah

(since then L has more than one henselian valuation ring). One knows
that in this case any valuation ring A # Ah of K is saturated, i.e.

its value group l"A is divisible and its residue field AA is
algebraically closed (see [2], (27.6)). Moreover, we prove:

THEOREM 3. Let A be a valuation ring of K such that A

A
has characteristic zero, and let (L,B) be a henselisation of (K, A).
Then:

L is algebraically closed <= A is saturated.

Proof. L. is the decomposition field over K of some valuation
ring C of Ka that lies over A. Let M be the inertia field of C

over K. Then Ka M and M|L are Galois extensions, with Galois
groups G1 and GZ’ say. G1 is isomorphic to the character group

of the value group extension I‘C/l" , and G_ 1is isomorphic to the

2
Galois group of the Galois extension ACI ./\.A (see [2], (20.1) and
(20.20)). A is saturated if and only if FC = FA and _/\.C :'/\'A
(see [2], (22.7)). These equations hold if and only if G1 and G2

are trivial, if and only if L = Ka.
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