Self-maps of the Grassmannian of Complex Structures

Dedicated to Professor Boju Jiang on his 65th birthday

HAIBAO DUAN
Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing 100080, P. R. China. e-mail: dhb@sxx0.math.pku.edu.cn
(Received: 11 July 2000; accepted in final form: 25 April 2001)

Abstract

Let $C S_{n}$ be the flag manifold $\mathrm{SO}(2 n) / \mathrm{U}(n)$. We give a partial classification for the endomorphisms of the cohomology ring $H^{*}\left(C S_{n} ; Z\right)$ which is very close to a homotopy classification of all selfmaps of $C S_{n}$. Applications concerning the geometry of the space are discussed.

Mathematics Subject Classification (2000). 55S37.
Key words. cohomology ring; complex structures; flag manifolds.

1. Introduction

Let $\mathrm{O}(2 n)=\mathrm{O}^{+}(2 n) \sqcup \mathrm{O}^{-}(2 n)$ be the orthogonal group of order $2 n$ with $\mathrm{O}^{+}(2 n)$, the connected component that contains the identity $I_{2 n}$. Its subspace $G_{n}=\{J \in$ $\left.\mathrm{O}^{+}(2 n) \mid J^{2}=-I_{2 n}\right\}$ is known as the Grassmannian of complex structures on the $2 n$ dimensional Euclidean space $R^{2 n}$. It is the space of minimal geodesics form $I_{2 n}$ to $-I_{2 n}$ on $\mathrm{O}^{+}(2 n)$ [12]. It serves as the classifying space for all complex n-bundles whose real reductions are trivial [4]. It has two connected components

$$
C S_{n}=\left\{A J_{0} A^{\tau} \mid A \in \mathrm{O}^{+}(2 n)\right\} ; \quad C S_{n}^{-}=\left\{A J_{0} A^{\tau} \mid A \in \mathrm{O}^{-}(2 n)\right\},
$$

where

$$
J_{0}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \oplus \cdots \oplus\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)(n \text { copies })
$$

both diffeomorphic to the homogeneous space $\mathrm{O}^{+}(2 n) / \mathrm{U}(n)$.
For a topological space X let $[X, X]$ be the set of homotopy classes of self-maps of X, and $\operatorname{End}\left(H^{*}(X)\right)$, the set of all endomorphisms of the integral cohomology ring. Sending a self-map to the induced endomorphism gives rise to a representation

$$
l_{X}:[X, X] \rightarrow \operatorname{End}\left(H^{*}(X)\right), \quad f \rightarrow f^{*}
$$

in view of the obvious monoid structure on the both sets. According to the rational homotopy theory, if X is a flag manifold (i.e. a homogeneous space G / K with G is a compact connected Lie group and $K \subset G$, a Borel subgroup), this representation is 'nearly faithful' in the sense that it has finite kernel and finite cokernel.

Therefore, the problem of determining $\operatorname{End}\left(H^{*}(X)\right)$, for a flag manifold X, is a step toward a homotopy classification of all self-maps of X. This problem has been studied in some detail for the complex Grassmannians ([10]), and for some compact Lie groups module its maximal torus ($[3,11]$). This paper studies the problem for $C S_{n}$, with an intention to devote to geometry in the applications.

The ring $H^{*}\left(C S_{n}\right)$ can be described as follows. Let γ_{n} be the complex n-bundle obtained by furnishing the trivial real bundle $C S_{n} \times R^{2 n} \rightarrow C S_{n}$ the complex structure

$$
K: C S_{n} \times R^{2 n} \rightarrow C S_{n} \times R^{2 n}, \quad K(J, v)=(J, J v)
$$

and let $1+c_{1}+\cdots+c_{n}$ be its total Chern class.
THEOREM 1 (cf. [4]). The classes $c_{i} \in H^{2 i}\left(C S_{n}\right), i \leqslant n-1$, are all divisible by 2 . Further, if we let $d_{i}=\frac{1}{2} c_{i}$, then d_{1}, \ldots, d_{n-1} form a simple system of generators for $H^{*}\left(C S_{n}\right)$, and are subject to the relations

$$
R_{i}: d_{i}^{2}-2 d_{i-1} d_{i+1}+\cdots+(-1)^{i-1} 2 d_{1} d_{2 i-1}+(-1)^{i} d_{2 i}=0, \quad 1 \leqslant i \leqslant n-1
$$

with $d_{s}=0, s \geqslant n$, being understood.
Let f be an endomorphism of $H^{*}\left(C S_{n}\right)$ and let f^{N} be the N-iteration of f defined inductively by $f^{N}=f \circ f^{N-1}, N>0$. Since d_{1} is the only generator in dimension 2 , f sends d_{1} to a multiple of itself. The main results of this paper are

THEOREM 2. If $f\left(d_{1}\right)=a d_{1}$ with $a \neq 0$, then $f\left(d_{i}\right)=a^{i} d_{i}, i \leqslant n-1$.

THEOREM 3. If $f\left(d_{1}\right)=0$, there exists $N \geqslant 1$ so that

$$
f^{N}\left(d_{i}\right)=0, \quad \text { for all } i \neq 2[n / 2]-1 .
$$

In Theorem 3, the conclusion $f^{N}\left(d_{i}\right)=0$ cannot be extended to $i=2[n / 2]-1$. In Section 8 , we shall present examples of self-maps f of $C S_{n}$ so that the induced endomorphisms f^{*} satisfy $f^{*}\left(d_{i}\right)=0, i \leqslant n-2$, and $f^{* N}\left(d_{n-1}\right) \neq 0$ for all $N>0$.

We turn to applications of the previous results. Let $C S_{n}^{0}$ be the rationalization of $C S_{n}$. From the minimal model for $C S_{n}$ given in Lemma 7.3, one can show that the monoid of homotopy classes [$C S_{n}^{0}, C S_{n}^{0}$] is anti isomorphic to the monoid of endomorphisms of $H^{*}\left(C S_{n} ; Q\right)$ (cf. Theorem 1.1 in [6]). Thus, Theorem 2 offers a complete classification on self-homotopy equivalencies of $C S_{n}^{0}$. In particular, Theorem 2 implies

COROLLARY 1. Any space in the genus of $C S_{n}$ (see [7] for the definition) is homotopy equivalent to $C S_{n}$.

The self-map f_{n} of $C S_{n}$ by

$$
f_{n}(J)=\left\{\begin{array}{ll}
-J & \text { if } n \text { is even } \\
-\widetilde{I_{2 n}} J I_{2 n} & \text { if } n \text { is odd, }
\end{array} \quad J \in C S_{n}, \widetilde{I_{2 n}}=(-1) \oplus I_{2 n-1}\right.
$$

is clearly a fixed point free involution (note that, the involution on G_{n} by $J \rightarrow-J$ exchanges the two connected components precisely when n is odd). Our next result
implies that, cohomologically, f_{n} is the only fixed point free self-map of $C S_{n}$ unless $n=4$.

THEOREM 4. Let f is a self-map of $C S_{n}$ with Lefschetz number $L(f)=0$, and let f^{*} be the induced endomorphism.
(1) If $n \neq 4$ then $f^{*}\left(d_{i}\right)=(-1)^{i} d_{i}, 1 \leqslant i \leqslant n-1$;
(2) If $n=4$ there are the two additional possibilities

$$
\left(f^{*}\left(d_{1}\right), f^{*}\left(d_{2}\right), f^{*}\left(d_{3}\right)\right)=\left(0,0, \text { either }-d_{3} \text { or }-d_{3}+d_{1} d_{2}\right)
$$

COROLLARY 2. If $n \neq 4$, any self-map f of $C S_{n}$ with $f^{*}\left(d_{1}\right) \neq-d_{1}$ has a fixed point.
COROLLARY 3. Any self-map of $C S_{n}$ has a periodic point of order 2.
The natural inclusion $R^{2(n-1)} \subset R^{2 n}$ induces a smooth fiber bundle $C S_{n} \xrightarrow{p} S^{2(n-1)}$ over the $2(n-1)$ sphere $S^{2(n-1)}$ (See Section 8). If p admits a cross-section, say s, then the composed map

$$
f: C S_{n} \xrightarrow{p} S^{2(n-1)} \xrightarrow{\tau} S^{2(n-1)} \xrightarrow{s} C S_{n},
$$

where τ is antipodal, is clearly fixed point free (hence $L(f)=0$), and satisfies $f^{*}\left(d_{i}\right)=0$ for $i<n-1$ (since f factors through the sphere). On the other hand, $S^{2(n-1)}$ admits an almost complex structure if and only if when p has a cross-section. Thus Theorem 4 implies the classical result, originally due to Borel and Serre [1]:

COROLLARY 4. If $n \neq 2,4, S^{2(n-1)}$ does not admit any almost complex structure.
The existence of various kinds of geodesics is a central topic in geometry. For a Riemannian manifold M and an isometry g on M, a nontrivial geodesic σ is called g-invariant if there exists a period c so that $g \circ \sigma(t)=\sigma(t+c), t \in R$. The case $g=$ id corresponds to the classical notation of closed geodesic.

THEOREM 5. If f is a self-homotopy equivalence of $C S_{n}$, the induced action $f_{*} \otimes 1$ on the odd dimensional rational homotopy group $\pi_{\mathrm{odd}}\left(C S_{n}\right) \otimes Q$ is the identity.

Since $\operatorname{dim}\left(\pi_{\text {odd }}\left(C S_{n}\right) \otimes Q\right) \geqslant 2$ for $n \geqslant 5$ (by Lemma 7.3), a combination of Theorem 5 with the results in [9] gives

COROLLARY 6. With respect an arbitrary Riemannian metric on $C S_{n}, n \geqslant 5$, any isometry has infinitely many invariant geodesics.

The paper is arranged as follows: After preliminary discussions in Sections 2, 3 and 4, Theorems 2 and 3 will be established in Sections 5 and 6 . Section 7 is devoted to proofs of Theorems 4 and 5 .

Finally we remark that results similar to Theorems 2 and 3 hold for the flag manifold $H S_{n}=\mathrm{Sp}(n) / \mathrm{U}(n)$, i.e. the Grassmannian of quaternionic structures on $C^{2 n}$. For ignoring the grading, the two algebras $H^{*}\left(C S_{n+1} ; Q\right)$ and $H^{*}\left(H S_{n} ; Q\right)$ are isomorphic.

2. The Cohomology Ring

A sequence $\lambda=\left(i_{1}, \ldots, i_{r}\right)$ of integers will be called a strict partition λ of i if

$$
0<i_{1}<\cdots<i_{r} \quad \text { and } \quad i_{1}+\cdots+i_{r}=i .
$$

For a $i>0$ let $P(i)$ be the set of all strict partitions of i and, for a $\lambda=$ $\left(i_{1}, i_{2}, \ldots, i_{r}\right) \in P(i)$, put $d_{\lambda}=d_{i_{1}} d_{i_{2}} \cdots d_{i_{r}}$. From Theorem 1 we have:

LEMMA 2.1. $H^{\text {odd }}\left(C S_{n}\right)=0$ and the set of monomials $\left\{d_{\lambda} \mid \lambda \in P(i)\right\}$ forms a basis for the Z-module $H^{2 i}\left(C S_{n}\right)$.

As for the multiplicative structure we grade the polynomial $\operatorname{ring} Z\left[d_{1}, d_{2}, \ldots, d_{n-1}\right]$ by assigning $\operatorname{deg}\left(d_{i}\right)=2 i$. Theorem 1 also tells

LEMMA 2.2 (The first description of the ring $H^{*}\left(C S_{n}\right)$).

$$
H^{*}\left(C S_{n}\right)=Z\left[d_{1}, d_{2}, \ldots, d_{n-1}\right] /\left\langle R_{r}, r=1,2, \ldots, n-1\right\rangle
$$

More explicitly, the relations R_{r} 's can be written as follows

$$
\begin{aligned}
& R_{1}: d_{1}^{2}-d_{2}=0 \\
& R_{2}: d_{2}^{2}-2 d_{1} d_{3}+d_{4}=0 \\
& R_{3}: d_{3}^{2}-2 d_{2} d_{4}+2 d_{1} d_{5}-d_{6}=0 \\
& \vdots \\
& R_{n-2}: d_{n-2}^{2}-2 d_{n-3} d_{n-1}=0 \\
& R_{n-1}: d_{n-1}^{2}=0
\end{aligned}
$$

from the first $[(n+1) / 2]-1$ relations one finds that each $d_{2 i}$ can be expressed as a polynomial $g_{2 i}$ in $d_{\text {odd }}$'s. For instance, the first four such polynomials are

$$
\begin{aligned}
& g_{2}\left(=d_{2}\right)=d_{1}^{2} \\
& g_{4}\left(=d_{4}\right)=2 d_{1} d_{3}-d_{1}^{4} \\
& g_{6}\left(=d_{6}\right)=2 d_{1} d_{5}+d_{3}^{2}-4 d_{1}^{3} d_{3}+2 d_{1}^{6} \\
& g_{8}\left(=d_{8}\right)=2 d_{1} d_{7}+2 d_{3} d_{5}-6 d_{1}^{2} d_{3}^{2}+8 d_{1}^{5} d_{3}-4 d_{1}^{3} d_{5}-3 d_{1}^{8}
\end{aligned}
$$

Consequently, substituting $d_{2 i}$'s by $g_{2 i}$'s in the remaining $n-[(n+1) / 2]$ relations yields some equations in $d_{\text {odd }}$'s. Let $k=[n / 2]$. Remaining $d_{2 i}$ instead of the $g_{2 i}$'s in $d_{\text {odd }}$'s for the sake of simplicity, these equations are

$$
\begin{aligned}
& l_{r}: d_{r}^{2}-2 d_{r-1} d_{r+1}+2 d_{r-2} d_{r+2}-\cdots+2(-1)^{r-1} d_{2 r-2 k+1} d_{2 k-1}=0 \\
& \quad k \leqslant r \leqslant 2 k-1
\end{aligned}
$$

when n is even; and are

$$
\begin{aligned}
l_{r}: & d_{r}^{2}-2 d_{r-1} d_{r+1}+2 d_{r-2} d_{r+2}-\cdots+2(-1)^{r-2} d_{2 r-2 k} d_{2 k}=0, \\
& k+1 \leqslant r \leqslant 2 k,
\end{aligned}
$$

when n is odd. Thus we get

LEMMA 2.3 (The second description of the ring $H^{*}\left(C S_{n}\right)$).

$$
H^{*}\left(C S_{n}\right)=Z\left[d_{1}, d_{3}, \ldots, d_{2 k-1}\right] /\left\langle\left\langle l_{r} ; r=\left[\frac{n+1}{2}\right], \ldots, n-1\right\rangle\right\rangle .
$$

For a $\lambda \in P(i)$, let $D_{\lambda} \in Z\left[d_{1}, d_{3}, \ldots, d_{2 k-1}\right]$ be obtained from d_{λ} by substituting $d_{2 j}$ by $g_{2 j}$. Lemma 2.1 gives

LEMMA 2.4 (Basis Theorem). $H^{\text {odd }}\left(C S_{n}\right)=0$ and the set of monomials $\left\{D_{\lambda} \mid \lambda \in\right.$ $P(i)\}$ is a basis for $H^{2 i}\left(C S_{n}\right)$.

3. The Hard Lefschetz Theorem

Let f be an endomorphism of $H^{*}\left(C S_{n}\right)$, and let $k=[n / 2]$. According to Lemma $2.4 f$ is given by

$$
\begin{equation*}
f\left(d_{2 i-1}\right)=a_{2 i-1} d_{2 i-1}+\sum_{\lambda \in Q(2 i-1)} a_{\lambda} D_{\lambda}, \quad 1 \leqslant i \leqslant k, \tag{3.1}
\end{equation*}
$$

where

$$
a_{2 i-1}, \quad a_{\lambda} \in Z \quad \text { and } \quad Q(2 i-1)=P(2 i-1) \backslash\{2 i-1\}
$$

The leading coefficient of the polynomial $f\left(d_{2 i-1}\right)$ gives rise to a sequence $\left(a_{1}, a_{3}, \ldots, a_{2 k-1}\right)$ which will be termed as the character sequence of f.

Since, in the second description of the ring $H^{*}\left(C S_{n}\right)$, the first relation appears in degree $4[(n+1) / 2]>\operatorname{deg}\left(d_{2 k-1}\right), f$ can be regarded as an endomorphism of the free algebra $Z\left[d_{1}, d_{3}, \ldots, d_{2 k-1}\right]$, defined by $(3.1)_{i}$, that preserves the ideal generated by l_{r} 's.

Let M be a m-dimensional compact Kaehler manifold with Kaehler class $u \in H^{2}(M ; Q)$. The hard Lefschetz theorem states:

LEMMA 3.1. If $0 \leqslant r \leqslant m$, multiplication by u^{m-r} gives an isomorphism

$$
H^{r}(M ; Q) \rightarrow H^{2 m-r}(M ; Q)
$$

The use of this theorem in the proof of next result is adopted from Hoffman [10].

LEMMA 3.2. Suppose that $f\left(d_{2 t-1}\right)=a^{2 t-1} d_{2 t-1}, 1 \leqslant t<i, a \neq 0$. Then we have either $f\left(d_{2 i-1}\right)=a^{2 i-1} d_{2 i-1}$ or $a_{2 i-1}=-a^{2 i-1}$.

Proof. For a $\lambda \in Q(2 i-1), D_{\lambda}$ is a polynomial in $d_{2 t-1}$'s, $t<i$, of homogeneous degree $2(2 i-1)$. It follows from the assumption that

$$
f\left(D_{\lambda}\right)=a^{2 i-1} D_{\lambda}, \quad \lambda \in Q(2 i-1) .
$$

Since $C S_{n}$ is a Kaehler manifold of complex dimension $m=(n(n-1)) / 2$ with Kaehler class $d_{1},\left\{d_{1}^{m-4 i+2} D_{\lambda} \mid \lambda \in P(2 i-1)\right\}$ is a basis for $H^{2 m-4 i+2}\left(C S_{n} ; Q\right)$ by Lemmas 2.4 and 3.1. Thus, if we define a matrix

$$
N=\left(N_{\lambda \mu}\right)_{\lambda, \mu \in P(2 i-1)}
$$

by the relations

$$
\begin{equation*}
d_{1}^{m-4 i+2} D_{\lambda} D_{\mu}=N_{\lambda, \mu} d_{1}^{m}, \quad N_{\lambda, \mu} \in Q \tag{3.2}
\end{equation*}
$$

in $H^{2 m}\left(C S_{n} ; Q\right)=Q$, then N is nonsingular by the Poincare duality.
For $\mu \in Q(2 i-1)$ applying f to

$$
d_{1}^{m-4 i+2} D_{\mu} d_{2 i-1}=N_{\mu, 2 i-1} d_{1}^{m}
$$

gives

$$
a^{m-2 i+1} d_{1}^{m-4 i+2} D_{\mu}\left(a_{2 i-1} d_{2 i-1}+\sum_{\lambda \in Q(2 i-1)} a_{\lambda} D_{\lambda}\right)=N_{\mu, 2 i-1} a^{m} d_{1}^{m}
$$

Rewriting everything as a multiple of d_{1}^{m} by using (3.2) we get

$$
\begin{equation*}
N_{\mu, 2 i-1}\left(a_{2 i-1}-a^{2 i-1}\right)+\sum_{\lambda \in Q(2 i-1)} N_{\mu, \lambda} a_{\lambda}=0 \tag{3.3}
\end{equation*}
$$

Similarly applying f to $d_{1}^{m-4 i+2} d_{2 i-1}^{2}=N_{2 i-1,2 i-1} d_{1}^{m}$ yields

$$
\begin{align*}
& N_{2 i-1,2 i-1}\left(a_{2 i-1}^{2}-a^{2(2 i-1)}\right)+2 a_{2 i-1} \sum_{\lambda \in Q(2 i-1)} N_{\lambda, 2 i-1} a_{\lambda}+ \\
& \quad+\sum_{\mu, \lambda \in Q(2 i-1)} N_{\mu, \lambda} a_{\mu} a_{\lambda}=0 . \tag{3.4}
\end{align*}
$$

Multiplying (3.3) by a_{λ}, summing over $\lambda \in Q(2 i-1)$, and subtracting the resulting equation from (3.4) gives rise to

$$
\begin{equation*}
N_{2 i-1,2 i-1}\left(a_{2 i-1}^{2}-a^{2(2 i-1)}\right)+\left(a_{2 i-1}+a^{2 i-1}\right) \sum_{\lambda \in Q(2 i-1)} N_{\lambda, 2 i-1} a_{\lambda}=0 \tag{3.5}
\end{equation*}
$$

If $a_{2 i-1}=-a^{2 i-1}$, we are done. Assume next $a_{2 i-1}+a^{2 i-1} \neq 0$. Dividing (3.5) by $a_{2 i-1}+a^{2 i-1}$ gives

$$
N_{2 i-1,2 i-1}\left(a_{2 i-1}-a^{2 i-1}\right)+\sum_{\lambda \in Q(2 i-1)} N_{\lambda, 2 i-1} a_{\lambda}=0 .
$$

Combining this with (3.3) for all $\mu \in Q(2 i-1)$ gives a system

$$
\sum_{\mu \in P(2 i-1)} N_{\lambda \mu}\left(a_{\mu}-\delta_{\mu, 2 i-1} a^{2 i-1}\right)=0, \quad \lambda \in P(2 i-1)
$$

where $\delta_{\mu, 2 i-1}$ is the Kronecker delta. The nonsigularity of N implies

$$
a_{\mu}=\delta_{\mu, 2 i-1} a^{2 i-1}, \quad \text { i.e. } f\left(d_{2 i-1}\right)=a^{2 i-1} d_{2 i-1}
$$

COROLLARY 3.3. If $f\left(d_{1}\right)=a d_{1}$ with $a \neq 0$, then $a_{2 i-1}= \pm a^{2 i-1}, i \leqslant k$.
Proof. Since, in the second description of the ring $H^{*}\left(C S_{n}\right)$, the first relation appears in degree $4[(n+1) / 2]>\operatorname{deg}\left(d_{2 k-1}\right)$, from $(3.1)_{i}$ we find that the character sequence of f^{2} is $\left(a_{1}^{2}, a_{3}^{2}, \ldots, a_{2 k-1}^{2}\right)$. It now follows from Lemma 3.2 that $a_{2 i-1}^{2}=a^{2(2 i-1)}$.

For a $d \in H^{2 r}\left(C S_{n}\right)$ define the rational $M(d) \in Q$ by the relation

$$
d d_{1}^{m-r}=M(d) d_{1}^{m}
$$

on $H^{2 m}\left(C S_{n}\right)$. In particular, the number $M\left(d_{i}\right)$ is the ratio of the degree of the special Schubert variety corresponding to d_{i} by the degree of $C S_{n}$ [5].

Put $e_{i}=e_{i}(1, \ldots, n-1)$, where $e_{i}\left(t_{1}, \ldots, t_{n-1}\right)$ is the i th elementary polynomial in t_{1}, \ldots, t_{n-1}. The following computation has been made in [5, Proposition 4]

LEMMA 3.3. $M\left(d_{i}\right)=4^{i-1} e_{i} / e_{1}\left(e_{1}-1\right) \cdots\left(e_{1}-i+1\right)$.
We shall need the following consequence of Lemma 3.3.

LEMMA 3.4. If $f\left(d_{1}\right)=a d_{1}$ with $a \neq 0$, then $f\left(d_{3}\right) \neq-a^{3} d_{3}+4 a^{3} d_{1}^{3}$.
Proof. Assume not. Applying f to the relation $d_{3} d_{1}^{m-r}=M\left(d_{3}\right) d_{1}^{m}$ gives

$$
\begin{equation*}
\left(-a^{3} d_{3}+4 a^{3} d_{1}^{3}\right) a^{m-3} d_{1}^{m-3}=M\left(d_{3}\right) a^{m} d_{1}^{m} \tag{3.7}
\end{equation*}
$$

Rewriting everything as a multiple of d_{1}^{m}, by using (3.6) we get $M\left(d_{3}\right)=2$. This implies that $8 e_{3}=e_{1}\left(e_{1}-1\right)\left(e_{1}-2\right)$ by Lemma 3.3. From the Newton's formula we have

$$
\begin{equation*}
\frac{8}{3}\left(s_{3}+\frac{1}{2}\left(s_{1}^{2}-3 s_{2}\right) s_{1}\right)=s_{1}\left(s_{1}-1\right)\left(s_{1}-2\right), \tag{3.8}
\end{equation*}
$$

where $s_{k}=1^{k}+\cdots+(n-1)^{k}$. With

$$
s_{3}=\left[\frac{1}{2} n(n-1)\right]^{2}, \quad s_{2}=\frac{1}{6}(n-1) n(2 n-1), \quad \text { and } \quad s_{1}=\frac{1}{2} n(n-1)
$$

(3.8) turns out to be:

$$
24=\left(n^{2}-17 n+42\right)(n-1) n
$$

However, this has no solution in n.

4. The g-Sequences

A sequence of m integers $\left(s_{1}, \ldots, s_{m}\right)$ will be called a g-sequence of length m if, for every integer r with $k+1 \leqslant r \leqslant 2 k-2$, the products $s_{i} s_{r-i}$ are independent of $i \leqslant\left[\frac{r_{2}}{2}\right.$. In other words, the following inductive strings of relations:

$$
\begin{aligned}
& s_{1} s_{k}=s_{2} s_{k-1}=\cdots=s_{\left[\frac{k+1}{2}\right]} s_{k+1-\left[\frac{k+1}{2}\right]} \\
& s_{2} s_{k}=s_{3} s_{k-1}=\cdots=s_{\left[\frac{k+2}{2}\right]} s_{k+2-\left[\frac{k+2}{2}\right]} \\
& \quad \vdots \\
& \quad s_{k-3} s_{k}=s_{k-2} s_{k-1} \\
& s_{k-2} s_{k}=s_{k-1}^{2}
\end{aligned}
$$

hold among the entries s_{i} 's. We classify all such sequences in

LEMMA 4.1. A g-sequence of length $m \geqslant 3$ belongs to one of the three types:

Type 1: $\left(s_{1}, s_{1} q, \ldots, s_{1} q^{m-1}\right)$ with $s_{1} q \neq 0$;
Type 2: $\left(s_{1}, s_{2}, \ldots, s_{\left[\frac{[2}{2}\right]}, 0, \ldots, 0\right)$ with $s_{1}^{2}+s_{2}^{2}+\cdots+s_{\left[\frac{m}{2}\right]}^{2} \neq 0$;
Type 3: $\left(0,0, \ldots, 0, s_{m}\right)$.
Proof. The proof is done by induction on m. If $m=3$ then $s_{1} s_{3}=s_{2}^{2}$. The sequence $\left(s_{1}, s_{2}, s_{3}\right)$ is of type 1 when $s_{2} \neq 0$; belongs to type 2 if $s_{2}=0$ but $s_{1} \neq 0$; and agrees with type 3 in the remaining case. The inductive procedure can be carried out easily, by the observation that if $\left(s_{1}, \ldots, s_{m+1}\right)$ is of length $m+1$, then, beside
(1) $s_{1} s_{k}=s_{2} s_{k-1}=\cdots=s_{\left[\frac{k+1}{2}\right]} s_{k+1-\left[\frac{k+1}{2}\right]}$, one has
(2) the subsequence $\left(s_{2}, \ldots, s_{m+1}\right)$ is a g-sequence of length m, therefore, falls into one of the three types by the inductive hypothesis.

By considering f as an endomorphism of the free algebra $Z\left[d_{1}, d_{3}, \ldots, d_{2 k-1}\right]$ preserving the ideal generated by l_{r} 's, we have, in $Z\left[d_{1}, d_{3}, \ldots, d_{2 k-1}\right]$, that

$$
\begin{equation*}
f\left(l_{r}\right)=x_{r, r} l_{r}+x_{r, r-1} l_{r-1}+\cdots+x_{r, k} l_{k}, \quad k \leqslant r \leqslant 2 k-1 \tag{4.1}
\end{equation*}
$$

when $n=2 k$ and that

$$
\begin{equation*}
f\left(l_{r}\right)=x_{r, r} l_{r}+x_{r, r-1} l_{r-1}+\cdots+x_{r, k+1} l_{k+1}, \quad k+1 \leqslant r \leqslant 2 k \tag{4.2}
\end{equation*}
$$

when $n=2 k+1$. Clearly we can assume that the polynomial $x_{r, s}$ has the homogeneous degree $\operatorname{deg}\left(x_{r, s}\right)=4(r-s)$. In particular $x_{r, r}$ is an integer. This is the observation that brings g-sequences into our consideration.

LEMMA 4.2. Let $\left(a_{1}, \ldots, a_{2 k-1}\right)$ be the character sequence of f. If $n=2 k$ (resp. $n=2 k+1)$, then $\left(a_{1}, \ldots, a_{2 k-1}\right)\left(\operatorname{resp} .\left(a_{3}, \ldots, a_{2 k-1}\right)\right)$ is a g-sequence.

Proof. Suppose that $n=2 k$ (resp. $n=2 k+1$). For an r with $k \leqslant r \leqslant 2 k-1$ (resp. with $k+1 \leqslant r \leqslant 2 k-1$) comparing the coefficient of $d_{2 t-1} d_{2 s-1}, s+t=r+1$; $1 \leqslant s, t \leqslant k$, in (4.1) $)_{r}$ (resp. (4.2) $)_{r}$) gives

$$
\begin{equation*}
a_{2 t-1} a_{2(r-t)+1}=x_{r, r}, \quad s+t=r+1 ; \quad 1 \leqslant s, t \leqslant k \tag{4.3}
\end{equation*}
$$

Lemma 4.1 for $n=2 k$ (resp. for $n=2 k+1$) is verified by (4.3) with $k \leqslant r \leqslant 2 k-3$ (resp. with $k+1 \leqslant r \leqslant 2 k-3$).

5. The Proof of Theorem 2

Assume in this section that $f\left(d_{1}\right)=a d_{1} \neq 0$. Combining Lemma 4.1, Lemma 4.2 with Corollary 3.3 we find that the sequence $\left(a_{1}, \ldots, a_{2 k-1}\right)$ agrees with

$$
\left(a, a q, \ldots, a q^{k-1}\right), \quad q= \pm a^{2}
$$

when $n=2 k$; and agrees with

$$
\left(a, a_{3}, a_{3} q, \ldots, a_{3} q^{k-2}\right), \quad q= \pm a^{2}, a_{3}= \pm a^{3}
$$

when $n=2 k+1$. We proceed further by showing the following lemma:
LEMMA 5.1. Assume as the above. Then
(1) $q=a^{2}$, and
(2) $a_{3}=a^{3}$ when $n=2 k+1$.

Proof. Suppose, otherwise, that $q=-a^{2}$. From (4.3) $)_{2 k-2}$ we find

$$
x_{2 k-2,2 k-2}=-a^{4 k-4} .
$$

The relation (4.1) $)_{2 k-2}$ (resp. (4.2) $)_{2 k-2}$) becomes

$$
\begin{align*}
f\left(l_{2 k-2}\right)= & -a^{4 k-4} l_{2 k-2}+x_{2 k-2,2 k-3} l_{2 k-3}+\cdots+ \\
& +\left\{\begin{array}{l}
x_{2 k-2, k} l_{k}, \quad \text { if } n=2 k, \\
x_{2 k-2, k+1} l_{k+1},
\end{array} \quad \text { if } n=2 k+1 .\right. \tag{5.1}
\end{align*}
$$

If k is even comparing the coefficient of d_{k-1}^{4} on both sides of (5.1) gives

$$
\begin{equation*}
a_{k-1}^{4}=-a^{4 k-4} \tag{5.2}
\end{equation*}
$$

If k is odd comparing the coefficient of $d_{k-2}^{2} d_{k}^{2}$ we get

$$
4 a_{k-2}^{2} a_{k}^{2}=-4 a^{4 k-4}+ \begin{cases}e & \text { if } n=2 k \tag{5.3}\\ 0 & \text { if } n=2 k+1\end{cases}
$$

where $e \in Z$ is the coefficient of d_{k-2}^{2} in $x_{2 k-2, k}$, which is seen to be 0 by examining the coefficient of $d_{k-2}^{3} d_{k+2}$ in (5.1). The contradictions in (5.2) or (5.3) verify (1).

For (2), assume that $a_{3}=-a^{3}$. Then the character sequence of f is

$$
\left(a,-a_{3}, \ldots,-a^{2 k-1}\right),
$$

and the relation $(4.2)_{k+1}$ turns to be

$$
f\left(l_{k+1}\right)=a^{2(k+1)} l_{k+1} .
$$

Comparing the coefficient of $d_{2 k-1}$ one gets

$$
2 a_{2 k-1}\left(f\left(d_{3}\right)-2 f\left(d_{1}\right) f\left(d_{2}\right)\right)=2 a^{2(k+1)}\left(d_{3}-2 d_{1} d_{2}\right)
$$

With $d_{2}=d_{1}^{2}$ and $a_{2 k-1}=-a^{2 k-1}$ we find

$$
f\left(d_{3}\right)=-a^{3} d_{3}+4 a^{3} d_{1}^{3}
$$

This contradiction to Lemma 3.4 establishes (2).
Proof of Theorem 2. With $f\left(d_{1}\right)=a d_{1}, a \neq 0, a_{2 i-1}=a^{2 i-1}$ by Lemma 5.1. It follows from Lemma 3.2 that

$$
f\left(d_{2 i-1}\right)=a^{2 i-1} d_{2 i-1}, \quad i \leqslant k .
$$

Consequently $f\left(d_{2 i}\right)=a^{2 i} d_{2 i}$, since $d_{2 i}=g_{2 i} \in Z\left[d_{1}, d_{3}, \ldots, d_{2 k-1}\right]$ is of homogeneous degree $4 i$.

6. The Proof of Theorem 3

Theorem 3 can be easily deduced from
LEMMA 6.1. If $f\left(d_{1}\right)=0$, then the g-sequence $\left(a_{1}, \ldots, a_{2 k-1}\right)$ when $n=2 k$ (resp. $\left(a_{3}, \ldots, a_{2 k-1}\right)$ when $\left.n=2 k+1\right)$ must be of type 3 .

Proof of Theorem 3. With $f\left(d_{1}\right)=0$ the character sequence is $\left(0, \ldots, 0, a_{2 k-1}\right)$ by Lemma 6.1. Assume that $f^{m_{i}}\left(d_{t}\right)=0$ for some m_{i} and $1 \leqslant t<i<2 k-1$. We proceed to show $f^{m_{i}+1}\left(d_{i}\right)=0$.

If i is even, d_{i} is the polynomial g_{i} in $d_{1}, \ldots, d_{i-2} . f^{m_{i}}\left(d_{i}\right)=0$ follows from $f^{m_{i}}\left(d_{t}\right)=0, t<i$. If i is odd, then $a_{i}=0$ implies that $f\left(d_{i}\right)$ is a polynomial in d_{1}, \ldots, d_{i-2}. Again $f^{m_{i}}\left(d_{t}\right)=0, t<i$, implies $f^{m_{i}+1}\left(d_{i}\right)=0$.

Summarizing $f^{N}\left(d_{i}\right)=0, i<2 k-1$, for some N. It remains to show $f^{N}\left(d_{2 k}\right)=0$ when $n=2 k+1$. However this follows directly from the relation

$$
R_{k}: d_{2 k}=2 d_{1} d_{2 k-1}-2 d_{2} d_{2 k-2}+\cdots+(-1)^{i-1} 2 d_{k-1} d_{k+1}+d_{k}^{2}
$$

The proof of Lemma 6.1 for even n is straightforward.

Proof of Lemma 6.1 for $n=2 k$. With $a_{1}=0$ the g-sequence $\left(a_{1}, \ldots, a_{2 k-1}\right)$ cannot be type 1 by Lemma 4.1. Suppose, on the contrary, that it is of type 2. Then from $(4.3)_{r}$ we find $x_{r, r}=0, r \leqslant 2 k-1$, or equivalently, $(4.1)_{r}$ becomes

$$
\begin{equation*}
f\left(l_{r}\right)=x_{r, r-1} l_{r-1}+\cdots+x_{r, k} l_{k}, \quad k \leqslant r \leqslant 2 k-1 . \tag{6.1}
\end{equation*}
$$

Applying f to both sides of $(6.1)_{r}$, substituting $(6.1)_{s}, k+1 \leqslant s \leqslant r$, in the right hand side of the resulting equality yield

$$
f^{2}\left(l_{r}\right)=y_{r, r-2} l_{r-2}+\cdots+y_{r, k} l_{k}, \quad k \leqslant r \leqslant 2 k-1,
$$

where $y_{r, s}$ are certain polynomials in $x_{t, i}$'s and $f\left(x_{r, j}\right)$'s. Repeating this procedure we find the iterated endomorphism f^{k} satisfies $f^{k}\left(l_{r}\right)=0, k \leqslant r \leqslant 2 k-1$, hence induces a ring homomorphism $g: H^{*}\left(C S_{n}\right) \rightarrow Z\left[d_{1}, \ldots, d_{2 k-1}\right]$ so that the diagram

$$
\begin{array}{cl}
Z\left[d_{1}, d_{3}, \ldots, d_{2 k-1}\right] & \xrightarrow{f^{k}} \quad Z\left[d_{1}, d_{3}, \ldots, d_{2 k-1}\right] \\
p \downarrow & \nearrow g \\
H^{*}\left(C S_{n}\right) &
\end{array}
$$

commutes, where p is the obvious quotient map. Since $C S_{n}$ has finite dimension, and since the ring $Z\left[d_{1}, d_{3}, \ldots, d_{2 k-1}\right]$ is a domain, $g=0$. Thus $f^{k}\left(d_{2 i-1}\right)=0$, and consequently $a_{2 i-1}^{k}=0, i \leqslant k$. This contradiction verifies Lemma 6.1 for $n=2 k$.

We complete the proof of Theorem 3 by establishing Lemma 6.1 for odd n.
DEFINITION. The sequence $\left(c_{1}, \ldots, c_{2 k}\right)$ whose entries are defined by the relations

$$
\begin{aligned}
& c_{1}=c_{2}=1 ; \quad c_{2 i-1}=2 c_{2 i-2}, \quad i \leqslant k \\
& c_{2 i}=2 c_{1} c_{2 i-1}-2 c_{2} c_{2 i-2}+\cdots+(-1)^{i-2} 2 c_{i-1} c_{i+1}+(-1)^{i-1} c_{i}^{2}, \quad i \leqslant k
\end{aligned}
$$

will be called the h-sequence of length $2 k$.
It is obvious that if $\left(c_{1}, \ldots, c_{2 k}\right)$ is the h-sequence of length $2 k$ and if $k^{\prime} \leqslant k$, then the subsequence $\left(c_{1}, \ldots, c_{2 k^{\prime}}\right)$ is the h-sequence of length $2 k^{\prime}$. It is also clear that all h-sequences are classified by their lengths. For instance it is straightforward to see that the first ten entries in a h-sequence of length $\geqslant 10$ are given by

$$
1,1,2,3,6,10,20,35,70,146
$$

It is, indeed, a trivial exercise from the definition that
ASSERTION 1. If $\left(c_{1}, \ldots, c_{2 k}\right)$ is a h-sequence, then $c_{i}>0, i \leqslant 2 k$.
Again we use $d_{2 i}$ to represent the polynomial $g_{2 i}$. Consider the graded homomorphism of free algebras

$$
\beta: Z\left[d_{1}, d_{3}, \ldots, d_{2 k-1}\right] \rightarrow Z\left[d_{1}\right]
$$

defined by

$$
\beta\left(d_{1}\right)=d_{1} ; \quad \beta\left(d_{2 i-1}\right)=2 \beta\left(d_{1}\right) \beta\left(d_{2 i-2}\right), \quad 2 \leqslant i \leqslant k ;
$$

h-sequences plays the role in writing $\beta\left(d_{i}\right)$ as a multiple of d_{1}^{i}.
ASSERTION 2. Let $\left(c_{1}, \ldots, c_{2 k}\right)$ be the h-sequence of length $2 k$. Then β is given by $\beta\left(d_{i}\right)=c_{i} d_{1}^{i}, i \leqslant 2 k$.

What we need is the following variation of β.
ASSERTION 3. If $\alpha: Z\left[d_{1}, d_{3}, \ldots, d_{2 k-1}\right] \rightarrow Z\left[d_{1}\right]$ is the homomorphism defined by

$$
\alpha\left(d_{1}\right)=d_{1} ; \quad \alpha\left(d_{2 i-1}\right)=2 \alpha\left(d_{1}\right) \alpha\left(d_{2 i-2}\right), \quad 2 \leqslant i<k ;
$$

and

$$
\alpha\left(d_{2 k-1}\right)=4 \alpha\left(d_{1}\right) \alpha\left(d_{2 k-2}\right)
$$

then
(1) $\quad \alpha\left(d_{i}\right)=c_{i} d_{1}^{i}, \quad 1 \leqslant i \leqslant 2 k-2 ; \quad \alpha\left(d_{2 k-1}\right)=2 c_{2 k-1} d_{1}^{2 k-1}$;
(2) $\alpha\left(d_{2 k}\right)=\left(2 c_{2 k-1}+c_{2 k}\right) d_{1}^{2 k}$.

Proof. The two homomorphisms α and β are related by

$$
\alpha\left(d_{2 i-1}\right)=\beta\left(d_{2 i-1}\right), \quad 2 \leqslant i<k ; \quad \text { and } \quad \alpha\left(d_{2 k-1}\right)=2 \beta\left(d_{2 k-1}\right) .
$$

(1) follows from Assertion 2. Finally since $d_{2 k}=2 d_{1} d_{2 k-1}+h$ with

$$
h=-2 d_{2} d_{2 k-2}+\cdots+(-1)^{i-2} 2 d_{k-1} d_{k+1}+(-1)^{i-1} d_{k}^{2}
$$

a polynomial in $d_{1}, \ldots, d_{2 k-3}$, we get

$$
\begin{aligned}
\alpha\left(d_{2 k}\right) & =2 \alpha\left(d_{1}\right) \alpha\left(d_{2 k-1}\right)+\beta(h) \\
& =4 c_{2 k-1} d_{1}^{2 k}+\beta\left(d_{2 k}-2 d_{1} d_{2 k-1}\right)=\left(2 c_{2 k-1}+c_{2 k}\right) d_{1}^{2 k}
\end{aligned}
$$

In the next result the homomorphisms α is applied to simplify some polynomial equalities in $Z\left[d_{1}, \ldots, d_{2 k-1}\right]$ to equalities in $Z\left[d_{1}\right]$

LEMMA 6.2. If $f\left(d_{1}\right)=0$, then
(1) in the relation (4.2) $)_{2 k}, x_{2 k, 2 k}=0$; and
(2) the g-sequence $\left(a_{3}, \ldots, a_{2 k-1}\right)$ cannot be of type 1 .

Proof. Recall from Section 2 that the polynomial $l_{2 k}$ is given by

$$
d_{2 k}^{2}=\left(2 d_{1} d_{2 k-1}-2 d_{2} d_{2 k-2}+\cdots+(-1)^{i-2} 2 d_{k-1} d_{k+1}+(-1)^{i-1} d_{k}^{2}\right)^{2}
$$

From this we find that, with $f\left(d_{1}\right)=0, f\left(l_{2 k}\right)$ is independent of $d_{2 k-1}$. Thus comparing the coefficient of $d_{2 k-1}$ in $(4.2)_{2 k}$ gives

$$
\begin{aligned}
0= & x_{2 k, 2 k}\left(4 d_{1} d_{2 k}-4 d_{1}^{2} d_{2 k-1}\right)+x_{2 k, 2 k-1}\left(d_{2 k-1}-4 d_{1} d_{2 k-2}\right)+ \\
& +x_{2 k, 2 k-2}\left(-2 d_{2 k-3}+4 d_{1} d_{2 k-4}\right)+\cdots \pm x_{2 k, k+1}\left(2 d_{3}-4 d_{1} d_{2}\right) .
\end{aligned}
$$

Applying the ring homomorphism α to this equality yields

$$
0=x_{2 k, 2 k}\left(4 \alpha\left(d_{1}\right) \alpha\left(d_{2 k}\right)-4 \alpha\left(d_{1}^{2}\right) \alpha\left(d_{2 k-1}\right)\right)
$$

i.e. $x_{2 k, 2 k} c_{2 k} d_{1}^{2 k+1}=0$ by Assertion 3. $x_{2 k, 2 k}=0$ follows from $c_{2 k}>0$.

For (2) the relation (4.2) $)_{2 k}$ takes the form

$$
\begin{equation*}
f\left(l_{2 k}\right)=x_{2 k, 2 k-1} l_{2 k-1}+x_{2 k, 2 k-2} l_{2 k-2}+\cdots+x_{2 k, k+1} l_{k+1} \tag{6.2}
\end{equation*}
$$

by (1). Assume on the contrary that

$$
a_{2 i-1}=a_{3} q^{i-2} \neq 0, \quad 2 \leqslant i \leqslant k
$$

Let $b_{j, i} \in Z$ be the coefficient of $d_{2 i-1} d_{2(2 k-j-i)+1}, 1 \leqslant i \leqslant(2 k-j-i+1) / 2$, in $x_{2 k, j}$. If k is odd examining the coefficient of d_{k}^{4} in (6.2) gives $a_{k}^{4}=0$.
If k is even we get

$$
\begin{aligned}
a_{k-1}^{2} a_{k+1}^{2} & =b_{k+1, \frac{k}{2}}\left(\text { by comparing the coefficient of } d_{k-1}^{2} d_{k+1}^{2}\right. \text { in (6.2)) } \\
& =0 \text { (by comparing the coefficient of } d_{k-1}^{3} d_{k+3} \text { in (6.2)). }
\end{aligned}
$$

This contradiction to $a_{3} q \neq 0$ verifies (2).

Proof of Lemma 6.1 for $n=2 k+1$. With $f\left(d_{1}\right)=0$ the g-sequence $\left(a_{3}, \ldots, a_{2 k-1}\right)$ is of either type 2 or 3 by (2) of Lemma 6.2. If it is of type 2 ,

$$
x_{r, r}=0, \quad k+1 \leqslant r \leqslant 2 k-1
$$

by (4.3) $)_{r}$, and $x_{2 k, 2 k}=0$ by (1) of Lemma 6.2. The same argument as that in the proof of Lemma 6.1 for $n=2 k$ yields the contradiction $a_{2 i-1}=0, i \leqslant 2 k-1$.

7. The Proofs of Theorem 4 and 5

For a topological space X and an odd prime $p>1$, let

$$
\mathrm{St}_{p}^{2 t(p-1)}: H^{q}\left(X ; Z_{p}\right) \rightarrow H^{q+2 t(p-1)}\left(X ; Z_{p}\right)
$$

be the Steenrod mod- p operators. The naturality of these operators imposes a bunch of restrictions on those endomorphisms of $H^{*}(X)$ that are induced by self-maps. This, besides Theorems 2 and 3, underlies the proof of Theorem 4.

For an integer $k>1$ let $D(k)$ be the set of all odd primes p such that $1<p<2 k-1$ and that p is prime to $2 k-1$. As examples

$$
D(3)=\{3\} ; D(4)=\{3,5\} ; D(5)=\{5,7\} ; \ldots, \text { etc. }
$$

Obviously $D(k) \neq \phi$ for all $k>2$.
For a self-map f of $C S_{n}$, we let $\left(a_{1}, \ldots, a_{2 k-1}\right)$ be the character sequence of the induced endomorphism f^{*}. Again we set $k=[n / 2]$.

LEMMA 7.1. If $a_{1}=0$, then $\left(a_{1}, \ldots, a_{2 k-1}\right) \equiv(0, \ldots, 0) \bmod p, p \in D(k)$.
Proof. If $a_{1}=0,\left(a_{1}, \ldots, a_{2 k-1}\right)$ is a g-sequence of type 3 by Lemma 6.1. It remains to show $a_{2 k-1} \equiv 0 \bmod p, p \in D(k)$.

The action of $S t_{p}^{*}$ on the universal Chern classes c_{i} 's is given by (cf. [1])

$$
S t_{p}^{2 t(p-1)} c_{i} \equiv(i+t(p-1)) c_{i+t(p-1)}+h \bmod p
$$

where h is a polynomial decomposable in $c_{j}, j<i+t(p-1)$. Since the generators d_{i} 's are related with the Chern classes of γ_{n} by the formula $c_{i}\left(\gamma_{n}\right)=2 d_{i}$ (Theorem 1), this implies that

$$
S t_{p}^{2 t(p-1)} d_{i} \equiv(2 k-1) d_{2 k-1}+h^{\prime} \bmod p \quad \text { whenever } 2 k-1=i+t(p-1)
$$

where h^{\prime} is decomposable in d_{j} 's, $j<i+t(p-1)$. For a $p \in D(k)$ applying f^{*} to

$$
S t_{p}^{2(p-1)} d_{2 k-p} \equiv(2 k-1) d_{2 k-1}+h^{\prime}
$$

gives

$$
S t_{p}^{2(p-1)} f^{*}\left(d_{2 k-p}\right) \equiv(2 k-1) f^{*}\left(d_{2 k-1}\right)+f^{*}\left(h^{\prime}\right) \bmod p
$$

Since $a_{2 i-1}=0, i<k$, the indecompositable component of the equality is

$$
(2 k-1) a_{2 k-1} d_{2 k-1} \equiv 0 \bmod p .
$$

Now $a_{2 k-1} \equiv 0 \bmod p$ follows from that p is prime to $2 k-1$.

For a self-map f of a finite complex X, its Lefschetz number is defined by

$$
L(f)=1+\sum(-1)^{r} \operatorname{Tr}\left\{f^{*}: H^{r}(X ; Q) \rightarrow H^{r}(X ; Q)\right\}
$$

If $X=C S_{n}$ the formula can be simplified, since $H^{\text {odd }}\left(C S_{n}\right)=0$, as

$$
L(f)=1+\sum \operatorname{Tr}\left\{f^{*}: H^{r}(X) \rightarrow H^{r}(X)\right\} .
$$

LEMMA 7.2. Suppose that $f^{*}\left(d_{1}\right)=0$. Then we have
(1) $L(f)=1$ when $n=2,3,5$ and,
(2) $L(f) \equiv 1 \bmod p$ for every $p \in D(k)$ when $n>5$.

Proof. By Lemma 2.2 we have

$$
H^{*}\left(C S_{2}\right) \cong Z\left[d_{1}\right] / d_{1}^{2} ; \quad H^{*}\left(C S_{3}\right) \cong Z\left[d_{1}\right] / d_{1}^{4}
$$

Thus $f^{*}\left(d_{1}\right)=0$ implies that $L(f)=1$ when $n=2$ or 3 .
Consider the case $n=5$. With $f^{*}\left(d_{1}\right)=0, f^{*}\left(d_{i}\right)=0$ for $i=2,4$ by the relations R_{1} and R_{2}. Assuming

$$
f^{*}\left(d_{3}\right)=a d_{3}+b d_{1} d_{2}, \quad a, b \in Z
$$

and applying f^{*} to $R_{3}: d_{3}^{2}-2 d_{2} d_{4}=0$ yields $\left(a d_{3}+b d_{1} d_{2}\right)^{2}=0$.
Using $R_{i}, i=1,2,3$, to rewrite this in terms of the basis $d_{2} d_{4}, d_{1} d_{2} d_{3}$ for $H^{6}\left(C S_{6} ; Z\right)$ we obtain

$$
\left(2 a^{2}-b^{2}\right) d_{2} d_{4}+2 b(a+b) d_{1} d_{2} d_{3}=0
$$

$L(f)=1$ now follows from $a=b=0$. This completes the proof of (1).
For a prime p the Z_{p}-cohomology algebra of $C S_{n}$ is

$$
H^{*}\left(C S_{n} ; Z_{p}\right)=Z_{p}\left[d_{1}, d_{3}, \ldots, d_{2 k-1}\right] / L
$$

where L is the ideal generated by l_{r} 's mod- p. Let $Z_{p}\left[d_{1}, \ldots, d_{2 k-1}\right]^{2 t}$ be the Z_{p} vector space spanned by $d_{1}^{r_{1}} d_{3}^{r_{2}} \ldots d_{2 k-1}^{r_{k}}, \sum(2 i-1) r_{i}=t$, and put

$$
L^{2 t}=L \cap Z_{p}\left[d_{1}, \ldots, d_{2 k-1}\right]^{2 t}
$$

Then we have the exact sequence:

$$
0 \rightarrow L^{2 t} \rightarrow Z_{p}\left[d_{1}, \ldots, d_{2 k-1}\right]^{2 t} \rightarrow H^{2 t}\left(C S_{n} ; Z_{p}\right) \rightarrow 0
$$

Since f^{*}, as an endomorphism of $Z_{p}\left[d_{1}, d_{3}, \ldots, d_{2 k-1}\right]$, preserves the ideal, $L^{2 t}$ is an invariant subspace of f^{*}. i.e. f^{*} induces an exact ladder:

$$
\begin{array}{ccccccccc}
0 & \rightarrow & L^{2 t} & \rightarrow & Z_{p}\left[d_{1}, \ldots, d_{2 k-1}\right]^{2 t} & \rightarrow & H^{2 t}\left(C S_{n} ; Z_{p}\right) & \rightarrow & 0 \\
\downarrow & & f^{*} \downarrow & & & \\
0 & \rightarrow & L^{2 t} & \rightarrow & Z_{p}\left[d_{1}, \ldots, d_{2 k-1}\right]^{2 t} & \rightarrow & H^{2 t}\left(C S_{n} ; Z_{p}\right) & \rightarrow & 0
\end{array} .
$$

It follows that, for each $t>0$,

$$
\operatorname{Tr}\left(f^{*} \text { on } H^{2 t}\left(C S_{n} ; Z_{p}\right)\right)=\operatorname{Tr}\left(f^{*} \text { on } Z_{p}\left[d_{1}, \ldots, d_{2 k-1}\right]^{2 t}\right)-\operatorname{Tr}\left(f^{*} \text { on } L^{2 t}\right)
$$

Assume now that $n>5, p \in D(k)$ and that $f^{*}\left(d_{1}\right)=0$. Then $a_{2 i-1} \equiv 0 \bmod p$, $i \leqslant k$, by Lemma 7.1. Consequently

$$
\operatorname{Tr}\left(f^{*} \text { on } Z_{p}\left[d_{1}, \ldots, d_{2 k-1}\right]^{2 t}\right)=0 \text { and } \operatorname{Tr}\left(f^{*} \text { on } L^{2 t}\right)=0
$$

for all $t>0$. These verifies

$$
L(f) \equiv 1+\sum_{t>0} \operatorname{Tr}\left(f^{*} \text { on } H^{2 t}\left(C S_{n} ; Z_{p}\right)\right) \equiv 1 \bmod p
$$

Proof of Theorem 4. Let f be a self-map of $C S_{n}$ with $L(f)=0$. If $f^{*}\left(d_{1}\right)=a d_{1}$, $a \neq 0$, then $L(f)=\Pi_{1 \leqslant i \leqslant n-1}\left(1+a^{i}\right)$ by Theorem 2 (the Poincare polynomial of $C S_{n}$ is $\Pi_{1 \leqslant i \leqslant n-1}\left(1+t^{2 i}\right)$ by Lemma 2.1). Now $L(f)=0$ implies $a=-1$, and $f\left(d_{i}\right)=(-1)^{i} d_{i}$ follows from Theorem 2.

If $f^{*}\left(d_{1}\right)=0$, there must be $n=4$ by Lemma 7.2, and $f^{*}\left(d_{2}\right)=0$ by R_{1}. With $L(f)=0$ we can assume that

$$
f^{*}\left(d_{3}\right)=-d_{3}+b d_{1} d_{2}, \quad b \in Z
$$

Applying f^{*} to $R_{3}: d_{3}^{2}=0$, rewriting everything in the resulting equation as multiples of the generator $d_{1} d_{2} d_{3} \in H^{12}\left(C S_{4}\right)=Z$ by using R_{1}, R_{2}, R_{3}, we get $2 b(b-1)$ $d_{1} d_{2} d_{3}=0$, i.e. either $f^{*}\left(d_{3}\right)=-d_{3}$ or $f^{*}\left(d_{3}\right)=-d_{3}+d_{1} d_{2}$. These finish the proof.

Consider the free algebra

$$
\Phi\left(C S_{n}\right)=Z\left[x_{1}, x_{3}, \ldots, x_{2 k-1}\right] \otimes \Lambda_{Z}\left(y_{\left[\frac{n+1}{2}\right]}, y_{\left[\frac{n+1}{2}\right]+1}, \ldots, y_{n-1}\right),
$$

the tensor product of the polynomial algebra in x_{i} 's with the exterior algebra in y_{r} 's. It is graded by $\operatorname{deg}\left(x_{i}\right)=2 i$ and $\operatorname{deg}\left(y_{r}\right)=4 r-1$. The differential $\delta: \Phi\left(C S_{n}\right) \rightarrow$ $\Phi\left(C S_{n}\right)$ of degree 1 given by

$$
\delta\left(x_{i}\right)=0 \quad \text { and } \quad \delta\left(y_{r}\right)=l_{r}\left(x_{1}, x_{3}, \ldots, x_{2 k-1}\right)
$$

furnishes $\Phi\left(C S_{n}\right)$ with the structure of a differential graded commutative algebra over Z. Indeed Lemma 2.3 implies that

LEMMA 7.3 (cf. [4, Proposition 3]). The homomorphism

$$
g: \Phi\left(C S_{n}\right) \rightarrow H^{*}\left(C S_{n}\right), \quad \text { given by } g\left(x_{2 i-1}\right)=d_{2 i-1} ; g\left(y_{r}\right)=0
$$

is the minimal model (over Z) for $H^{*}\left(C S_{n}\right)$.
Proof of Theorem 5. Let f be a self-homotopy equivalence of $C S_{n}$. Then

$$
f\left(d_{1}\right)= \pm d_{1}, \quad \text { and } \quad f\left(d_{i}\right)=(\pm 1)^{i} d_{i} \quad \text { for all } i \leqslant n-1
$$

by Theorem 2 . The relations $(4.1)_{r}$ (resp. (4.2) $)_{r}$) becomes

$$
f^{*}\left(l_{r}\right)=l_{r} \quad \text { for }\left[\frac{n+1}{2}\right] \leqslant r \leqslant n-1
$$

In views of Lemma 7.3, a minimal model

$$
\Phi(f): \Phi\left(C S_{n}\right) \rightarrow \Phi\left(C S_{n}\right)
$$

for f can be chosen to be $\Phi(f)\left(x_{2 i-1}\right)=(\pm 1)^{i} x_{2 i-1}$ and

$$
\Phi(f)\left(y_{r}\right)=y_{r}
$$

By the rational homotopy theory [8] the forms $y_{r} \otimes 1$'s $\in \Phi\left(C S_{n}\right) \otimes Q$ constitute a basis for $\operatorname{Hom}\left(\pi_{\text {odd }}\left(C S_{n}\right), Q\right)$ and the induced chain endomorphism $\Phi(f) \otimes 1$ of $\Phi\left(C S_{n}\right) \otimes Q$, module decompositables, agrees with the dual action of f_{*} on $\pi_{*}\left(C S_{n}\right)$. Thus the proof is done by (7.1).

8. Examples

This section serves as a supplement to Theorem 3. We present self-maps f of $C S_{n}$, for even n, so that $f^{*}\left(d_{i}\right)=0$ when $i \neq 2 k-1$, but $f^{* N}\left(d_{2 k-1}\right) \neq 0$ for all $N>0$.

Let $e_{1}, \ldots, e_{4 k}$ be the standard basis for the Euclidean space $R^{4 k}$ and let $S^{4 k-2}$ be the unit sphere in the subspace spanned by $e_{i}, i<4 k$. The map

$$
p: C S_{2 k} \rightarrow S^{4 k-2}, \quad p(J)=J e_{4 k-1} \in S^{4 k-2}
$$

is a fiber bundle projection whose fiber inclusion over $e_{4 k-1} \in S^{4 k-2}$ is

$$
l: C S_{2 k-1} \rightarrow C S_{2 k}, \quad l\left(J^{\prime}\right)=J^{\prime} \oplus\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

In fact the class $d_{2 k-1}$ is cospherical in the sense that
(1) $\pi^{*}(e)=d_{2 k-1}$, where $e \in H^{2 k-2}\left(S^{4 k-2}\right)=Z$ is a generator (cf. [4]).

On the other hand the homotopy exact sequence of p gives the exact sequence of vector spaces over Q

$$
\begin{aligned}
\cdots & \rightarrow \pi_{4 k-2}\left(C S_{2 k-1}\right) \otimes Q \rightarrow \pi_{4 k-2}\left(C S_{2 k}\right) \otimes Q \xrightarrow{p_{*}} \\
& \rightarrow \pi_{4 k-2}\left(S^{4 k-2}\right) \otimes Q \rightarrow \pi_{4 k-3}\left(C S_{2 k-1}\right) \otimes Q \rightarrow \cdots
\end{aligned}
$$

From the minimal model for $H^{*}\left(C S_{2 k} ; Q\right)$ (Lemma 7.3) we find
$\pi_{4 k-2}\left(C S_{2 k-1}\right) \otimes Q=\pi_{4 k-3}\left(C S_{2 k-1}\right) \otimes Q=0$.
This implies that
(2) there exists a map $\alpha: S^{4 k-2} \rightarrow C S_{2 k}$ so that $\operatorname{deg}(p \circ \alpha) \neq 0$. Thus if we let $f_{\alpha}=\alpha \circ p$, for a α satisfying 2), then f_{α}^{*} satisfies
(3) $f_{\alpha}^{*}\left(d_{i}\right)=0$ for all $i \neq 2 k-1$ but $f_{\alpha}^{* N}\left(d_{2 k-1}\right)=\operatorname{deg}(p \circ \alpha)^{N} d_{2 k-1}$. Finally it is worth to point out that
(4) the class $f_{\alpha}^{*}\left(d_{2 k-1}\right) \in H^{4 k-2}\left(C S_{2 k}\right)$ is always divisible by $\frac{1}{2}(4 k-3)$! since f_{α} factors through the sphere $S^{4 k-2}$ and since $2 d_{2 k-1}$ is the $(2 k-1)$ th Chern class of the bundle $\gamma_{2 k}$ [2].

References

1. Borel, A. and Serre, J. P.: Determination des p-puissances reduites de Steenrod dans la cohomologie des groupes classiques, C.R. Acad. Sci. Paris 233 (1951), 680-682.
2. Bott, R.: The space of loops on a Lie group, Michigan J. Math. 5 (1958), 35-61.
3. Duan, H. and Zhao, X.: The classification of cohomology endomorphisms of certain flag manifolds, Pacific J. Math. 192 (1) (2000), 93-102.
4. Duan, H.: Characteristic classes for complex bundles whose real reductions are trivial, Proc. Amer. Math. Soc. 128 (2000), 2465-2471.
5. Duan, H.: Some enumerative formulas for flag manifolds, Comm. Algebra 29(10) (2001), 4395-4419.
6. Glover, H. and Homer, W.: Self-maps of flag manifolds, Trans. Amer. Math. Soc. 267 (1981), 423-434.
7. Glover, H. and Mislin, G.: On the genus of generalized flag manifolds, Enseign. Math. 27 (1981), 211-219.
8. Griffiths, P. A. and Morgan, J. W.: Rational Homotopy Theory and Differential Forms, Birkhauser, Boston, 1981.
9. Grove, K. and Halperin, S.: Contributions of rational homotopy theory to global problems in geometry, Publ. IHES 56 (1983), 379-385.
10. Hoffman, M.: Endomorphisms of the cohomology of complex Grassmannians, Trans. Amer. Math. Soc. 281 (1984), 745-740.
11. Hoffman, M.: On fixed point free maps of the complex flag manifold, Indiana Math. J. 33 (1984), 249-255.
12. Milnor, J.: Morse Theory, Ann. Math. Stud. 51, Princeton Univ. Press, 1963.
