

Self-maps of the Grassmannian of Complex Structures

Dedicated to Professor Boju Jiang on his 65th birthday

HAIBAO DUAN

Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing 100080, P. R. China. e-mail: dhb@sxx0.math.pku.edu.cn

(Received: 11 July 2000; accepted in final form: 25 April 2001)

Abstract. Let CS_n be the flag manifold SO(2n)/U(n). We give a partial classification for the endomorphisms of the cohomology ring $H^*(CS_n; Z)$ which is very close to a homotopy classification of all selfmaps of CS_n . Applications concerning the geometry of the space are discussed.

Mathematics Subject Classification (2000). 55S37.

Key words. cohomology ring; complex structures; flag manifolds.

1. Introduction

Let $O(2n) = O^+(2n) \sqcup O^-(2n)$ be the orthogonal group of order 2n with $O^+(2n)$, the connected component that contains the identity I_{2n} . Its subspace $G_n = \{J \in O^+(2n) \mid J^2 = -I_{2n}\}$ is known as *the Grassmannian of complex structures on the 2n-dimensional Euclidean space* R^{2n} . It is the space of minimal geodesics form I_{2n} to $-I_{2n}$ on $O^+(2n)$ [12]. It serves as the classifying space for all complex *n*-bundles whose real reductions are trivial [4]. It has two connected components

$$CS_n = \{AJ_0A^{\tau} \mid A \in O^+(2n)\};$$
 $CS_n^- = \{AJ_0A^{\tau} \mid A \in O^-(2n)\},$

where

$$J_0 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \oplus \cdots \oplus \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} (n \text{ copies}),$$

both diffeomorphic to the homogeneous space $O^+(2n)/U(n)$.

For a topological space X let [X, X] be the set of homotopy classes of self-maps of X, and End($H^*(X)$), the set of all endomorphisms of the integral cohomology ring. Sending a self-map to the induced endomorphism gives rise to a representation

 $l_X: [X, X] \to \operatorname{End}(H^*(X)), \quad f \to f^*$

in view of the obvious monoid structure on the both sets. According to the rational homotopy theory, if X is a flag manifold (i.e. a homogeneous space G/K with G is a compact connected Lie group and $K \subset G$, a Borel subgroup), this representation is 'nearly faithful' in the sense that it has finite kernel and finite cokernel.

Therefore, the problem of determining $\text{End}(H^*(X))$, for a flag manifold X, is a step toward a homotopy classification of all self-maps of X. This problem has been studied in some detail for the complex Grassmannians ([10]), and for some compact Lie groups module its maximal torus ([3, 11]). This paper studies the problem for CS_n , with an intention to devote to geometry in the applications.

The ring $H^*(CS_n)$ can be described as follows. Let γ_n be the complex *n*-bundle obtained by furnishing the trivial real bundle $CS_n \times R^{2n} \to CS_n$ the complex structure

 $K: CS_n \times R^{2n} \to CS_n \times R^{2n}, \quad K(J, v) = (J, Jv),$

and let $1 + c_1 + \cdots + c_n$ be its total Chern class.

THEOREM 1 (cf. [4]). The classes $c_i \in H^{2i}(CS_n)$, $i \leq n-1$, are all divisible by 2. Further, if we let $d_i = \frac{1}{2}c_i$, then d_1, \ldots, d_{n-1} form a simple system of generators for $H^*(CS_n)$, and are subject to the relations

 $R_i: d_i^2 - 2d_{i-1}d_{i+1} + \dots + (-1)^{i-1}2d_1d_{2i-1} + (-1)^i d_{2i} = 0, \quad 1 \le i \le n-1,$

with $d_s = 0$, $s \ge n$, being understood.

Let f be an endomorphism of $H^*(CS_n)$ and let f^N be the N-iteration of f defined inductively by $f^N = f \circ f^{N-1}$, N > 0. Since d_1 is the only generator in dimension 2, f sends d_1 to a multiple of itself. The main results of this paper are

THEOREM 2. If $f(d_1) = ad_1$ with $a \neq 0$, then $f(d_i) = a^i d_i$, $i \leq n - 1$.

THEOREM 3. If $f(d_1) = 0$, there exists $N \ge 1$ so that

 $f^{N}(d_{i}) = 0$, for all $i \neq 2[n/2] - 1$.

In Theorem 3, the conclusion $f^N(d_i) = 0$ cannot be extended to i = 2[n/2] - 1. In Section 8, we shall present examples of self-maps f of CS_n so that the induced endomorphisms f^* satisfy $f^*(d_i) = 0$, $i \le n - 2$, and $f^{*N}(d_{n-1}) \ne 0$ for all N > 0.

We turn to applications of the previous results. Let CS_n^0 be the rationalization of CS_n . From the minimal model for CS_n given in Lemma 7.3, one can show that the monoid of homotopy classes $[CS_n^0, CS_n^0]$ is anti isomorphic to the monoid of endomorphisms of $H^*(CS_n; Q)$ (cf. Theorem 1.1 in [6]). Thus, Theorem 2 offers a complete classification on self-homotopy equivalencies of CS_n^0 . In particular, Theorem 2 implies

COROLLARY 1. Any space in the genus of CS_n (see [7] for the definition) is homotopy equivalent to CS_n .

The self-map f_n of CS_n by

$$f_n(J) = \begin{cases} -J & \text{if } n \text{ is even} \\ -\widetilde{I_{2n}} J\widetilde{I_{2n}} & \text{if } n \text{ is odd,} \end{cases} \quad J \in CS_n, \ \widetilde{I_{2n}} = (-1) \oplus I_{2n-1}, \end{cases}$$

is clearly a fixed point free involution (note that, the involution on G_n by $J \rightarrow -J$ exchanges the two connected components precisely when *n* is odd). Our next result

implies that, cohomologically, f_n is the only fixed point free self-map of CS_n unless n = 4.

THEOREM 4. Let f is a self-map of CS_n with Lefschetz number L(f) = 0, and let f^* be the induced endomorphism.

- (1) If $n \neq 4$ then $f^*(d_i) = (-1)^i d_i, 1 \le i \le n-1;$
- (2) If n = 4 there are the two additional possibilities

 $(f^*(d_1), f^*(d_2), f^*(d_3)) = (0, 0, either - d_3 or - d_3 + d_1d_2).$

COROLLARY 2. If $n \neq 4$, any self-map f of CS_n with $f^*(d_1) \neq -d_1$ has a fixed point.

COROLLARY 3. Any self-map of CS_n has a periodic point of order 2.

The natural inclusion $R^{2(n-1)} \subset R^{2n}$ induces a smooth fiber bundle $CS_n \xrightarrow{p} S^{2(n-1)}$ over the 2(n-1) sphere $S^{2(n-1)}$ (See Section 8). If *p* admits a cross-section, say *s*, then the composed map

 $f\colon CS_n \xrightarrow{p} S^{2(n-1)} \xrightarrow{\tau} S^{2(n-1)} \xrightarrow{s} CS_n,$

where τ is antipodal, is clearly fixed point free (hence L(f) = 0), and satisfies $f^*(d_i) = 0$ for i < n - 1 (since *f* factors through the sphere). On the other hand, $S^{2(n-1)}$ admits an almost complex structure if and only if when *p* has a cross-section. Thus Theorem 4 implies the classical result, originally due to Borel and Serre [1]:

COROLLARY 4. If $n \neq 2, 4$, $S^{2(n-1)}$ does not admit any almost complex structure.

The existence of various kinds of geodesics is a central topic in geometry. For a Riemannian manifold M and an isometry g on M, a nontrivial geodesic σ is called *g*-invariant if there exists a period c so that $g \circ \sigma(t) = \sigma(t + c)$, $t \in R$. The case g = id corresponds to the classical notation of closed geodesic.

THEOREM 5. If f is a self-homotopy equivalence of CS_n , the induced action $f_* \otimes 1$ on the odd dimensional rational homotopy group $\pi_{\text{odd}}(CS_n) \otimes Q$ is the identity.

Since dim $(\pi_{\text{odd}}(CS_n) \otimes Q) \ge 2$ for $n \ge 5$ (by Lemma 7.3), a combination of Theorem 5 with the results in [9] gives

COROLLARY 6. With respect an arbitrary Riemannian metric on CS_n , $n \ge 5$, any isometry has infinitely many invariant geodesics.

The paper is arranged as follows: After preliminary discussions in Sections 2, 3 and 4, Theorems 2 and 3 will be established in Sections 5 and 6. Section 7 is devoted to proofs of Theorems 4 and 5.

Finally we remark that results similar to Theorems 2 and 3 hold for the flag manifold $HS_n = \text{Sp}(n)/\text{U}(n)$, i.e. *the Grassmannian of quaternionic structures on* C^{2n} . For ignoring the grading, the two algebras $H^*(CS_{n+1}; Q)$ and $H^*(HS_n; Q)$ are isomorphic.

2. The Cohomology Ring

A sequence $\lambda = (i_1, \dots, i_r)$ of integers will be called a strict partition λ of *i* if

 $0 < i_1 < \cdots < i_r$ and $i_1 + \cdots + i_r = i$.

For a i > 0 let P(i) be the set of all strict partitions of i and, for a $\lambda = (i_1, i_2, \dots, i_r) \in P(i)$, put $d_{\lambda} = d_{i_1}d_{i_2}\cdots d_{i_r}$. From Theorem 1 we have:

LEMMA 2.1. $H^{\text{odd}}(CS_n) = 0$ and the set of monomials $\{d_{\lambda} \mid \lambda \in P(i)\}$ forms a basis for the Z-module $H^{2i}(CS_n)$.

As for the multiplicative structure we grade the polynomial ring $Z[d_1, d_2, ..., d_{n-1}]$ by assigning deg $(d_i) = 2i$. Theorem 1 also tells

LEMMA 2.2 (The first description of the ring $H^*(CS_n)$).

 $H^*(CS_n) = Z[d_1, d_2, \ldots, d_{n-1}]/\langle R_r, r = 1, 2, \ldots, n-1 \rangle.$

More explicitly, the relations R_r 's can be written as follows

$$R_{1}: d_{1}^{2} - d_{2} = 0;$$

$$R_{2}: d_{2}^{2} - 2d_{1}d_{3} + d_{4} = 0;$$

$$R_{3}: d_{3}^{2} - 2d_{2}d_{4} + 2d_{1}d_{5} - d_{6} = 0;$$

$$\vdots$$

$$R_{n-2}: d_{n-2}^{2} - 2d_{n-3}d_{n-1} = 0;$$

$$R_{n-1}: d_{n-1}^{2} = 0.$$

from the first [(n + 1)/2] - 1 relations one finds that each d_{2i} can be expressed as a polynomial g_{2i} in d_{odd} 's. For instance, the first four such polynomials are

$$g_{2}(=d_{2}) = d_{1}^{2};$$

$$g_{4}(=d_{4}) = 2d_{1}d_{3} - d_{1}^{4};$$

$$g_{6}(=d_{6}) = 2d_{1}d_{5} + d_{3}^{2} - 4d_{1}^{3}d_{3} + 2d_{1}^{6};$$

$$g_{8}(=d_{8}) = 2d_{1}d_{7} + 2d_{3}d_{5} - 6d_{1}^{2}d_{3}^{2} + 8d_{1}^{5}d_{3} - 4d_{1}^{3}d_{5} - 3d_{1}^{8}.$$

Consequently, substituting d_{2i} 's by g_{2i} 's in the remaining n - [(n + 1)/2] relations yields some equations in d_{odd} 's. Let k = [n/2]. Remaining d_{2i} instead of the g_{2i} 's in d_{odd} 's for the sake of simplicity, these equations are

SELF-MAPS OF THE GRASSMANNIAN OF COMPLEX STRUCTURES

$$l_r: d_r^2 - 2d_{r-1}d_{r+1} + 2d_{r-2}d_{r+2} - \dots + 2(-1)^{r-1}d_{2r-2k+1}d_{2k-1} = 0,$$

$$k \le r \le 2k - 1,$$

when n is even; and are

$$l_r: d_r^2 - 2d_{r-1}d_{r+1} + 2d_{r-2}d_{r+2} - \dots + 2(-1)^{r-2}d_{2r-2k}d_{2k} = 0,$$

$$k + 1 \le r \le 2k,$$

when n is odd. Thus we get

LEMMA 2.3 (The second description of the ring $H^*(CS_n)$).

$$H^*(CS_n) = Z[d_1, d_3, \dots, d_{2k-1}]/\langle \langle l_r; r = \left[\frac{n+1}{2}\right], \dots, n-1 \rangle \rangle.$$

For a $\lambda \in P(i)$, let $D_{\lambda} \in Z[d_1, d_3, \dots, d_{2k-1}]$ be obtained from d_{λ} by substituting d_{2j} by g_{2j} . Lemma 2.1 gives

LEMMA 2.4 (Basis Theorem). $H^{\text{odd}}(CS_n) = 0$ and the set of monomials $\{D_{\lambda} \mid \lambda \in P(i)\}$ is a basis for $H^{2i}(CS_n)$.

3. The Hard Lefschetz Theorem

Let *f* be an endomorphism of $H^*(CS_n)$, and let $k = \lfloor n/2 \rfloor$. According to Lemma 2.4 *f* is given by

$$f(d_{2i-1}) = a_{2i-1}d_{2i-1} + \sum_{\lambda \in Q(2i-1)} a_{\lambda}D_{\lambda}, \qquad 1 \le i \le k,$$
(3.1)

where

$$a_{2i-1}, a_{\lambda} \in \mathbb{Z}$$
 and $Q(2i-1) = P(2i-1) \setminus \{2i-1\}.$

The leading coefficient of the polynomial $f(d_{2i-1})$ gives rise to a sequence $(a_1, a_3, \ldots, a_{2k-1})$ which will be termed as the *character sequence of f*.

Since, in the second description of the ring $H^*(CS_n)$, the first relation appears in degree $4[(n+1)/2] > \deg(d_{2k-1})$, f can be regarded as an endomorphism of the free algebra $Z[d_1, d_3, \ldots, d_{2k-1}]$, defined by $(3.1)_i$, that preserves the ideal generated by l_r 's.

Let *M* be a *m*-dimensional compact Kaehler manifold with Kaehler class $u \in H^2(M; Q)$. The hard Lefschetz theorem states:

LEMMA 3.1. If $0 \le r \le m$, multiplication by u^{m-r} gives an isomorphism

 $H^r(M; Q) \to H^{2m-r}(M; Q).$

The use of this theorem in the proof of next result is adopted from Hoffman [10].

LEMMA 3.2. Suppose that $f(d_{2t-1}) = a^{2t-1}d_{2t-1}$, $1 \le t < i, a \ne 0$. Then we have either $f(d_{2i-1}) = a^{2i-1}d_{2i-1}$ or $a_{2i-1} = -a^{2i-1}$.

Proof. For a $\lambda \in Q(2i-1)$, D_{λ} is a polynomial in d_{2i-1} 's, t < i, of homogeneous degree 2(2i-1). It follows from the assumption that

$$f(D_{\lambda}) = a^{2i-1}D_{\lambda}, \quad \lambda \in Q(2i-1).$$

Since CS_n is a Kaehler manifold of complex dimension m = (n(n-1))/2 with Kaehler class d_1 , $\{d_1^{m-4i+2}D_{\lambda} \mid \lambda \in P(2i-1)\}$ is a basis for $H^{2m-4i+2}(CS_n; Q)$ by Lemmas 2.4 and 3.1. Thus, if we define a matrix

$$N = (N_{\lambda\mu})_{\lambda,\mu\in P(2i-1)}$$

by the relations

$$d_1^{m-4i+2} D_{\lambda} D_{\mu} = N_{\lambda,\mu} d_1^m, \ N_{\lambda,\mu} \in Q$$
(3.2)

in $H^{2m}(CS_n; Q) = Q$, then N is nonsingular by the Poincare duality.

For $\mu \in Q(2i-1)$ applying *f* to

$$d_1^{m-4i+2} D_{\mu} d_{2i-1} = N_{\mu,2i-1} d_1^m$$

gives

$$a^{m-2i+1}d_1^{m-4i+2}D_{\mu}\left(a_{2i-1}d_{2i-1}+\sum_{\lambda\in Q(2i-1)}a_{\lambda}D_{\lambda}\right)=N_{\mu,2i-1}a^md_1^m.$$

Rewriting everything as a multiple of d_1^m by using (3.2) we get

$$N_{\mu,2i-1}(a_{2i-1} - a^{2i-1}) + \sum_{\lambda \in Q(2i-1)} N_{\mu,\lambda} a_{\lambda} = 0.$$
(3.3)

Similarly applying f to $d_1^{m-4i+2}d_{2i-1}^2 = N_{2i-1,2i-1}d_1^m$ yields

$$N_{2i-1,2i-1}(a_{2i-1}^2 - a^{2(2i-1)}) + 2a_{2i-1} \sum_{\lambda \in Q(2i-1)} N_{\lambda,2i-1}a_{\lambda} + \sum_{\mu,\lambda \in Q(2i-1)} N_{\mu,\lambda}a_{\mu}a_{\lambda} = 0.$$
(3.4)

Multiplying (3.3) by a_{λ} , summing over $\lambda \in Q(2i - 1)$, and subtracting the resulting equation from (3.4) gives rise to

$$N_{2i-1,2i-1}(a_{2i-1}^2 - a^{2(2i-1)}) + (a_{2i-1} + a^{2i-1}) \sum_{\lambda \in Q(2i-1)} N_{\lambda,2i-1}a_{\lambda} = 0.$$
(3.5)

If $a_{2i-1} = -a^{2i-1}$, we are done. Assume next $a_{2i-1} + a^{2i-1} \neq 0$. Dividing (3.5) by $a_{2i-1} + a^{2i-1}$ gives

$$N_{2i-1,2i-1}(a_{2i-1}-a^{2i-1})+\sum_{\lambda\in Q(2i-1)}N_{\lambda,2i-1}a_{\lambda}=0.$$

Combining this with (3.3) for all $\mu \in Q(2i-1)$ gives a system

$$\sum_{\mu \in P(2i-1)} N_{\lambda\mu}(a_{\mu} - \delta_{\mu,2i-1}a^{2i-1}) = 0, \quad \lambda \in P(2i-1),$$

where $\delta_{\mu,2i-1}$ is the Kronecker delta. The nonsigularity of N implies

$$a_{\mu} = \delta_{\mu,2i-1} a^{2i-1}, \quad \text{i.e. } f(d_{2i-1}) = a^{2i-1} d_{2i-1}.$$

COROLLARY 3.3. If $f(d_1) = ad_1$ with $a \neq 0$, then $a_{2i-1} = \pm a^{2i-1}$, $i \leq k$.

Proof. Since, in the second description of the ring $H^*(CS_n)$, the first relation appears in degree $4[(n+1)/2] > \deg(d_{2k-1})$, from $(3.1)_i$ we find that the character sequence of f^2 is $(a_1^2, a_3^2, \ldots, a_{2k-1}^2)$. It now follows from Lemma 3.2 that $a_{2i-1}^2 = a^{2(2i-1)}$.

For a $d \in H^{2r}(CS_n)$ define the rational $M(d) \in Q$ by the relation

 $dd_1^{m-r} = M(d)d_1^m$

on $H^{2m}(CS_n)$. In particular, the number $M(d_i)$ is the ratio of the degree of the special Schubert variety corresponding to d_i by the degree of CS_n [5].

Put $e_i = e_i(1, ..., n-1)$, where $e_i(t_1, ..., t_{n-1})$ is the *i*th elementary polynomial in $t_1, ..., t_{n-1}$. The following computation has been made in [5, Proposition 4]

LEMMA 3.3. $M(d_i) = 4^{i-1}e_i/e_1(e_1-1)\cdots(e_1-i+1)$.

We shall need the following consequence of Lemma 3.3.

LEMMA 3.4. If $f(d_1) = ad_1$ with $a \neq 0$, then $f(d_3) \neq -a^3d_3 + 4a^3d_1^3$. *Proof.* Assume not. Applying f to the relation $d_3d_1^{m-r} = M(d_3)d_1^m$ gives

$$(-a^{3}d_{3} + 4a^{3}d_{1}^{3})a^{m-3}d_{1}^{m-3} = M(d_{3})a^{m}d_{1}^{m}.$$
(3.7)

Rewriting everything as a multiple of d_1^m , by using (3.6) we get $M(d_3) = 2$. This implies that $8e_3 = e_1(e_1 - 1)(e_1 - 2)$ by Lemma 3.3. From the Newton's formula we have

$$\frac{8}{3}(s_3 + \frac{1}{2}(s_1^2 - 3s_2)s_1) = s_1(s_1 - 1)(s_1 - 2), \tag{3.8}$$

where $s_k = 1^k + \dots + (n - 1)^k$. With

$$s_3 = \left[\frac{1}{2}n(n-1)\right]^2$$
, $s_2 = \frac{1}{6}(n-1)n(2n-1)$, and $s_1 = \frac{1}{2}n(n-1)n(2n-1)$

(3.8) turns out to be:

 $24 = (n^2 - 17n + 42)(n - 1)n.$

However, this has no solution in n.

4. The g-Sequences

A sequence of *m* integers (s_1, \ldots, s_m) will be called a *g*-sequence of length *m* if, for every integer *r* with $k + 1 \le r \le 2k - 2$, the products $s_i s_{r-i}$ are independent of $i \le \lfloor \frac{r}{2} \rfloor$. In other words, the following inductive strings of relations:

$$s_{1}s_{k} = s_{2}s_{k-1} = \dots = s_{\left[\frac{k+1}{2}\right]}s_{k+1-\left[\frac{k+1}{2}\right]};$$

$$s_{2}s_{k} = s_{3}s_{k-1} = \dots = s_{\left[\frac{k+2}{2}\right]}s_{k+2-\left[\frac{k+2}{2}\right]};$$

$$\vdots$$

$$s_{k-3}s_{k} = s_{k-2}s_{k-1};$$

$$s_{k-2}s_{k} = s_{k-1}^{2}$$

hold among the entries s_i 's. We classify all such sequences in

LEMMA 4.1. A g-sequence of length $m \ge 3$ belongs to one of the three types:

Type 1: $(s_1, s_1q, \ldots, s_1q^{m-1})$ with $s_1q \neq 0$; *Type 2:* $(s_1, s_2, \ldots, s_{[\frac{m}{2}]}, 0, \ldots, 0)$ with $s_1^2 + s_2^2 + \cdots + s_{[\frac{m}{2}]}^2 \neq 0$; *Type 3:* $(0, 0, \ldots, 0, s_m)$.

Proof. The proof is done by induction on m. If m = 3 then $s_1s_3 = s_2^2$. The sequence (s_1, s_2, s_3) is of type 1 when $s_2 \neq 0$; belongs to type 2 if $s_2 = 0$ but $s_1 \neq 0$; and agrees with type 3 in the remaining case. The inductive procedure can be carried out easily, by the observation that if (s_1, \ldots, s_{m+1}) is of length m + 1, then, beside

- (1) $s_1 s_k = s_2 s_{k-1} = \dots = s_{\frac{k+1}{2}} s_{k+1-\frac{k+1}{2}}$, one has
- (2) the subsequence (s_2, \ldots, s_{m+1}) is a g-sequence of length m, therefore, falls into one of the three types by the inductive hypothesis.

By considering f as an endomorphism of the free algebra $Z[d_1, d_3, ..., d_{2k-1}]$ preserving the ideal generated by l_r 's, we have, in $Z[d_1, d_3, ..., d_{2k-1}]$, that

$$f(l_r) = x_{r,r}l_r + x_{r,r-1}l_{r-1} + \dots + x_{r,k}l_k, \quad k \le r \le 2k - 1$$
(4.1)

when n = 2k and that

$$f(l_r) = x_{r,r}l_r + x_{r,r-1}l_{r-1} + \dots + x_{r,k+1}l_{k+1}, \quad k+1 \le r \le 2k$$
(4.2)

when n = 2k + 1. Clearly we can assume that the polynomial $x_{r,s}$ has the homogeneous degree deg $(x_{r,s}) = 4(r - s)$. In particular $x_{r,r}$ is an integer. This is the observation that brings g-sequences into our consideration.

LEMMA 4.2. Let (a_1, \ldots, a_{2k-1}) be the character sequence of f. If n = 2k (resp. n = 2k + 1), then (a_1, \ldots, a_{2k-1}) (resp. (a_3, \ldots, a_{2k-1})) is a g-sequence.

Proof. Suppose that n = 2k (resp. n = 2k + 1). For an r with $k \le r \le 2k - 1$ (resp. with $k + 1 \le r \le 2k - 1$) comparing the coefficient of $d_{2t-1}d_{2s-1}$, s + t = r + 1; $1 \le s, t \le k$, in $(4.1)_r$ (resp. $(4.2)_r$) gives

$$a_{2t-1}a_{2(r-t)+1} = x_{r,r}, \quad s+t = r+1; \quad 1 \le s, t \le k$$
(4.3)

Lemma 4.1 for n = 2k (resp. for n = 2k + 1) is verified by $(4.3)_r$ with $k \le r \le 2k - 3$ (resp. with $k + 1 \le r \le 2k - 3$).

5. The Proof of Theorem 2

Assume in this section that $f(d_1) = ad_1 \neq 0$. Combining Lemma 4.1, Lemma 4.2 with Corollary 3.3 we find that the sequence (a_1, \ldots, a_{2k-1}) agrees with

 $(a, aq, \dots, aq^{k-1}), \quad q = \pm a^2$

when n = 2k; and agrees with

$$(a, a_3, a_3q, \dots, a_3q^{k-2}), \qquad q = \pm a^2, \ a_3 = \pm a^3$$

when n = 2k + 1. We proceed further by showing the following lemma:

LEMMA 5.1. Assume as the above. Then

(1)
$$q = a^2$$
, and
(2) $a_3 = a^3$ when $n = 2k + 1$.

Proof. Suppose, otherwise, that $q = -a^2$. From $(4.3)_{2k-2}$ we find

$$x_{2k-2,2k-2} = -a^{4k-4}.$$

The relation $(4.1)_{2k-2}$ (resp. $(4.2)_{2k-2}$) becomes

$$f(l_{2k-2}) = -a^{4k-4}l_{2k-2} + x_{2k-2,2k-3}l_{2k-3} + \dots + + \begin{cases} x_{2k-2,k}l_k, & \text{if } n = 2k, \\ x_{2k-2,k+1}l_{k+1}, & \text{if } n = 2k+1. \end{cases}$$
(5.1)

If k is even comparing the coefficient of d_{k-1}^4 on both sides of (5.1) gives

$$a_{k-1}^4 = -a^{4k-4}. (5.2)$$

If k is odd comparing the coefficient of $d_{k-2}^2 d_k^2$ we get

$$4a_{k-2}^2 a_k^2 = -4a^{4k-4} + \begin{cases} e & \text{if } n = 2k; \\ 0 & \text{if } n = 2k+1, \end{cases}$$
(5.3)

where $e \in Z$ is the coefficient of d_{k-2}^2 in $x_{2k-2,k}$, which is seen to be 0 by examining the coefficient of $d_{k-2}^3 d_{k+2}$ in (5.1). The contradictions in (5.2) or (5.3) verify (1).

For (2), assume that $a_3 = -a^3$. Then the character sequence of f is

$$(a, -a_3, \ldots, -a^{2k-1}),$$

and the relation $(4.2)_{k+1}$ turns to be

 $f(l_{k+1}) = a^{2(k+1)}l_{k+1}.$

Comparing the coefficient of d_{2k-1} one gets

$$2a_{2k-1}(f(d_3) - 2f(d_1)f(d_2)) = 2a^{2(k+1)}(d_3 - 2d_1d_2).$$

With $d_2 = d_1^2$ and $a_{2k-1} = -a^{2k-1}$ we find

$$f(d_3) = -a^3d_3 + 4a^3d_1^3$$

This contradiction to Lemma 3.4 establishes (2).

Proof of Theorem 2. With $f(d_1) = ad_1$, $a \neq 0$, $a_{2i-1} = a^{2i-1}$ by Lemma 5.1. It follows from Lemma 3.2 that

 $f(d_{2i-1}) = a^{2i-1}d_{2i-1}, \quad i \le k.$

Consequently $f(d_{2i}) = a^{2i}d_{2i}$, since $d_{2i} = g_{2i} \in Z[d_1, d_3, \dots, d_{2k-1}]$ is of homogeneous degree 4i.

6. The Proof of Theorem 3

Theorem 3 can be easily deduced from

LEMMA 6.1. If $f(d_1) = 0$, then the g-sequence $(a_1, ..., a_{2k-1})$ when n = 2k (resp. $(a_3, ..., a_{2k-1})$ when n = 2k + 1) must be of type 3.

Proof of Theorem 3. With $f(d_1) = 0$ the character sequence is $(0, ..., 0, a_{2k-1})$ by Lemma 6.1. Assume that $f^{m_i}(d_i) = 0$ for some m_i and $1 \le t < i < 2k - 1$. We proceed to show $f^{m_i+1}(d_i) = 0$.

If *i* is even, d_i is the polynomial g_i in d_1, \ldots, d_{i-2} . $f^{m_i}(d_i) = 0$ follows from $f^{m_i}(d_i) = 0$, t < i. If *i* is odd, then $a_i = 0$ implies that $f(d_i)$ is a polynomial in d_1, \ldots, d_{i-2} . Again $f^{m_i}(d_i) = 0$, t < i, implies $f^{m_i+1}(d_i) = 0$.

Summarizing $f^{N}(d_{i}) = 0$, i < 2k - 1, for some N. It remains to show $f^{N}(d_{2k}) = 0$ when n = 2k + 1. However this follows directly from the relation

$$R_k: d_{2k} = 2d_1d_{2k-1} - 2d_2d_{2k-2} + \dots + (-1)^{i-1}2d_{k-1}d_{k+1} + d_k^2.$$

The proof of Lemma 6.1 for even n is straightforward.

Proof of Lemma 6.1 *for* n = 2k. With $a_1 = 0$ the g-sequence (a_1, \ldots, a_{2k-1}) cannot be type 1 by Lemma 4.1. Suppose, on the contrary, that it is of type 2. Then from $(4.3)_r$ we find $x_{r,r} = 0$, $r \le 2k - 1$, or equivalently, $(4.1)_r$ becomes

$$f(l_r) = x_{r,r-1}l_{r-1} + \dots + x_{r,k}l_k, \quad k \le r \le 2k - 1.$$
(6.1)_r

Applying *f* to both sides of $(6.1)_r$, substituting $(6.1)_s$, $k + 1 \le s \le r$, in the right hand side of the resulting equality yield

$$f^{2}(l_{r}) = y_{r,r-2}l_{r-2} + \dots + y_{r,k}l_{k}, \quad k \leq r \leq 2k-1,$$

where $y_{r,s}$ are certain polynomials in $x_{t,i}$'s and $f(x_{r,j})$'s. Repeating this procedure we find the iterated endomorphism f^k satisfies $f^k(l_r) = 0$, $k \le r \le 2k - 1$, hence induces a ring homomorphism $g: H^*(CS_n) \to Z[d_1, \ldots, d_{2k-1}]$ so that the diagram

$$Z[d_1, d_3, \dots, d_{2k-1}] \xrightarrow{j^{\kappa}} Z[d_1, d_3, \dots, d_{2k-1}],$$

$$p \downarrow \qquad \nearrow g$$

$$H^*(CS_n)$$

commutes, where *p* is the obvious quotient map. Since CS_n has finite dimension, and since the ring $Z[d_1, d_3, \ldots, d_{2k-1}]$ is a domain, g = 0. Thus $f^k(d_{2i-1}) = 0$, and consequently $d_{2i-1}^k = 0$, $i \leq k$. This contradiction verifies Lemma 6.1 for n = 2k.

We complete the proof of Theorem 3 by establishing Lemma 6.1 for odd n.

DEFINITION. The sequence (c_1, \ldots, c_{2k}) whose entries are defined by the relations

$$c_{1} = c_{2} = 1; \qquad c_{2i-1} = 2c_{2i-2}, \quad i \leq k;$$

$$c_{2i} = 2c_{1}c_{2i-1} - 2c_{2}c_{2i-2} + \dots + (-1)^{i-2}2c_{i-1}c_{i+1} + (-1)^{i-1}c_{i}^{2}, \quad i \leq k$$

will be called the *h*-sequence of length 2k.

It is obvious that if (c_1, \ldots, c_{2k}) is the *h*-sequence of length 2k and if $k' \leq k$, then the subsequence $(c_1, \ldots, c_{2k'})$ is the *h*-sequence of length 2k'. It is also clear that all *h*-sequences are classified by their lengths. For instance it is straightforward to see that the first ten entries in a *h*-sequence of length ≥ 10 are given by

1, 1, 2, 3, 6, 10, 20, 35, 70, 146.

It is, indeed, a trivial exercise from the definition that

ASSERTION 1. If (c_1, \ldots, c_{2k}) is a h-sequence, then $c_i > 0$, $i \leq 2k$.

Again we use d_{2i} to represent the polynomial g_{2i} . Consider the graded homomorphism of free algebras

 $\beta: Z[d_1, d_3, \ldots, d_{2k-1}] \to Z[d_1]$

defined by

$$\beta(d_1) = d_1; \quad \beta(d_{2i-1}) = 2\beta(d_1)\beta(d_{2i-2}), \quad 2 \le i \le k;$$

h-sequences plays the role in writing $\beta(d_i)$ as a multiple of d_1^i .

ASSERTION 2. Let (c_1, \ldots, c_{2k}) be the h-sequence of length 2k. Then β is given by $\beta(d_i) = c_i d_1^i, i \leq 2k$.

What we need is the following variation of β .

ASSERTION 3. If $\alpha : Z[d_1, d_3, \dots, d_{2k-1}] \rightarrow Z[d_1]$ is the homomorphism defined by $\alpha(d_1) = d_1; \qquad \alpha(d_{2i-1}) = 2\alpha(d_1)\alpha(d_{2i-2}), \quad 2 \leq i < k;$ and

170

 $\alpha(d_{2k-1}) = 4\alpha(d_1)\alpha(d_{2k-2}),$

then

(1)
$$\alpha(d_i) = c_i d_1^i, \quad 1 \leq i \leq 2k-2; \quad \alpha(d_{2k-1}) = 2c_{2k-1} d_1^{2k-1};$$

(2) $\alpha(d_{2k}) = (2c_{2k-1} + c_{2k})d_1^{2k}$.

Proof. The two homomorphisms α and β are related by

$$\alpha(d_{2i-1}) = \beta(d_{2i-1}), \quad 2 \le i < k; \text{ and } \alpha(d_{2k-1}) = 2\beta(d_{2k-1}).$$

(1) follows from Assertion 2. Finally since $d_{2k} = 2d_1d_{2k-1} + h$ with

$$h = -2d_2d_{2k-2} + \dots + (-1)^{i-2}2d_{k-1}d_{k+1} + (-1)^{i-1}d_k^2,$$

a polynomial in d_1, \ldots, d_{2k-3} , we get

$$\alpha(d_{2k}) = 2\alpha(d_1)\alpha(d_{2k-1}) + \beta(h)$$

= $4c_{2k-1}d_1^{2k} + \beta(d_{2k} - 2d_1d_{2k-1}) = (2c_{2k-1} + c_{2k})d_1^{2k}.$

In the next result the homomorphisms α is applied to simplify some polynomial equalities in $Z[d_1, \ldots, d_{2k-1}]$ to equalities in $Z[d_1]$

LEMMA 6.2. *If* $f(d_1) = 0$, *then*

- (1) in the relation $(4.2)_{2k}$, $x_{2k,2k} = 0$; and
- (2) the g-sequence (a_3, \ldots, a_{2k-1}) cannot be of type 1.

Proof. Recall from Section 2 that the polynomial l_{2k} is given by

$$d_{2k}^{2} = (2d_{1}d_{2k-1} - 2d_{2}d_{2k-2} + \dots + (-1)^{i-2}2d_{k-1}d_{k+1} + (-1)^{i-1}d_{k}^{2})^{2}.$$

From this we find that, with $f(d_1) = 0$, $f(l_{2k})$ is independent of d_{2k-1} . Thus comparing the coefficient of d_{2k-1} in (4.2)_{2k} gives

$$0 = x_{2k,2k}(4d_1d_{2k} - 4d_1^2d_{2k-1}) + x_{2k,2k-1}(d_{2k-1} - 4d_1d_{2k-2}) + x_{2k,2k-2}(-2d_{2k-3} + 4d_1d_{2k-4}) + \dots \pm x_{2k,k+1}(2d_3 - 4d_1d_2)$$

Applying the ring homomorphism α to this equality yields

 $0 = x_{2k,2k}(4\alpha(d_1)\alpha(d_{2k}) - 4\alpha(d_1^2)\alpha(d_{2k-1})),$

i.e. $x_{2k,2k}c_{2k}d_1^{2k+1} = 0$ by Assertion 3. $x_{2k,2k} = 0$ follows from $c_{2k} > 0$. For (2) the relation (4.2)_{2k} takes the form

$$f(l_{2k}) = x_{2k,2k-1}l_{2k-1} + x_{2k,2k-2}l_{2k-2} + \dots + x_{2k,k+1}l_{k+1}$$
(6.2)

by (1). Assume on the contrary that

$$a_{2i-1} = a_3 q^{i-2} \neq 0, \quad 2 \le i \le k.$$

https://doi.org/10.1023/A:1015885227445 Published online by Cambridge University Press

Let $b_{j,i} \in Z$ be the coefficient of $d_{2i-1}d_{2(2k-j-i)+1}$, $1 \le i \le (2k-j-i+1)/2$, in $x_{2k,j}$. If k is odd examining the coefficient of d_k^4 in (6.2) gives $a_k^4 = 0$. If k is even we get

$$a_{k-1}^2 a_{k+1}^2 = b_{k+1,\frac{k}{2}}$$
 (by comparing the coefficient of $d_{k-1}^2 d_{k+1}^2$ in (6.2))

= 0 (by comparing the coefficient of $d_{k-1}^3 d_{k+3}$ in (6.2)).

This contradiction to $a_3q \neq 0$ verifies (2).

Proof of Lemma 6.1 *for* n = 2k + 1. With $f(d_1) = 0$ the g-sequence (a_3, \ldots, a_{2k-1}) is of either type 2 or 3 by (2) of Lemma 6.2. If it is of type 2,

 $x_{r,r} = 0, \quad k+1 \le r \le 2k-1$

by $(4.3)_r$, and $x_{2k,2k} = 0$ by (1) of Lemma 6.2. The same argument as that in the proof of Lemma 6.1 for n = 2k yields the contradiction $a_{2i-1} = 0$, $i \le 2k - 1$.

7. The Proofs of Theorem 4 and 5

For a topological space X and an odd prime p > 1, let

$$\operatorname{St}_{p}^{2t(p-1)}: H^{q}(X; Z_{p}) \to H^{q+2t(p-1)}(X; Z_{p})$$

be the Steenrod mod-*p* operators. The naturality of these operators imposes a bunch of restrictions on those endomorphisms of $H^*(X)$ that are induced by self-maps. This, besides Theorems 2 and 3, underlies the proof of Theorem 4.

For an integer k > 1 let D(k) be the set of all odd primes p such that 1 and that <math>p is prime to 2k - 1. As examples

 $D(3) = \{3\}; D(4) = \{3, 5\}; D(5) = \{5, 7\}; \dots, \text{ etc.}$

Obviously $D(k) \neq \phi$ for all k > 2.

For a self-map f of CS_n , we let (a_1, \ldots, a_{2k-1}) be the character sequence of the induced endomorphism f^* . Again we set $k = \lfloor n/2 \rfloor$.

LEMMA 7.1. If $a_1 = 0$, then $(a_1, \ldots, a_{2k-1}) \equiv (0, \ldots, 0) \mod p$, $p \in D(k)$.

Proof. If $a_1 = 0$, (a_1, \ldots, a_{2k-1}) is a g-sequence of type 3 by Lemma 6.1. It remains to show $a_{2k-1} \equiv 0 \mod p$, $p \in D(k)$.

The action of St_p^* on the universal Chern classes c_i 's is given by (cf. [1])

$$St_p^{2t(p-1)}c_i \equiv (i + t(p-1))c_{i+t(p-1)} + h \mod p,$$

where *h* is a polynomial decomposable in c_j , j < i + t(p - 1). Since the generators d_i 's are related with the Chern classes of γ_n by the formula $c_i(\gamma_n) = 2d_i$ (Theorem 1), this implies that

$$St_{p}^{2t(p-1)}d_{i} \equiv (2k-1)d_{2k-1} + h' \mod p$$
 whenever $2k-1 = i + t(p-1)$

where h' is decomposable in d_j 's, j < i + t(p - 1). For a $p \in D(k)$ applying f^* to

$$St_p^{2(p-1)}d_{2k-p} \equiv (2k-1)d_{2k-1} + h'$$

gives

172

$$St_p^{2(p-1)}f^*(d_{2k-p}) \equiv (2k-1)f^*(d_{2k-1}) + f^*(h') \mod p$$

Since $a_{2i-1} = 0$, i < k, the indecompositable component of the equality is

 $(2k-1)a_{2k-1}d_{2k-1} \equiv 0 \mod p.$

Now $a_{2k-1} \equiv 0 \mod p$ follows from that p is prime to 2k - 1.

For a self-map f of a finite complex X, its Lefschetz number is defined by

$$L(f) = 1 + \sum (-1)^{r} \mathrm{Tr}\{f^{*}: H^{r}(X; Q) \to H^{r}(X; Q)\},\$$

If $X = CS_n$ the formula can be simplified, since $H^{\text{odd}}(CS_n) = 0$, as

$$L(f) = 1 + \sum \operatorname{Tr} \{ f^* \colon H^r(X) \to H^r(X) \}.$$

LEMMA 7.2. Suppose that $f^*(d_1) = 0$. Then we have

- (1) L(f) = 1 when n = 2, 3, 5 and,
- (2) $L(f) \equiv 1 \mod p \text{ for every } p \in D(k) \text{ when } n > 5.$

Proof. By Lemma 2.2 we have

$$H^*(CS_2) \cong Z[d_1]/d_1^2; \quad H^*(CS_3) \cong Z[d_1]/d_1^4.$$

Thus $f^*(d_1) = 0$ implies that L(f) = 1 when n = 2 or 3.

Consider the case n = 5. With $f^*(d_1) = 0$, $f^*(d_i) = 0$ for i = 2, 4 by the relations R_1 and R_2 . Assuming

 $f^*(d_3) = ad_3 + bd_1d_2, \quad a, b \in \mathbb{Z},$

and applying f^* to $R_3: d_3^2 - 2d_2d_4 = 0$ yields $(ad_3 + bd_1d_2)^2 = 0$.

Using R_i , i = 1, 2, 3, to rewrite this in terms of the basis d_2d_4 , $d_1d_2d_3$ for $H^6(CS_6; Z)$ we obtain

 $(2a^2 - b^2)d_2d_4 + 2b(a+b)d_1d_2d_3 = 0.$

L(f) = 1 now follows from a = b = 0. This completes the proof of (1). For a prime p the Z_p -cohomology algebra of CS_n is

 $H^*(CS_n; Z_p) = Z_p[d_1, d_3, \dots, d_{2k-1}]/L,$

where *L* is the ideal generated by l_r 's mod-*p*. Let $Z_p[d_1, \ldots, d_{2k-1}]^{2t}$ be the Z_p vector space spanned by $d_1^{r_1}d_3^{r_2}\ldots d_{2k-1}^{r_k}$, $\sum (2i-1)r_i = t$, and put

$$L^{2t} = L \cap Z_p[d_1, \dots, d_{2k-1}]^{2t}$$

..

Then we have the exact sequence:

 $0 \rightarrow L^{2t} \rightarrow Z_p[d_1, \ldots, d_{2k-1}]^{2t} \rightarrow H^{2t}(CS_n; Z_p) \rightarrow 0.$

Since f^* , as an endomorphism of $Z_p[d_1, d_3, ..., d_{2k-1}]$, preserves the ideal, L^{2t} is an invariant subspace of f^* . i.e. f^* induces an exact ladder:

It follows that, for each t > 0,

$$\operatorname{Tr}(f^* \text{ on } H^{2t}(CS_n; Z_p)) = \operatorname{Tr}(f^* \text{ on } Z_p[d_1, \dots, d_{2k-1}]^{2t}) - \operatorname{Tr}(f^* \text{ on } L^{2t}).$$

Assume now that n > 5, $p \in D(k)$ and that $f^*(d_1) = 0$. Then $a_{2i-1} \equiv 0 \mod p$, $i \leq k$, by Lemma 7.1. Consequently

 $\operatorname{Tr}(f^* \text{ on } Z_p[d_1, \dots, d_{2k-1}]^{2t}) = 0 \text{ and } \operatorname{Tr}(f^* \text{ on } L^{2t}) = 0$

for all t > 0. These verifies

$$L(f) \equiv 1 + \sum_{t>0} \operatorname{Tr}(f^* \text{ on } H^{2t}(CS_n; Z_p)) \equiv 1 \mod p.$$

Proof of Theorem 4. Let *f* be a self-map of CS_n with L(f) = 0. If $f^*(d_1) = ad_1$, $a \neq 0$, then $L(f) = \prod_{1 \le i \le n-1}(1 + a^i)$ by Theorem 2 (the Poincare polynomial of CS_n is $\prod_{1 \le i \le n-1}(1 + t^{2i})$ by Lemma 2.1). Now L(f) = 0 implies a = -1, and $f(d_i) = (-1)^i d_i$ follows from Theorem 2.

If $f^*(d_1) = 0$, there must be n = 4 by Lemma 7.2, and $f^*(d_2) = 0$ by R_1 . With L(f) = 0 we can assume that

$$f^*(d_3) = -d_3 + bd_1d_2, \quad b \in \mathbb{Z}.$$

Applying f^* to $R_3: d_3^2 = 0$, rewriting everything in the resulting equation as multiples of the generator $d_1d_2d_3 \in H^{12}(CS_4) = Z$ by using R_1, R_2, R_3 , we get 2b(b-1) $d_1d_2d_3 = 0$, i.e. either $f^*(d_3) = -d_3$ or $f^*(d_3) = -d_3 + d_1d_2$. These finish the proof.

Consider the free algebra

$$\Phi(CS_n) = Z[x_1, x_3, \dots, x_{2k-1}] \otimes \Lambda_Z(y_{[\frac{n+1}{2}]}, y_{[\frac{n+1}{2}]+1}, \dots, y_{n-1}),$$

the tensor product of the polynomial algebra in x_i 's with the exterior algebra in y_r 's. It is graded by $\deg(x_i) = 2i$ and $\deg(y_r) = 4r - 1$. The differential $\delta: \Phi(CS_n) \rightarrow \Phi(CS_n)$ of degree 1 given by

$$\delta(x_i) = 0$$
 and $\delta(y_r) = l_r(x_1, x_3, \dots, x_{2k-1})$

furnishes $\Phi(CS_n)$ with the structure of a differential graded commutative algebra over Z. Indeed Lemma 2.3 implies that

LEMMA 7.3 (cf. [4, Proposition 3]). The homomorphism

 $g: \Phi(CS_n) \to H^*(CS_n), \quad given by \ g(x_{2i-1}) = d_{2i-1}; \ g(y_r) = 0$

is the minimal model (over Z) for $H^*(CS_n)$.

Proof of Theorem 5. Let f be a self-homotopy equivalence of CS_n . Then

 $f(d_1) = \pm d_1$, and $f(d_i) = (\pm 1)^i d_i$ for all $i \le n - 1$

by Theorem 2. The relations $(4.1)_r$ (resp. $(4.2)_r$) becomes

$$f^*(l_r) = l_r$$
 for $\left[\frac{n+1}{2}\right] \le r \le n-1$

In views of Lemma 7.3, a minimal model

 $\Phi(f): \Phi(CS_n) \to \Phi(CS_n)$

for f can be chosen to be $\Phi(f)(x_{2i-1}) = (\pm 1)^i x_{2i-1}$ and

 $\Phi(f)(y_r) = y_r.$

By the rational homotopy theory [8] the forms $y_r \otimes 1$'s $\in \Phi(CS_n) \otimes Q$ constitute a basis for $\operatorname{Hom}(\pi_{\operatorname{odd}}(CS_n), Q)$ and the induced chain endomorphism $\Phi(f) \otimes 1$ of $\Phi(CS_n) \otimes Q$, module decompositables, agrees with the dual action of f_* on $\pi_*(CS_n)$. Thus the proof is done by (7.1).

8. Examples

This section serves as a supplement to Theorem 3. We present self-maps f of CS_n , for even n, so that $f^*(d_i) = 0$ when $i \neq 2k - 1$, but $f^{*N}(d_{2k-1}) \neq 0$ for all N > 0.

Let e_1, \ldots, e_{4k} be the standard basis for the Euclidean space R^{4k} and let S^{4k-2} be the unit sphere in the subspace spanned by $e_i, i < 4k$. The map

 $p: CS_{2k} \to S^{4k-2}, \quad p(J) = Je_{4k-1} \in S^{4k-2},$

is a fiber bundle projection whose fiber inclusion over $e_{4k-1} \in S^{4k-2}$ is

$$l: CS_{2k-1} \to CS_{2k}, \quad l(J') = J' \oplus \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}.$$

In fact the class d_{2k-1} is cospherical in the sense that

(1) $\pi^*(e) = d_{2k-1}$, where $e \in H^{2k-2}(S^{4k-2}) = Z$ is a generator (cf. [4]).

On the other hand the homotopy exact sequence of p gives the exact sequence of vector spaces over Q

$$\cdots \to \pi_{4k-2}(CS_{2k-1}) \otimes Q \to \pi_{4k-2}(CS_{2k}) \otimes Q \xrightarrow{P^*} \\ \to \pi_{4k-2}(S^{4k-2}) \otimes Q \to \pi_{4k-3}(CS_{2k-1}) \otimes Q \to \cdots$$

From the minimal model for $H^*(CS_{2k}; Q)$ (Lemma 7.3) we find

 $\pi_{4k-2}(CS_{2k-1}) \otimes Q = \pi_{4k-3}(CS_{2k-1}) \otimes Q = 0.$

This implies that

- (2) there exists a map $\alpha: S^{4k-2} \to CS_{2k}$ so that $\deg(p \circ \alpha) \neq 0$. Thus if we let $f_{\alpha} = \alpha \circ p$, for a α satisfying 2), then f_{α}^* satisfies
- (3) $f_{\alpha}^{*}(d_{i}) = 0$ for all $i \neq 2k 1$ but $f_{\alpha}^{*N}(d_{2k-1}) = \deg(p \circ \alpha)^{N} d_{2k-1}$. Finally it is worth to point out that
- (4) the class $f_{\alpha}^*(d_{2k-1}) \in H^{4k-2}(CS_{2k})$ is always divisible by $\frac{1}{2}(4k-3)!$ since f_{α} factors through the sphere S^{4k-2} and since $2d_{2k-1}$ is the (2k-1)th Chern class of the bundle γ_{2k} [2].

References

- 1. Borel, A. and Serre, J. P.: Determination des *p*-puissances reduites de Steenrod dans la cohomologie des groupes classiques, *C.R. Acad. Sci. Paris* **233** (1951), 680–682.
- 2. Bott, R.: The space of loops on a Lie group, Michigan J. Math. 5 (1958), 35-61.
- Duan, H. and Zhao, X.: The classification of cohomology endomorphisms of certain flag manifolds, *Pacific J. Math.* 192 (1) (2000), 93–102.
- 4. Duan, H.: Characteristic classes for complex bundles whose real reductions are trivial, *Proc. Amer. Math. Soc.* **128** (2000), 2465–2471.
- 5. Duan, H.: Some enumerative formulas for flag manifolds, *Comm. Algebra* **29**(10) (2001), 4395–4419.
- 6. Glover, H. and Homer, W.: Self-maps of flag manifolds, *Trans. Amer. Math. Soc.* 267 (1981), 423–434.
- 7. Glover, H. and Mislin, G.: On the genus of generalized flag manifolds, *Enseign. Math.* **27** (1981), 211–219.
- 8. Griffiths, P. A. and Morgan, J. W.: *Rational Homotopy Theory and Differential Forms*, Birkhauser, Boston, 1981.
- 9. Grove, K. and Halperin, S.: Contributions of rational homotopy theory to global problems in geometry, *Publ. IHES* 56 (1983), 379–385.
- Hoffman, M.: Endomorphisms of the cohomology of complex Grassmannians, *Trans. Amer. Math. Soc.* 281 (1984), 745–740.
- 11. Hoffman, M.: On fixed point free maps of the complex flag manifold, *Indiana Math. J.* **33** (1984), 249–255.
- 12. Milnor, J.: Morse Theory, Ann. Math. Stud. 51, Princeton Univ. Press, 1963.