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LYAPUNOV INEQUALITIES AND BOUNDS ON 
SOLUTIONS OF CERTAIN SECOND 

ORDER EQUATIONS* 
BY 

STANLEY B. ELIASON 

1. Introduction. In this paper we consider the equation 

(1.1) (r(t)y'(t))'+P(t)f(y(t)) = 0 

under the conditions 
((H0): the real valued functions r, r' and/? are continuous on a non-trivial interval 

/ of reals, and r(t)>0 for t eJ; 
and 
(HJifiR-^R is continuously differentiable and odd with/ ' (y)>0 for all real y. 

We also consider the equation 

(1.2) y\t)+m{t)y\t)+n{t)f(y{t)) = 0 

under the conditions (HJ and 
(H2): the real valued functions m and n are continuous on a non-trivial interval/ 

of reals. 
Later in the paper, for y^O, we l e t / x ^ ^ / O O / j . All solutions considered are 

real valued. 
By a well-known method, equation (1.2) may be expressed in the form of (1.1). 

By simply multiplying (1.2) by 

(1.3) r(t) = exp m(s) ds, for t e J. 

where a e J is fixed we obtain (1.1) and the relation 

(1.4) p(t) = r(t)n(t). 

With f(y)=y, hereafter called the linear case, A. M. Fink and D. F. St. Mary 
[3, (3)] establish that if a<b in J are consecutive zeros of a non-trivial solution of 
(1.2) then 

(1.5) (6-fl)£V-4exp[~(^)f Nl] > 0. 
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As usual, for a real valued function g we let g+ and g~ be defined by 

g+(0 = max{g(0, 0} and g~(t) = max{-g(f), 0}. 

Inequality (1.5) is also announced in a paper by Levin [5]. 
Also inequality (1.5) implies an inequality of Nehari [7], displayed as (4) in 

Fink and St. Mary [3]. 
For equation (1.1), related inequalities known as Lyapunov inequalities, have 

been established in several places, first of all in the linear case by A. Liapounoff 
[6]; and elsewhere, see Hartman [4] for work and references. In the case of certain 
non-linear functions/, such an inequality is established by the author [1]. In this 
situation the inequality involves a bound on the solution between its zeros, but 
nevertheless, for a large class of such functions/the inequality remains sharp. 

One purpose of this paper is to establish inequalities which improve (1.5) in 
many cases when m and n are not of constant sign. They will follow by first estab
lishing lower bounds on certain positive solutions of (1.1). The bounds are expres
sed in terms of a maximum value of the solution and integral functionals involving 
the coefficients, as defined below. 

For reals d<e we let 

(1.6) 

R(d, e; p) = sup p, L(d, e; p) = sup p9 
d<x<e Jx d<x<eJd 

Çv Çv 
S(d,e;p)= sup p, and I(d, e; p) = inf p. 

d<u<v<eJu d<u<v<eJu 

Clearly, we have 

(1.7) - f V ^ F(d, e;p)£ f V 
Jd Jd 

holding for F denoting R, L, S, or /. Also for fixed e, R and S decrease mono-
tonically as d increases. Other obvious monotoneity properties of L, S9 and / will 
be used without explicitly stating them here. By studying the relationships (1.7) 
more closely one may also see how the inequalities become strict in certain cases 
whenp is not of constant sign on [d, e]. 

Two inequalities improving (1.5) in the linear case are 

(1.8) ( 6 - a ) ( V - 4 exp{(|)[/(a, b; m)-S(a, b; m)]} > 0; 
Ja 

and, when m ~ 0 and the solution y is positive on (a, b) and for some c e (a, b) 
satisfies 

(1.9) ( c ~ 0 / ( 0 > 0 for te[a,b], 

(1.10) (b-a)S(a, b; n) > 4. 
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By (1.7), the improvement of (1.8) follows from 

1.11) I(a, b; m)-S(a, b; m) > -(m~+m+) = - |m|. 
Ja Ja 

Strict inequality holds here, for example, when a=0, b=Air and m(t)= sin kt, 
where k is a positive integer. In fact we here have the rather interesting phenomena 
that —jl \m\ remains constant while I(a, b\ m)—S(a9 b; m)->0 as &->oo. 

2. Bounds on Solutions and Related Inequalities. We first consider a solution 
y of (1.1) where y'(c)=0 for some ceJ. By integrating twice and applying an 
integration by parts, for x e J we have 

(2.1) y(c)-y(x) 

=r[Koi~i(rp(j) dT)f(m+i° (i°p{r) dr)/'o<s)Ms) rfs) dt 
By the oddness of/, if J(C)T^0, we may assume j(c)>0; and throughout the 

paper, between consecutive zeros we will assume a solution is positive. Thus if 
x<c and if y is positive and monotone increasing on (x, c] we may conclude 
from (2.1) that 

y(c)-y(x) <: fVcor1*^ c; P)[/(^(0)+/(^W)~/(X0)] A 

(2.2) =/(Xc))fV(0r^0,c;p)d( 

£/(Kc))K(x,c;p)P(l/r). 

Furthermore, by (i^i) and (2.1), if J (X)<J(C) , thenj' and/? must both be positive 
on some subinterval of [x, c\. As a result it may be argued that the inequalities 
in (2.2) are strict in this case. 

By a similar argument if x>c and if y is positive and monotone decreasing on 
[c, x] then 

y(c)-y(x) ^/(y(c)) f l K O r 1 ^ , t; p) dt 
(2.3) C

 f . 
</(>;(c))L(c,x;p)Jc(l/r), 

where the same conclusions on strictness apply here if y(x)<y(c). 
The inequalities in (2.2) and (2.3) clearly yield lower bounds on the solution 

y. They will be next used to place implicit lower bounds on the distance from c 
to the first possible zero of y lying to the left or right of c. 

Suppose, then, that a<b in / are two consecutive zeros of a solution y and 
suppose c e (a, b) satisfies (1.9), where, as is understood, y is positive on (a, b). 
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W i t h / i O ^ / 0 0 / j for 77*0, (2.2) and (2.3) respectively yield 

Ja 
(2.4) f e 

</1Wc))i?(«>c;j») (1/r) 
•/a 

and 

(2.5) C
 f& 

<A(Kc))L(c?&;p)Jc(l/r). 

The inequalities provided by the extremes of (2.4) and (2.5) improve those of 
D. F. St.Mary [8, Theorem 7] when 

'<*, c; p)<\ p+ or L(c, b; p)<\ p+ 

Ja Jc 
(2.6) ir

respectively and, of course, (1.9) hold. 

When f(y)=y2k+1, k being a positive integer, related inequalities are provided 
by the author [2] in Corollary 2 of Theorem 1, where non-linear eigenvalue prob
lems are studied. 

We now attack a "distance between zeros" problem. By using different variables 
of integration and then multiplying, from (2.4) and (2.5) we obtain the Lyapunov 
inequalities 

1 < f\(y(c)) P \\r(u)r{v)r'LR{u9 c; p)L(c, v; p) dv du 
Ja Jc 

(2.7) £ flWm-1 P f\r(u)r(v)]-1[S(«, v; p)f dv du 
Ja Jc 

< ft(y(c))4-2[S(a, b; p)]2(£(l/r)J. 

The second inequality above follows from ajS<^4-1(oc+#)2 and 

0 < R(u9 c; p)+L(c9 v;p)< S(u, v; p). 

The third inequality follows from monotoneity properties of S and 

f (1/r)f(1/r) - 4 _ 1(f (1/r)J-
Inequality (1.10) is now a special case of (2.7), by simply taking square roots 

in (2.7), where, of course,/i(tf)=l. 
In order to obtain (1.8) we consider a<b to be two consecutive zeros of a solu

tion y of (1.2), where y is positive on (a, b). Then for some a < c 1 < c 2 < è we have 
J ' ( C 1 ) = J ; ' ( C 2 ) = 0 and j is monotone on (0, c j and on [c2, b). 
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Using (1.3) and (1.4), the first inequality of (2.4) yields 

1 < fi(y(ci)) exp— m(w) dw max exp m(w) dw n(u) du dt 
Ja L J* _]<<«<<;! Js [_ Jot J 

(2.8) = /i(^(Ci)) max exp m(w) dw n(u) du dt 
Ja t^s^CiJs [_ Jt J 

^ / i M c i ) ) ) ' [ e x p L ^ c ^ m ) ] ! V ( u ) du dt. 

In the linear case, the inequality provided by the extremes of (2.8) is what improves 
inequality (7) of Fink and St.Mary [3]. 

By (2.5) we also obtain 

(2.9) 1 < MyicJ) I [exp R(c29 t;m)]\ n+(u) du dt. 
Jc$ Jc2 

Thus with 

(2.10) Q = maxiUyicJIMyicz))}, 

by (2.8) and (2.9), using different variables of integration and multiplying we 
have 

1 < 6 | {exp[L(tt, cx; m)+R(c2, v; m)]} I n+(x)n+(z) dz dx dv du 
Ja JCJJ \Ju Jc2 

(2.11) ^ A-XQ2 [H f&(exp[" [*m-I(u9 v; m)\\( fVYifo dw 

< 4-2Q2{exp[5(a, ft; m) - / ( a , 6; m)]}( f V T ( t - a ) 2 . 

The inequalities follow from the definitions and properties of L, Rf S and /, 
along with modifications of the argument used to establish (2.7). 

In the linear case, where 2 = 1 , by taking square roots of (2.11) we obtain (1.8). 
An interesting question is whether (1.8) may be improved to 

(fc-a)S(a, b; n ) - 4 exp{(i)[/(a, b; m)-S(a, b; m)]} > 0? 

By our method of using (2.4) and (2.5), to answer this question in the affirmative, 
even when (1.9) holds, it appears that in (2.8) we need the inequality 

max exp m(w) dw n(u) du < [exp L(t, ct; m)]R(t, cx; n), 
t<s<aJs L Jt J 

which for general functions m and n is not true. 
We now summarize the above results. 

THEOREM 2.1. Let y be a solution of (1.1) satisfying y'(c)=0 and y(c)>0 for 
some c eJ. Then for x<c, (x>c), as long as y is positive and monotone increasing 
on (x, c]9 (monotone decreasing on [c, x))9 the inequalities in (2.2), ((2.3)), provide 
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lower bounds on y(x) which are expressed in terms ofy(c) and integral functionate, 
as defined by (1.6), involving the coefficients r andp o / ( l . l ) . They are strict ify(x)< 

y(c). 
As a result, inequalities (2.4), ((2.5)), provide implicit lower bounds on the distance 

from c to the first possible zero a, (b), of y lying to the left, (right), ofc. They im
prove previous results when (2.6) and (1.9) hold. 

Inequalities (2.4) and (2.5) in turn yield Lyapunov inequalities concerning the 
distance between consecutive zeros a Kb of a solution y of (1.1), or of (1.2), which 
is positive on (a, b). The first inequalities, provided by (2.7), relate to (1.1) and assume 
condition (1.9). The second provided by (2.11), relate to (1.2), and does not assume 
condition (1.9), and they improve previous results when inequality (1.11) is strict. 

REFERENCES 

1. S. B. Eliason, A Lyapunov inequality for a certain second order non-linear differential equation , 
J. London Math. Soc, (2), 2, (1970), 461-466. 

2. , Comparison theorems for second order nonlinear differential equations, Quart. Appl. 
Math., 35, (1971), 148-156. 

3. A. M. Fink, and D. F. St.Mary, On an inequality of Nehari, Proc. Amer. Math. Soc, 21, 
(1969), 640-642. 

4. P. Hartman, Ordinary Differential Equations, New York, 1964, 345-346, 401. 
5. A. Levin, On linear second order differential equations, Soviet Math. Dokl., 4, (1963), 

1814-1817. 
6. A. Liapounoff, Problème générale de la stabilité du mouvement, Annals of Mathematics 

Study 17, Princeton University Press, (1949). 
7. Z. Nehari, On an inequality of Lyapunov, Studies in Mathematical Analysis and Related 

Topics, Stanford University Press, (1962), 256-261. 
8. D. F. St.Mary, Some oscillation and comparison theorems for (r(t)y')'-\-p(t)y—0, J. DifL 

Eq., 5, (1969), 314-323. 

UNIVERSITY OF OKLAHOMA 
NORMAN, OKLAHOMA 73069 

https://doi.org/10.4153/CMB-1974-088-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1974-088-2

