ON AN EXTREMAL PROBLEM IN FOURIER SERIES

Lee Lorch

(received April 1, 1960)

Let f(x) be a bounded odd function, $-\pi < x < \pi$, $|f(x)| \le 1$, with non-negative Fourier coefficients b_k , k = 1, 2,

Otto Szász [1] proved a new the existence of a bounded set of numbers $\{\beta_n\}$, n = 1,2,..., such that

$$\sum_{k=1}^{n} k b_k \leq \beta_n n ,$$

where β_n is the smallest constant satisfying the above inequality and added that $2/\pi \leq \beta_n \leq 4/\pi$. He pointed out [1, p. 170] that $\beta_1 = 4/\pi$ and raised the question of the value of β_n for n > 1.

The purpose of this note is to prove that $\beta_n = 4/\pi$ for each n, n = 1,2,...

Proof. For each given n, the function $f(x) = sgn \{sin nx\}$ satisfies the requirements placed on f(x), where, as usual, sgn A is 1 for A positive, 0 for A zero, -1 for A negative.

For this function we have

$$\operatorname{sgn} \{\sin nx\} = \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{\sin (2k+1)nx}{2k+1}$$

so that $b_n = 4/\pi$ and $b_k = 0$ for $k = 0, 1, \dots, n-1$. Thus

$$\sum_{k=1}^{n}$$
 k b_k = (4/ π)n ,

and the proof is complete, since Szász showed that $\beta_n \leq 4/\pi$.

REFERENCE

 Otto Szász, Some extremum problems in the theory of Fourier series, Amer. J. of Math. 61 (1939), 165-177.

University of Alberta