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To obtain the complete dependence on m/T , we use Eq. (10.68). For
each particle species, subject to the existence of the series representation
of the integral, as addressed earlier, the result is

S

N
= 4

∞∑
n=1

(uλ)n

n4

(
(nx)2K2(nx) +

1
4
(nx)3K1(nx)

)
∞∑
n=1

(uλ)n

n3
(nx)2K2(nx),

− lnλ, (10.86)

where x = mβ. u = −1 for fermions and u = 1 otherwise. For the non-
relativistic limit x > 1, one can use Eq. (10.46) in Eq. (10.86) to obtain

S
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=

∞∑
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(uλ)n

n4
(nx)2K2(nx)I(nx)
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(uλ)n

n3
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− lnλ, (10.87)
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128
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+ · · · , (10.88)

which, for n = 1, yields the result Eq. (10.82), once we rearrange terms of
two components to include particles and antiparticles and divide by the
baryon number (particle–antiparticle difference).
For the case of a vanishing chemical potential, the non-relativistic Boltz-

mann approximation, Eq. (10.80), is quite appropriate. In Fig. 10.5, we
compare the entropy per particle, evaluated at zero chemical potential
(λ = 1), for the Fermi (long-dashed line), Bose (short-dashed line) and
Boltzmann (solid line, see Fig. 10.4) particles.

11 Hadronic gas

11.1 Pressure and energy density in a hadronic resonance gas

We now consider the physical properties of a hadronic, confined phase,
such as energy density, pressure, and abundances of various particles,
assuming that we have a locally thermally and chemically equilibrated
phase. Although full chemical equilibrium is most certainly not attain-
able in the short time of the nuclear-collision interaction, see chapter 5,
this study provides very useful guidance and a reference point for under-
standing the properties of hadronic matter out of chemical equilibrium.
There are two ways to look at a hadronic gas: the first is that we can

study its properties using the known hadronic states. This approach will

https://doi.org/10.1017/9781009290753.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290753.016


208 Hot hadronic matter

Fig. 10.5. Comparison of entropy per particle for Fermi and Bose gases, their
classical Boltzmann limit, as a function of T/m: long-dashed Fermi gas, short-
dashed Bose gas, solid line Boltzmann classical limit.

lead to difficulties when and if the temperature is high, since the contribu-
tion of high-mass resonances is apparently not convergent. Even though
the population of each such state is suppressed exponentially by the Boltz-
mann factor e−m/T , the number of states rises exponentially with mass,
and compensates for this effect. This phenomenon was noticed almost 40
years ago. This led to the development of the statistical-bootstrap model
(SBM) and the Hagedorn-gas model, which we will address in chapter 12.
In the physically most relevant hadron-gas domain, 70 MeV > T > 170

MeV, each distinguishable hadron distribution is far from quantum de-
generacy. Therefore, we can use the Boltzmann approximation. The
only exceptional case is the pion, which, when necessary and appropri-
ate, will be considered as a Bose particle. Each of the hadronic states is
considered as a separate contributing fraction in the thermal and chem-
ically equilibrated gas phase, with all fugacities set at λ = 1 (no net
quantum numbers, e.g., b = 0 etc.). The result is shown in Fig. 11.1.
We included 4627 (counting spin and isospin degeneracy) hadronic states
listed by the particle data group (PDG) [136]. No doubt many more
hadronic resonances exist. However, as the mass of the new resonances
increases, they become more difficult to characterize, given the dense
background of the neighboring resonances, and normally increasing decay
width, both of which effects are reducing the signal-to-noise ratio in the
experiment.
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11 Hadronic gas 209

Fig. 11.1. The energy density (solid line) and pressure (dashed line) in units of
T 4 for all known hadrons (on a logarithmic scale) as functions of temperature
T . All fugacities are set to unity.

The worrying fact is that the energy and pressure seem to grow well
beyond the values spanned by the lattice calculations; see section 15.5.
This happens since we have allowed very many hadrons to be present in
the same volume. Even though each kind is relatively rare, the large num-
ber of resonances implies a considerable total particle density. However,
hadrons are not point-like, and in some sense the presence of particles fills
the space available. In the context of the statistical bootstrap, we will
argue in section 12.3 that each hadron occupies a fraction of the spacial
volume. This qualitative argument leads to a correction that relates the
physically observable P and ε to the point-particle result (subscript ‘pt’)
we have so far studied [144]:

P =
Ppt

1 + εpt/(4B)
, ε =

εpt
1 + εpt/(4B)

. (11.1)

The energy density of a hadron is assumed to be 4B, where, as before,
B is the bag constant, and we recall the benchmark value, B1/4 = 171
MeV, corresponding to 4B = 0.45 GeV fm−3. This excluded volume
modifies and limits the growth both of ε and of P with temperature.
The magnitude of the effect depends on details of the implementation
and on the parameters used. However, ε/P is little influenced by this
phenomenological uncertainty.
The dynamics of HG matter described in, e.g., the hydrodynamic ap-

proach in section 6.2 depends in a critical way on the ratio of the inertia
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Fig. 11.2. The ratio of energy density and pressure for a hadronic gas as a
function of the temperature T . Dotted line: pure pion gas; solid lines: gas
comprising pions, nucleons, kaons, and ∆(1232), from bottom to top for λq =
1, 1.2, 1.4, 1.6, 1.8, and 2.

(energy density) to force (pressure) . In Fig. 11.2 for several simple cases,
we show the HG ratio ε/P , as a function of temperature. The dotted
curve is for the pure pion gas, and we see how the relativistic equation of
state is approached for T > 100 MeV. Remarkably, a very different result
is seen once heavy hadrons are introduced. The solid lines include, apart
from pions, a few more massive states: nucleons, kaons, and ∆(1232). The
solid lines from bottom to top are for λq = 1, 1.2, 1.4, 1.6, 1.8, and 2. We
recognize that increasing λq (i.e. increasing the massive-baryon compo-
nent) leads to a greater ratio of inertia to force. This result is clearly
independent of the (schematic) finite-volume correction we introduced in
Eq. (11.1). A fully realistic calculation of this situation is presented in
Fig. 11.3, for the case λs = 1.1 and γs/γq = 0.8 for λq = 1 to 2 in steps of
0.2 from bottom to top, and γq = 1 (dashed lines), or γq = emπ/(2T ) (full
lines). Imagine that a hadron phase is formed from a deconfined QGP at
some temperature T > 140 MeV. In view of these results, we then expect
an accelerating flow of matter as the ratio of inertia to force decreases,
until a minimum is reached at T = 90 MeV. At this point, the HG phase
most likely ceased to exist, in the sense that the distance particles travel
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Fig. 11.3. The energy density over pressure for a hadronic gas with statistical
parameters λs = 1.1 and γs/γq = 0.8, with λq = 1 to 2 in steps of 0.2 from
bottom to top, and γq = 1 (dashed lines), or γq = emπ/(2T ) (full lines).

between scattering had become too large. At the time of writing this
book, it is not clear whether the hadronic phase is present at all, since
in the sudden breakup of a QGP a direct transition to free-streaming
hadrons produced sequentially in time can be imagined. However, these
results apply certainly to the case in which no QGP is formed, namely at
sufficiently low collision energy.

11.2 Counting hadronic particles

There are several discrete quantum numbers of a hadron gas that are con-
served and require introduction of independent chemical potentials. The
chemical potentials for conservation of baryon number and strangeness,
µB and µS, are the best known. Alternatively, and more conveniently
for our purposes, one can use the quark chemical potentials µq and µs for
light and strange quarks, respectively. We will often differentiate between
the u and d quarks, and use µu and µd.
This choice of quark chemical potentials is a matter of convenience and

is made in order to facilitate the translation of QGP-phase variables into
HG-phase variables; in no way does it assume deconfinement of quarks.
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212 Hot hadronic matter

The relationship between the two sets of chemical potentials, quark-based
and traditional hadron-conserved-quantum-number based, is given by the
natural relations

µb = 3µq, µb = 3T lnλq, (11.2a)
µS = µq − µs, µs = µb/3− µS, (11.2b)

where the minus signs are due to the conventional assignment of stran-
geness −1 to the strange quark. Expressed in term of the fugacities we
have:

λb = λ3q, λS = λq/λs. (11.3)

Bh and Sh are the baryon number and strangeness of hadron ‘h’, and
its chemical potential can be written either in terms of µb and µS, or in
terms of µq and µs:

µh = Bhµb + ShµS, (11.4a)
µh = νqhµq + νshµs, (11.4b)

where νqh and νsh count the numbers of light and strange valence quarks
inside the hadron, respectively, with antiquarks counted with a minus
sign. By adapting the quark-based chemical potentials for hadrons, we
recognize the fact that, in the quark model, the quantum numbers of
hadrons are obtained by adding the quantum numbers of their constituent
quarks.
The particle numbers are more directly addressed in the partition func-

tion in terms of fugacities. Since the fugacities are obtained by exponen-
tiating the chemical potentials, Eq. (4.18), the fugacity of each hadronic
species is simply the product of the fugacities of the valence quarks. We
view a hadron as simply a carrier of the valence quarks, which determine
the fugacity and chemical potential of each particle. For example, we have

p : µp = 2µu + µd, λp = λ2uλd ;
n : µn = µu + 2µd, λn = λuλ

2
d ;

Λ : µΛ = µu + µd + µs, λΛ = λuλdλs ; etc.

We distinguish between the up and down quarks by introducing sepa-
rate chemical potentials µu and µd, which is tantamount to introduction of
the chemical potential µQ related to the conservation of electrical charge.
In view of the quark baryon number 13 and the quark charges −

1
3 and +

2
3 ,

the relations between the chemical potentials are

µu ≡ 1
3µb +

2
3µQ, µd ≡ 1

3µb −
1
3µQ. (11.5)
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The average of µu and µd is the quark chemical potential µq:

µq ≡
µu + µd
2

. (11.6)

The definitions Eqs. (11.5) and (11.6) imply a modification of Eq. (11.2a),

µq → µq = 1
3µb +

1
6µQ, (11.7)

which is rarely considered. It arises from the fact that a quark system
containing (nearly) equal numbers of u and d quarks would still have a
net (positive) charge of a sixth the total number of u and d quarks, arising
from the electrical charge of the proton in the initial state formed by the
colliding nuclei.
The asymmetry in the number of u and d quarks is best described by

the quantity

δµ = µd − µu = −µQ, (11.8)

where the negative sign in the last equality reminds us that the d quark
has negative charge. Inverting Eq. (11.7), we obtain

µb = 3µq

(
1 +

1
6

δµ

µq

)
. (11.9)

In a free-quark gas with µq < πT , we have, in view of Eq. (10.75),

µd ∝ 〈d− d̄〉, µu ∝ 〈u− ū〉, (11.10)

where the net number (number of quarks minus that of antiquarks) of
light quarks enters. In a QGP, we find the remarkably simple relation
[216]

1
6

δµ

µq
=
1
3
µd − µu
µd + µu

=
1
3
〈d− d̄〉 − 〈u− ū〉
〈d− d̄〉+ 〈u− ū〉

=
n− p
A

, (11.11)

with A = n + p, and n and p are the neutron and proton contents of the
matter which formed the QGP phase.
For the case of greatest asymmetry available, in Pb–Pb collisions, we

have δµ/(6µq) = 0.21. In the HG phase a similarly sized effect for
δµ/(6µq) to that in a QGP is found, considering this issue numerically;
see figure 1 in [183]. Especially in studying yields of individual particles,
the specific quark u and d content can play a noticeable role. To see this,
let us compare the u and d fugacities:

λd
λu
= eδµ/T = λ

δµ/µq
q . (11.12)

For Pb–Pb interactions under baryon-rich conditions, a λd/λu ratio sig-
nificantly different from unity results. Some dilution of this phenomenon
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will occur if a QGP is formed due to the contribution of hadronizing
gluons, which do not differentiate between the two light u and d flavor
states. We conclude that the u–d asymmetry can not be completely ig-
nored when one is considering the abundances of hadronic particles in
baryon-rich fireballs.
Flavor-changing weak interactions are too slow to matter on the time

scale of heavy-ion collisions. The strong and electro-magnetic interactions
do not mix the quark flavors u, d, and s. These are separately conserved on
the time scale of hadronic collisions. Only the number of quark–antiquark
pairs of the same flavor changes; that is, pairs can be produced or annihi-
lated. The fugacities we call γq and γs serve to count the number of pairs
of light and strange quark, respectively, at any given time. In general,
these pair-abundance fugacities are rapidly evolving in time, in contrast
to the fugacities λq and λs. In fact, for entropy-conserving evolution of a
fireball of QGP, the fugacity λq is nearly constant, and, as we now shall
address, as long as local conservation of strangeness is maintained, λs � 1.
Comparing the QGP with the HG phase, the value of the strangeness

fugacity λs is in a subtle and important way different. Given the mobility
of individual quarks in the QGP phase, and ignoring the influence of
electrical charge in this qualitative discussion, the phase space of both s
and s̄ quarks must be the same, irrespective of the baryon content. To
balance the s and s̄ distributions, we have λs = 1, irrespective of the
value of λq, see, e.g., Eq. (4.42). It is instructive to check the phase-
space integral describing the density of strangeness in order to appreciate
these remarks, and to recall the precise physical difference between the
fugacities λs and γs:

〈ns〉 − 〈ns̄〉 =
∫

d3p

(2π)3

 1

γ−1s λ−1s exp
(√

p2+m2s
T

)
+ 1

− 1

γ−1s λs exp
(√

p2+m2s
T

)
+ 1

. (11.13)

We note the change in the power of λs between these two terms, and
recognize that this integral can vanish only for λs → 1. We discuss
in the following section the small but significant asymmetry in λs due
to the Coulomb charge present in baryon-rich quark matter: long-range
electro-magnetic interactions influence strange and antistrange particles
differently, and a slight deviation λs > 1 is needed in order to compensate
for this effect in the QGP phase.
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Now, let us look at the HG phase. Strange quarks are bound in states
comprising also light quarks. The presence of a net baryon number as-
sures that there is an asymmetry in abundance of light quarks and an-
tiquarks, and thus also, e.g., of strange baryons and antibaryons, with
more hyperons than antihyperons being present. Owing to this asym-
metry, strangeness cannot be balanced in the HG with the value λs = 1,
unless the baryon density vanishes locally. We will address this important
issue in a more quantitative manner in section 11.4. We have learned that
a determination of λs = 1 in the hadron-abundance analysis is indicating
production of these hadrons directly in a breakup of a QGP phase, since
a value different from unity is expected when a HG phase breaks up.

11.3 Distortion by the Coulomb force

It has been recognized for a long time that the Coulomb force can be of
considerable importance in the study of relativistic heavy-ion collisions.
It plays an important role in the HBT interferometry method of analysis
of the structure of the particle source [57, 209]; section 9.3. The analysis
of chemical properties is also subject to this perturbing force, and in con-
sideration of the precision reached experimentally in the study of particle
ratios, one has to keep this effect in mind.
We consider a Fermi gas of strange and antistrange quarks allowing

that the Coulomb potential VC is established by the excess charge of
the colliding nuclei. Within a relativistic Thomas–Fermi phase-space oc-
cupancy model [193], and for finite temperature in a QGP, we have as
generalization of Eq. (11.13) [177]

〈Ns〉 − 〈Ns̄〉 =
∫
Rf

gs
d3r d3p

(2π)3

(
1

1 + γ−1s λ−1s e(E(p)−
1
3
VC(r))/T

− 1

1 + γ−1s λse
(E(p)+ 1

3
VC(r))/T

)
, (11.14)

which clearly cannot vanish for VC = 0, in the limit λs → 1.
In Eq. (11.14), the subscript Rf on the spatial integral reminds us that

only the classically allowed region within the fireball is covered in the
integration over the level density; E =

√
m2 + /p 2, and, for a uniform

charge distribution within a radius Rf of charge Zf ,

VC =


−3
2
Zfe

2

Rf

[
1− 1

3

(
r

Rf

)2]
, for r < Rf ;

−Zfe
2

r
, for r > Rf .

(11.15)
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One obtains a rather precise result, for the range of parameters of
interest to us, using the Boltzmann approximation:

〈NB
s 〉 − 〈NB

s̄ 〉 = γs

(∫
gs

d3p

(2π)3
e−E/T

)
×
∫
Rf

d3r
(
λse

VC/3T − λ−1s e−VC/3T
)
. (11.16)

The Boltzmann limit allows us also to verify and confirm the signs: the
Coulomb potential is negative for the negatively charged s quarks with
charge 1

3 , which is made explicit in the potential terms in all expressions
above. We have

λ̃s ≡ λsO
1/3
C = 1, OC ≡

∫
Rf
d3r eV/T∫
Rf
d3r

. (11.17)

OC < 1 expresses the Coulomb deformation of strange quark phase space.
OC is not a fugacity that can be adjusted to satisfy a chemical condi-
tion, since consideration of λi, i = u, d, s, exhausts all available chemical
balance conditions for the abundances of hadronic particles, and allows
introduction of the fugacity associated with the Coulomb charge of quarks
and hadrons; see section 11.2. Instead, OC characterizes the distortion of
the phase space by the long-range Coulomb interaction. This Coulomb
distortion of the quark phase space is naturally also present for u and d
quarks, but appears less significant given that λu and λq are empirically
determined. On the other hand this effect compensates in part the u–d
abundance asymmetry effect we have discussed in Eqs. (11.5)–(11.12).
Choosing T = 140 MeV and ms = 200 MeV, and noting that the

value of γs is practically irrelevant since this factor cancels out in the
Boltzmann approximation, see Eq. (11.16), we find for Zf = 150 that the
value λs = 1.10 is needed for Rf = 7.9 fm in order to balance the Coulomb
distortion. One should remember that the dimensionless quantities ms/T
and RfT determine the magnitude of the effect we study. Chemical freeze-
out at higher temperature, e.g., T = 170 MeV, leads for λs = 1.10 to
somewhat smaller radii, which is consistent with the higher temperature
used.
The influence of the Coulomb force on chemical freeze-out is relevant in

central Pb–Pb interactions, wheras for S–Au/W/Pb reactions, a similar
analysis leads to a value λs = 1.01, which is little different from the
value λs = 1 expected in the absence of the Coulomb deformation of
phase space. Another way to understand the varying importance of the
Coulomb effect is to note that, while the Coulomb potential acquires in
the Pb–Pb case a magnitude comparable to the quark chemical potential,
it remains small on this scale for S–Au/W/Pb reactions.
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11.4 Strangeness in hadronic gas

We now describe the abundance of strange particles in the hadronic-gas
phase. This is, compared with the QGP, a very complicated case, since
there are many particles which are carriers of ‘open’ strangeness. More-
over, strong interactions result in the presence of numerous hadronic reso-
nances with open strangeness. The postulate of the dominance by hadron
resonance formation of hadron–hadron interactions [140] allows a vast
simplification of the theoretical treatment. Regarding the hadronic-gas
phase as a mixture of various non-interacting hadronic-resonance gases,
all information about the interaction is contained in the mass spectrum
τ(m2, b) which describes the number of hadrons of baryon number b in
a mass interval dm2. We will address this postulate in more detail in
chapter 12. Within this approach to strong interactions, the logarithm
of the total partition function is additive in its strange and not strange
sectors, so long as the various gas fractions interact mainly via formation
of hadronic resonances. We then have

lnZ = lnZnon-strange + lnZstrange. (11.18)

In the grand-canonical description, one finds that the non-strange had-
rons influence the strange ones by providing a background value of sta-
tistical parameters, such as the baryochemical potential µb, which are
accessible to direct measurement. We conclude that, in order to under-
stand abundances of strange particles, it is sufficient to consider lnZstrange.
In the Boltzmann approximation, it is easy to write down the partition
function for the strange-particle fraction of the hadronic gas, Zs. In-
cluding the possibility of an only partially saturated strange phase space
through the factor γs, and similarly γq for light quarks, but suppressing
for simplicity the isospin asymmetry δµ, Eq. (11.8), we have

lnZHG
s =

V T 3

2π2
[
(λsλ−1q + λ−1s λq)γsγqFK + (λsλ2q + λ−1s λ−2q )γsγ

2
qFY

+(λ2sλq + λ−2s λ−1q )γ
2
s γqFΞ + (λ

3
s + λ−3s )γ

3
sFΩ

]
. (11.19)

In the phase-space function Fi all kaon (K), hyperon (Y), cascade (Ξ),
and omega (Ω) resonances plus their antiparticles are taken into account:

FK =
∑
j

gKjW (mKj/T ); Kj = K,K
∗,K∗

2, . . ., m ≤ 1780 MeV ,

FY =
∑
j

gYjW (mYj/T ); Yj = Λ,Σ,Σ(1385), . . ., m ≤ 1940 MeV ,

FΞ =
∑
j

gΞjW (mΞj/T ); Ξj = Ξ,Ξ(1530), . . ., m ≤ 1950 MeV ,
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FΩ =
∑
j

gΩjW (mΩj/T ); Ωj = Ω,Ω(2250) . (11.20)

The gi are the spin–isospin degeneracy factors, W (x) = x2K2(x), see
Eq. (10.50a) and Fig. 10.1, where K2 is the modified Bessel function,
Eq. (10.44).
We need to understand, in terms of experimental observables, the chem-

ical properties of the fireball at the time of hadron production. The
method of choice is the study of particle ratios [167, 216]; section 9.1. In
order to obtain the mean abundances of various strange particles, we in-
troduce for each species its own dummy fugacity (which we subsequently
will set equal to unity). The explicit expressions for these ratios turn out
to be very simple, and one quickly deduces from the following examples
the principles which allow one to construct any ratio:

〈nΛ̄〉
〈nΛ〉

= λ−4q λ−2s ; (11.21a)

〈nΞ̄〉
〈nΞ〉

= λ−2q λ−4s ; (11.21b)

〈nΩ̄〉
〈nΩ〉

= λ−6s ; (11.21c)

〈nK+〉
〈nK−〉 = λ−2s λ2q ; (11.21d)

〈nK〉
〈nΛ〉

= λ−2s λ−1q γ−1q
FK
FΛ

. (11.21e)

In a more colloquial notation found also in this book, one omits 〈n〉, using
as the symbol for the particle considered the subscript only.
The baryochemical potential, or more simply, the quark fugacity λq,

can be deduced from the above stated ratios. Best for this purpose is
to consider the ratios not involving quark-pair fugacities γq and γs. Any
two ratios containing only λq and λs can be combined to evaluate these
quantities. Since many more than two ratios are available, a check of the
procedure is possible. This, in fact, constitutes a strong confirmation of
the validity of phase-space characterization of particle yields. Postponing
detailed discussion to chapter 19, we note that all groups that applied
this method to study the chemical properties have found extremely good
consistency. This implies that the production of particles as different as
kaons K and anticascades Ξ occurs by a similar mechanism, and nearly at
the same instance in the evolution of the fireball; these particles know of
each other, either due to processes of rescattering in the HG phase, or sim-
ply because they have been produced directly with yields corresponding
to the relative size of the phase space.
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An example of the consistency relation can be obtained by combining
the ratios of cascades, lambdas, and kaons,

Ξ/Ξ
Λ/Λ

=
K+

K− , (11.22)

which is very well satisfied in all measurements of which we are aware.
It is important to note that Eq. (11.22) applies a full ‘4π’ yield. For the
central-rapidity particle yield ratio, a correction containing the influence
of the velocity of expansion of the fireball has to be applied.
Although the proper determination of the chemical properties is best

achieved in a global fit of hadron yields, it is important that we see how
the physics of this determination works. It can be seen that the multitude
of strange hadrons allows us to determine the value of λs in many different
ways, for example,

Λ/Λ
(Ξ/Ξ)2

= λ6s (11.23)

and similarly

Ξ/Ξ
(Λ/Λ)2

= λ6q. (11.24)

This estimate produces an answer for the value of these parameters that
very accurately agrees with results of global fits.
It is equally easy to fix the ratio γs/γq since comparison of hyperons

of unequal strangeness content always yields this pair fugacity ratio. The
difficulty is that we have to understand the ratio of phase spaces of the
various baryons, which is controlled by the temperature, when we consider
the full yield. A first estimate is obtained by comparing in the same m⊥
range, e.g., Λ and Ξ. How this is done is shown in Fig. 8.8 on page 150.
Even then, the feed from higher resonances is important and temperature
remains an input into the determination of γi.

11.5 The grand-canonical conservation of strangeness

Using the partition function Eq. (11.19), we can calculate the net stran-
geness by evaluating

〈Ns〉 − 〈Ns̄〉 = λs
∂

∂λs
lnZHG

s . (11.25)

We find

〈ns〉 − 〈ns̄〉 =
T 3

2π2
[
(λsλ−1q − λ−1s λq)γsγqFK
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+(λsλ2q − λ−1s λ−2q )γsγ
2
qFY

+2(λ2sλq − λ−2s λ−1q )γ
2
s γqFΞ

+3(λ3s − λ−3s )γ
3
sFΩ

]
. (11.26)

In general, Eq. (11.25) must be equal to zero since strangeness is a
conserved quantum number with respect to the strong interactions, and
no strangeness is brought into the reaction. The possible exception is
dynamic evolution with asymmetric emission of strange and antistrange
hadrons. The grand-canonical condition,

〈ns〉 − 〈ns̄〉 = 0, (11.27)

introduces an important constraint, i.e., it fixes λs in terms of λb (and
charge λQ when the later is considered).
Equation (11.25) can be solved analytically when the contribution of

multistrange particles is small:

λs|0 = λq

√
FK + γqλ

−3
q FY

FK + γqλ3qFY
. (11.28)

This relation between the strange chemical potential µs|0 = T lnλs|0 and
the baryochemical potential µb = 3T lnλq is shown for γq = γs = 1 in
Fig. 11.4. To understand Fig. 11.4, we note that the term with λ−3q =
e−µb/T in Eq. (11.28) will tend to zero as µb gets larger and the term with
λb will dominate in denominator. Thus, λs ∝ λ

−2/3
b , i.e., µs ∝ −2

3µb for
large µb. At small µb, in particular, for relatively small temperatures, the
hyperon contribution is small and we see µs ∝ 1

3µb. Putting it differently,
Eq. (11.28) knows that, in a baryon-rich HG phase, qs̄ (K+,K0) kaons are
the dominant carriers of s̄ quarks, whereas qqs (Λ,Σ) hyperon states are
the main carriers of s quarks at finite baryon density. We see that the
competition between strangeness content in the four classes of strangen-
ess carriers determines, at each temperature T , the location where one
obtains a nontrivial µs = 0 at finite µb, and the QGP property λs = 1 is
accidentally present in the HG phase. There is no such nontrivial solution
at sufficiently high temperature. For T > 200 MeV and γq = γs = 1, only
negative strangeness chemical potential is seen in Fig. 11.4.
The line in the (µb–T ) plane corresponding to µs = 0 is the divide be-

tween positive and negative values of the strangeness chemical potential
in a strangeness-balanced hadronic gas. The relation between µb and T
corresponding to µs = 0, i.e., λs = 1, arising from Eq. (11.26) when net
strangeness vanishes, can be solved analytically allowing for the effect of
multistrange baryons and antibaryons. First, we note that for λs = 1,
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Fig. 11.4. The strange-quark chemical potential µs versus the baryon chemical
potential µb in a strangeness-neutral grand-canonical chemically equilibrated
HG. The long-dashed line corresponds to T = 150 MeV, the solid line to T = 200
MeV, and the short-dashed line to T = 300 MeV. The dotted line is the limiting
curve for large T , computed here at T = 1000 MeV.

there is always an exact balance between Ω and Ω and this term disap-
pears. The coefficient of the hyperon FY contribution, when it is written
in the form

λ−2q − λ2q =
(
λ−1q − λq

) (
λ−1q + λq

)
,

allows us to cancel out a common factor λ−1q − λq present in all terms,
along with γqγs. We obtain

µb = 3T ln(x+
√
x2 − 1), 1 ≤ x =

FK − 2γsFΞ
2γqFY

. (11.29)

This result is shown in Fig. 11.5. We have chosen to consider the nonequi-
librium condition γq = emπ/(2T ) corresponding to the maximum entropy
content in a hadronic gas, as could be emerging from hadronization of an
entropy-rich QGP phase. The solid line is for γs = γq, while the dashed
lines span the range γs = 0.8–2.8 in steps of 0.2, from right to left.
Below and to the left of this separation line in Fig. 11.5, we have posi-

tive strangeness chemical potential in a strangeness-balanced HG phase,
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Fig. 11.5. The condition of vanishing strangeness at λs = 1 in a hadronic gas,
evaluated for its maximum entropy content, i.e., with γq = emπ/(2T ). Solid line,
γs = γq; dashed lines from left to right are for γs = 0.8–2.8 in steps of 0.2.

whereas above and to the right we have negative strangeness potential.
The importance of this observation is that the relative yield RΩ ≡ Ω/Ω,
Eq. (11.21c), is strongly sensitive to the sign of µs. At present, we know
that, at the SPS top energy, both in S–W and in Pb–Pb interactions,
RΩ ≥ 1 and thus λs ≥ 1 and µs ≥ 0; the allowed range of T–µb is below
and to the left in Fig. 11.5. Indeed, all analyses of the abundances of
particles of which we are aware have yielded results in this domain of T
and µb.

We further denote, in Fig. 11.5, the area below and to the left as s < s̄,
whereas the domain above and to the right is denoted as s > s̄. What we
indicate is that, for λs = 1, the resulting phase space of strange particles
would add up to satisfy these conditions within these domains of T and
µb. To recognize the importance of this condition consider that a QGP is
evaporating hadrons. Below and to the left, with s < s̄, the evaporation
favors emission of antistrangeness and this allows the accumulation of an
excess of strangeness in the evaporation remnant; this is the process called
‘strangeness distillation’ [134, 135].
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The result of the distillation is the production of strangelets, drops
of quark matter with an unusually high abundance of s quarks. Since
strange quarks are negatively charged, such states would have unusually
small charge relative to their mass; indeed in the limit of equal abundance
of u, d, and s, a strangelet would be neutral. Many searches for long-lived
(on the scale of strong interactions) strangelets have been performed,
without success [44, 45, 232], suggesting that such states are not stable
with respect to strong interactions. If they are produced, strangelets are
dissociating into strange hadrons rather rapidly. One will note that, in the
decay of hadronic strangelets, production of multistrange baryons, and in
particular Ω, would be well above the normal expectations. Since the
statistical yield of Ω is very small, even a small yield of strangelets could
lead to visible distortions of the otherwise rarely produced Ω. An excess
of Ω over the statistical-model expectations is seen at the top energy of
the SPS; see section 19.3 and Fig. 8.11.

11.6 Exact conservation of flavor quantum numbers

We now consider, in more detail, what effect the exact conservation of
quantum numbers, such as strangeness or baryon number, has on the size
of the available particle phase space. As is intuitively clear, only when
the yield numbers are small, can this lead to a noticeable effect. In the
grand-canonical approach, flavor conservation, expressed by Eq. (11.27),
is not exact. In other words, strangeness, even baryon number, is con-
served on average but not exactly. We will focus our interest on the case
of newly-produced flavors (strangeness and charm) since the number of
pairs of quarks produced can be sufficiently small to warrant this. The
exact conservation of the baryon number (or the light-quark flavors) is of
particular interest in the study of the small collision systems.
When the number of strange-quark pairs is relatively small, Eq. (11.27)

has to be replaced by the sharper ‘canonical’ conservation condition,

〈ns − ns̄〉 = 0. (11.30)

According to Eq. (11.30), the net strangeness vanishes exactly in each
physical system we study. This introduces a correlation between the phase
space of particles and of antiparticles and thus, in general, the chemical
equilibrium yield of, e.g., the pairs of strange quarks evaluated under
constraint Eq. (11.30), is smaller when compared with that expected when
Eq. (11.27) is considered.
We are, in particular, interested in understanding under which condi-

tions the canonical and grand-canonical yields are equal, and how the
grand-canonical yields are altered by the physical constraint Eq. (11.30)
[218]. For strangeness, this amounts to finding the yield for which we can
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study the colliding system as if it had infinite size. In the context of the
production of charm, the yields (almost) always remain relatively small,
and use of the canonical formulation is necessary in order to evaluate
the expected chemical-equilibrium yields, even when the grand-canonical
approach applies for all the other observables.
The grand partition function, Eq. (10.48), in the Boltzmann limit, can

be written as a power series:

Zcl = eZ
(1)
f =

∞∑
n=0

1
n!

(
Z
(1)
f

)n
. (11.31)

To emphasize that any flavor (in particular s, c, and b) is under con-
sideration here, we generalize slightly the notation s → f. The flavor
and antiflavor terms within Z

(1)
f are additive, and we consider at first

only singly flavored particles in Eq. (11.19), adopting a simplified and
self-explanatory notation:

Z
(1)
f = γ(λf F̃f + λ−1f F̃f̄), F̃i =

V T 3

2π2
Fi. (11.32)

Combining Eq. (11.32) with Eq. (11.31), we obtain

Zcl =
∞∑

n,k=0

γn+k

n!k!
λn−kf F̃nf F̃

k
f̄ . (11.33)

When n = k, the sum in Eq. (11.33) contains contributions with un-
equal numbers of f and f̄ terms. Only when n = k do we have contribu-
tions with exactly equal number of f and f̄ terms. We recognize that only
n = k terms contribute to the canonical partition function:

Zf=0cl =
∞∑
n=0

γ2n

n!n!
(F̃f F̃f̄)

n = I0

(
2γ
√
F̃f F̃f̄

)
. (11.34)

The modified Bessel function I0 is well known, see Eqs. (8.23) and (8.27).
The argument of I0 has a physical meaning, it is the yield of flavor pairs

NGC
pair in the grand-canonical ensemble, evaluated with grand-canonical

conservation of flavor, Eq. (11.27). To see this, we evaluate

〈Nf〉 − 〈Nf̄〉 = λf
∂

∂λf
lnZ f

cl = γ(λf F̃f − λ−1f F̃f̄) = 0. (11.35)

We obtain, see Eq. (11.28),

λf |0 =
√
F̃f̄/F̃f , (11.36)
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and thus

lnZ f
cl

∣∣∣
λf=λf |0

= 〈Nf〉+ 〈Nf̄〉 = 2γ
√
F̃f F̃f̄ ≡ 2NGC

pair, (11.37)

which is just the argument of the I0 function in Eq. (11.34). In the grand-
canonical-ensemble approach the (average) number of pairs NGC

pair is ex-
tensive in volume, since F̃i ∝ V .
In order to evaluate, using Eq. (11.34), the number of flavor pairs in

the canonical-ensemble, we need to average the number n over all the
contributions to the sum in Eq. (11.34). To obtain the extra factor n, we
perform the differentiation with respect to γ2 and obtain the canonical
ensemble f-pair yield,

〈NCE
f 〉 ≡ γ2

d

dγ2
lnZ f=0cl = γ

√
F̃f F̃f̄

I1

(
2γ
√
F̃f F̃f̄

)
I0

(
2γ
√
F̃f F̃f̄

)
= NGC

pair

I1(2NGC
pair)

I0(2NGC
pair)

. (11.38)

where we have used Eq. (8.24). The first term is identical to the result
we obtained in the grand-canonical formulation, Eq. (11.37). The second
term is the effect of exact conservation of flavor.
The intuitive derivation of the canonical constraint we have presented

follows the approach of [218]. This can be generalized to more com-
plex systems using the projection method [229, 262]. This method can be
applied to solve more complex situations, for example inclusion of mul-
tistrange hadrons, conservation of several ‘Abelian’ quantum numbers
[61, 102] (such as strangeness, baryon number, and electrical charge), and
the problem of particular relevance in this field, the exact conservation
of color: all hadronic states, including QGP, must be exactly color ‘neu-
tral’ [111, 112]. The solution of this ‘nonabelian-charge’ problem is most
interesting but reaches well beyond the scope of this book.
For the case of ‘Abelian’ quantum numbers, e.g., flavor or baryon num-

ber, the projection method arises from the general relation between the
grand-canonical and canonical partition functions implicit in Eq. (4.20):

Z(β, λ, V )cl =
∞∑

nf=−∞
λnfZf(β, V ;nf). (11.39)

In the canonical partition function Zf , some discrete (flavor, baryon)
quantum number has the value nf ≡ f. The inverse of this expansion
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is given in Eq. (4.21). On making the substitution λ = eiϕ we obtain

Zf(β, V ;nf) =
∫ 2π

0

dϕ

2π
e−infϕZ(β, λ = eiϕ, V ). (11.40)

In the case of the Boltzmann limit, and including singly charged parti-
cles only, we obtain for the net flavor nf from Eq. (11.33)

Zf(β, V ;nf) =
∞∑

n,k=0

γn+k

n!k!

∫ 2π

0

dϕ

2π
ei(n−k−nf)ϕF̃nf F̃

k
f̄ . (11.41)

The integration over ϕ yields the δ(n − k − nf) function. Replacing n =
k + nf , we obtain

Zf(β, V ;nf) =
∞∑
k=0

γ2k+nf

k!(k + nf)!
F̃ k+nff F̃ kf̄ . (11.42)

The power-series definition of the modified Bessel function If is

Inf (z) =
∞∑
k=0

(z/2)2k+nf

k!(k + nf)!
. (11.43)

Thus we obtain

Zf(β, V ;nf) =

(
F̃f

F̃f̄

)nf/2
Inf

(
2γ
√
F̃f F̃f̄

)
. (11.44)

The case of nf = 0 which we considered earlier, Eq. (11.34), is reproduced.
We note that, for integer nf , we have Inf = I−nf , as is also evident in the
integral representation Eq. (8.27). We used nf as we would count the
baryon number, thus, in flavor counting, nf counts the flavored quark
content, with quarks counted positively and antiquarks negatively. This
remark is relevant when the factors F̃f and F̃f̄ contain baryochemical
potential.
When the baryon number is treated in the grand-canonical approach,

and strangeness in the canonical approach, there is potential for math-
ematical difficulties. These can usually be avoided by considering the
meromorphic expansion of the partition function Eq. (11.39). Inserting
the explicit form Eq. (11.32) we obtain

Zcl � eγ(λf F̃f+λ
−1
f F̃f̄) =

∞∑
nf=−∞

λnff

(
F̃f

F̃f̄

)nf/2
Inf

(
2γ
√
F̃f F̃f̄

)
. (11.45)

Multistrange particles can be introduced as additive terms in the expo-
nent in Eq. (11.45). This allows us to evaluate their yields [148]. However,
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the canonical partition function is dominated by singly strange particles
and we will assume, in the following, that considering only these suffices
to obtain the effect of canonical conservation of flavor. In order to find
yields of rarely produced particles such as, e.g., Ω(sss), we show the omega
term explicitly:

Zf(β, V ;nf = 0) =
∫ 2π

0

dϕ

2π
eF̃fe

iϕ+F̃f̄e
−iϕ+λΩe

3iϕF̃Ω+···. (11.46)

The unstated terms in the exponent are the other small abundances of
multiflavored particles. The fugacities not associated with strangeness,
as well as the yield fugacity γs, are incorporated in Eq. (11.46) into the
phase-space factors F̃i for simplicity of notation.
The number of Ω is obtained by differentiating lnZf(β, V ) with respect

to λΩ, and subsequently neglecting the subdominant terms in the expo-
nent,

〈nΩ〉 �
F̃Ω
I0

∫ 2π

0

dϕ

2π
e3iϕeF̃fe

iϕ+F̃f̄e
−iϕ

. (11.47)

The result of the integration is easily read off the meromorphic expansion,
Eq. (11.45), to be Zf(β, V ;nf = −3), Eq. (11.44). This result is easily
understood, the three strange quarks in the particle observed are balanced
by the background of singly strange particles (kaons and antihyperons),

〈nΩ〉 � F̃Ω

(
F̃f

F̃f̄

)−3/2
I3(2NGC

pair)

I0(2NGC
pair)

. (11.48)

We recall that, according to Eq. (11.36), the middle term is just the fu-
gacity factor λ3s . The first two factors in Eq. (11.48) constitute the grand-
canonical yield, while the last term is the canonical Ω-suppression factor.
A full treatment of the canonical suppression of multistrange particle
abundances in small volumes has been used to obtain particle yields in
elementary interactions [60].
Similarly, one finds that the suppression of Ξ abundance has the factor

I2/I0, whereas, as discussed for the general example of the flavor-pair
yield, the yield of single strange particles is suppressed by the factor I1/I0.
The yield of all flavored hadrons in the canonical approach (superscript
‘C’) can be written as a function of the yield expected in the grand-
canonical approach in the general form

〈sκ〉C = F̃κ

(
F̃f

F̃f̄

)κ/2
I|κ|(2NGC

pair)

I0(2NGC
pair)

= 〈sκ〉GC
I|κ|(2NGC

pair)

I0(2NGC
pair)

, (11.49)

with κ = ±3, ±2, and ±1 for Ω, Ξ, and Y and K, respectively. On the
left-hand side in Eq. (11.49) the power indicates the flavor content in the
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particle considered, with negative numbers counting antiquarks. We note,
on inspecting the final form of Eq. (11.49), that the canonical suppression
of particle and antiparticle abundances is the same, certainly so when we
study systems with several pairs present. In very small systems, one may
need to evaluate the quantum distributions including multistrange parti-
cles in order to obtain precise results. A particle/antiparticle asymmetry
can occur if baryon/antibaryon asymmetry applies.
The simplicity of Eq. (11.49) originates from the assumption that the

contributions of singly strange particles to conservation of strangeness
are dominant. This assumption is consistent with the neglect of quantum
statistics. In fact, on expanding the Bose distribution for kaons, one finds
that the next-to-leading-order contribution, which behaves as strangeness
ns = ±2 hadrons, is dominating the influence of all multistrange hadrons.
Our study is consistent with the Boltzmann statistics assumed here; more
complex evaluation taking multistrange hadrons into account, but consid-
ering kaons as Boltzmann particles, is theoretically inconsistent.

11.7 Canonical suppression of strangeness and charm

The canonical flavor yield suppression factor,

η ≡
I1

(
2γ
√
F̃f F̃f̄

)
I0

(
2γ
√
F̃f F̃f̄

) = I1(2NGC
pair)

I0(2NGC
pair)

< 1, (11.50)

depends in a complex way on the volume of the system, or, express-
ing it alternatively, on the grand-canonical number of pairs, NGC

pair. The
suppression function η(N) ≡ I1(2N)/I0(2N) is shown in Fig. 11.6 as a
function of N . For N > 1, we see (dotted lines) that the approach to the
grand-canonical limit is relatively slow; it follows the asymptotic form

η � 1− 1
4N

− 1
128N2

+ · · · , (11.51)

whereas for N 	 1, we see a nearly linear rise:

η = N − N3

2
+ · · ·. (11.52)

Overall, when the the yield of particles is small, we have, using Eq. (11.52),

NCE
pair = (N

GC
f )2. (11.53)

Hagedorn was puzzled by this quadratic behavior of the particle yield,
being concerned about rarely occurring astrophysical processes of pair
production. In his 1970/71 CERN lectures [141], he asked how the yield
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Fig. 11.6. Solid line: the canonical yield-suppression factor as a function of the
grand-canonical yield of particles N . Dotted lines: asymptotic expansion forms
presented in the text.

of particles can be Y ∝ e−2m/T , when the threshold for production of a
pair is relevant, and another time Y ∝ e−m/T , when the statistical yield
is evaluated. This is the grand-canonical yield for m > T , as seen in
section 10.4,

NGC =
gf
2π2

T 3V

√
πm3

2T 3
e−m/T , (11.54)

whereas when the yield of particles is small, e.g., when m � T , the
canonical result applies:

NCE =
g2f
8π3

T 3m3V 2e−2m/T . (11.55)

We see that the Hagedorn puzzle has been resolved. The reaction volume
is an important factor controlling which of the two results Eqs. (11.54)
and (11.55) should be considered in a given physical situation.
We next consider whether there is any effect of QGP compared with

HG in the study of canonical conservation of strangeness. The possible
difference would arise from the different sizes of the phase space for stran-
geness in these two phases of matter. In the Boltzmann limit, the flavor
and antiflavor phase space in the symmetric QGP is:

F̃f = F̃f̄ = gfV

∫
d3p

(2π)3
e

√
p2+m2

f
T =

3V Tm2
f

π2
K2(mf/T ). (11.56)
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Fig. 11.7. Volume needed for one strange quark pair using grand-canonical
counting as function of λq for T = 160 MeV, γq = 1, γs = 1, Vh = (4π/3) 1 fm3.
Solid line: hadron gas phase space, dashed line: quark phase space withms = 160
MeV.

For the hadronic phase, it is derived from Eqs. (11.19) and (11.20). We
have, counting strange-quark content as positively ‘flavor charged’ as be-
fore,

F̃f = λ−1q F̃K + λ2qF̃Y, (11.57)

F̃f̄ = λqF̃K + λ−2q F̃Y. (11.58)

All these quantities F̃i are proportional to the reaction volume.
The interesting result, seen in Fig. 11.6, is that the suppression of yield

is at the level of 30% when one pair of particles would be expected to be
present in grand-canonical chemical equilibrium; the suppression means
that instead we find that the true phase-space yield is 0.7 pairs. Actually,
in p–p interactions at 158 GeV/c projectile momentum, the analysis of
experimental results yields 0.66± 0.07 strange pairs [277].
Pursuing this line of thought, but also to obtain a reference regarding

the magnitudes involved for strangeness, we consider how big a volume
we need in order to find (using grand-canonical-ensemble counting) one
pair of strange particles. In the hadronic phase space, with λs chosen to
conserve strangeness, we have

V

Vh
=

2π2

VhT 3γqγs

√
(FK + λ3qFY)(FK + λ−3q FY)

. (11.59)
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Fig. 11.8. Canonical yield enhancement at large volumes compared with the
case of unit hadron volume Vh = 4

3π fm
−3. Solid line, QGP phase; dashed line,

HG.

For p–p interactions, we consider T = 160 MeV, and the elementary
hadronic volume is chosen to be Vh = 4

3π fm
3. The applicable value of λq,

if statistical methods are used, is close to unity. The result is shown as
the solid line in Fig. 11.7, as a function of λq, for γq = 1 and γs = 1. The
dashed line is the corresponding result for the QGP strange-quark phase
space, which naturally does not depend on λq, and has been obtained
by choosing ms = 160 MeV. Just a little less than one hadronic volume
suffices; one finds one pair in Vh for ms = 200 MeV.
We show in Fig. 11.8 the canonical strangeness-suppression factor

Eq. (11.50), both for a QGP (solid line) and for a HG (dashed line). We
have converted the suppression η into an enhancement by normalizing at
η(V = Vh). For the QGP, we take ms = 160 MeV, whereas, for a HG,
we take µb = 210 MeV. Both phases are considered at T = 145 MeV.
Since the strangeness content in QGP is greater than that in HG, there
is less ‘catching up’ to do and the overall yield is increased by factor 1.8,
whereas for HG, we find an increase by a factor of three. Practically all
of this enhancement occurs when the reaction volume increases to five,
i.e., for rather small reaction systems.
We now look at the suppression of multistrange particle abundances by

the factors η3(N) = I3(2N)/I0(2N), for Ω, and η2(N) = I2(2N)/I0(2N),
for Ξ. For small values of N , we obtain

ηκ ≡ Iκ(2N)
I0(2N)

→ Nκ 1
κ!

(
1− κ

κ+ 1
N2

)
. (11.60)
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232 Hot hadronic matter

Fig. 11.9. Canonical yield-suppression factors Iκ/I0 as function of the grand-
canonical particle yield N . Short-dashed line: the suppression of triply-flavored
hadrons; long-dashed line: the suppression of doubly-flavored hadrons; and solid
line, the suppression of singly-flavored hadrons.

This result is easily understood on physical grounds: for example, when
the expected grand-canonical yield is three strangeness-containing pairs,
it is quite rare that all three strange quarks go into an Ω. This is seen
in Fig. 11.9 (short-dashed curve), and in fact this will occur about a
tenth as often as we would expect from computing the yield of Ω, ig-
noring the canonical conservation of strangeness. The other lines in
Fig. 11.9 correspond to the other suppression factors; the long-dashed line
is η2(N) = I2(2N)/I0(2N) and the solid line is η(N) = I1(2N)/I0(2N).
They are shown to be dependent on the number of strange pairs expected
in the grand-canonical equilibrium, denoted in Fig. 11.9 as N .
It has been proposed to exploit the canonical suppression which grows

with strangeness content to explain the increase in production of strange
hadrons seen in Fig. 1.6 on page 19, when the per-participant yield in
A–A interactions is compared with that from p–Be interactions [228]. A
direct comparison of the reduction factors ηκ is possible. Choosing as
the reference point the yield N � 1, the claim is that one can come
close to explaining the enhancement in production of three out of five
strange hadrons seen in Fig. 1.6. The reader should notice that the en-
hancement effect is derived from the suppression of the base yield in the
small reference system. We obtain this effect by rebasing the results
shown in Fig. 11.9 to the strangeness yield observed in p–p reactions
evaluated within canonical formulation; see Fig. 11.10. The three cases
studied in Fig. 11.9 are seen, where the dotted lines are derived from
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Fig. 11.10. Canonical yield-suppression factor of Fig. 11.9 expressed as enhance-
ment factors Ei, i = 1, 2, 3 as functions of the canonical-pair-particle yield NCE.
Solid line: E1, the enhancement of singly-flavored hadrons, relative to the yield
0.66± 0.07, expected in p–p reactions. Similarly, long-dashed line: E2, enhance-
ment of doubly-flavored hadrons; and short-dashed line: E3, enhancement of
triply-flavored hadrons. Dotted lines correspond to the errors arising from the
error in the strangeness yield, to which the results are normalized.

the error in the reference yield of production of strangeness in p–p reac-
tions.
We see, in quantitative terms, the strength of the canonical effect, espe-

cially for multistrange hadrons, and its rapid rise with the yield of stran-
geness [223]. The canonical-enhancement effect rises rapidly but smoothly
and saturates at the grand-canonical yield in rather small systems. The
grand-canonical chemical-equilibrium yield is reached for systems com-
prising ten strangeness pairs and for reaction systems about six times
greater than the p–p system, considering that the yield of singly-strange
particles is enhanced by a factor three, as is seen in Fig. 11.10. This result
is inconsistent with the experimental results from the NA52 experiment
[153], which reveal an abrupt threshold for enhancement of production
of strangeness at �50 participants, just where the WA57 team recently
reported a sudden onset of enhancement in yield of Ξ [108]. Given the
sensitivity of the results shown in Fig. 11.10 to the strangeness reference
yield, it is natural to conclude that the explanation of strange-hadron
enhancement offered in [228] is based on a fine tuned p–Be strangeness
yield, not cross-checked with the (at-present-unavailable) experimental
yield.
We addressed, with such a great precision, the canonical chemical-

equilibrium yields of strange particles expected to originate from small
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Fig. 11.11. The canonical yield of pairs of open charm quarks 〈nc〉pair per unit
volume as a function of volume, in units of Vh = 4

3π fm
3. Solid line, QGP with

mc = 1.3 GeV; dashed line, HG at µb = 210 MeV, both phases at T = 145 MeV.

systems, since hadron yields observed in p–p and p–p̄ interactions, and
even in hadron jets produced in LEP e+–e− reactions are remarkably close
to the expectations for chemical equilibrium [62], allowing in the analysis
for the canonical suppression and including the effects of quantum degen-
eracy. This thorough analysis results in a not completely satisfactory χ2

per degree of freedom (= 61/21). Yet a reader of this thorough report
will have the impression that a modern-day Maxwell’s demon must be at
work, generating canonical chemical equilibria for hadrons in all these el-
ementary interactions, and abundances of strange quarks within a factor
of two of absolute chemical equilibrium.
On the other hand, a demon that works for strangeness should also work

for charm. The yield of charm in Pb–Pb interactions is estimated from
the lepton background at 0.5 pairs per central collision [13]. We can use
the small-N expansion, Eq. (11.60). The corresponding A–A canonical
enhancement factor, compared with p–A, is NAA/NpA � 100A. (Here N
is now the yield of ‘open’ charm rather than strangeness.) The measured
open-charm cross sections, however, scale with the number of participants,
and there is no space for a large canonical enhancement/suppression of
production of charm. To be more specific, we show, in Fig. 11.11, the spe-
cific yield of charm 〈nc〉pair per unit volume as a function of the volume.
The canonical effect is the deviation from a constant value and it is sig-
nificant, O(100). Even at V = 500Vh the infinite-volume grand-canonical
limit is not yet attained, for the case of the larger phase space of QGP
(solid line), the total yield of charm is just one charm pair. The absolute
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yield in both phases is strongly dependent on the temperature used, here
T = 145 MeV. In QGP, we took mc = 1.3 GeV. The phase space of a
HG includes all known charmed mesons and baryons, with abundances of
light quarks controlled by µb = 210 MeV and µs = 0.
Although, by choosing a slightly higher value of T , we can easily in-

crease the equilibrium yield of charm in a HG to the QGP level [133],
this does not eliminate the effect of canonical suppression of production
of charm if chemical equilibrium is assumed for charm in the elementary
interactions. We are simply so deep in the ‘quadratic’ domain of the yield,
see Eq. (11.60), that playing with parameters changes nothing, since we
are constrained in Pb–Pb interactions by experiment to have a yield of
charm of less than one pair.
It is natural to argue that the very heavy charm quarks are not in chem-

ical equilibrium, and that their production has to be studied in kinetic
theory of collision processes of partons. However, this means that there
is no twenty-first-century Maxwell’s demon with control of charm, and,
of course, also not of strangeness. The production and enhancement of
charm and strangeness in heavy-ion collisions is in our opinion a kinetic
phenomenon. To study it, we should explore a wide range of collision
volume and energy. The objective is to determine boundaries of the high,
possibly QGP-generated, yields.

12 Hagedorn gas

12.1 The experimental hadronic mass spectrum

One of the most striking features of hadronic interactions, which was
discovered by Hagedorn [140], is the growth of the hadronic mass spectrum
with the hadron mass. With the 4627 different hadronic states we have
used in the study of properties of HG in section 11.1 [136], it is reasonable
to evaluate the mass spectrum of hadronic states ρ(m), defined as the
number of states in the mass interval (m, m + dm). We represent each
particle by a Gaussian, and obtain ρ(m) by summing the contributions of
individual hadronic particles:

ρ(m) =
∑

m∗=mπ,mρ,...

gm∗√
2πσm∗

exp
(
−(m−m∗)2

2σ2m∗

)
. (12.1)

Here, gm∗ is the degeneracy of the hadron of mass m∗ including, in partic-
ular, spin and isospin degeneracy, and σ = Γ/2, Γ = O(200) MeV being
the width of the resonance. The pion, with mπ � σ is a special case, and
is set aside in such smoothing of the mass spectrum. Downward modifi-
cation of its mass has a great impact on properties of HG and is thus not
allowed.
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