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Abstract

The free product *CRS, of an arbitrary family of disjoint completely simple semigroups {5,},e/,
within the variety CR of completely regular semigroups, is described by means of a theorem
generalizing that of Kadourek and Poldk for free completely regular semigroups. A notable
consequence of the description is that all maximal subgroups of *CR& are free, except for those
in the factors S, themselves. The general theorem simplifies in the case of free CR-products of
groups and, in particular, free idempotent-generated completely regular semigroups.

1991 Mathematics subject classification (Amer. Math. Soc): primary 20 M 05; secondary 08 A
50.

Based on fundamental insights of Clifford [1], authors such as Gerhard [3], Trot-
ter [9] and Kadourek and Polak [8] have offered solutions to the word problem
for the free completely regular semigroup FCRX on a countably infinite set X.
This semigroup is clearly the free product, in the variety CR of completely reg-
ular semigroups, of a family of infinite cyclic groups. We prove (Theorem 4.1)
that, suitably modified, the method of Kadourek and Polak serves to solve the
word problem in the free CR-product of any family of disjoint completely simple
semigroups (modulo effective description of the factors themselves). One not-
able consequence is that the maximal subgroups of such a free product are
always free groups, if disjoint from the original factors.

A slight simplication occurs for the free CR-product of groups. In particular,
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[2] On free products of completely regular semigroups 213

the word problem is solved for the free idempotent-generated completely regular
semigroup (which is a free product of trivial groups) on a set X. This semigroup
turns out to be isomorphic with the completely regular subsemigroup of FCH.X
generated by {x° : x € X}.

The general problem, of describing arbitrary free CR-products, seems unas-
sailable at present. See [7] for a review of the current state of affairs on free
band products. The free product of completely simple semigroups within the
variety of completely simple semigroups was described in [6]. Free products
within some other 'small' subvarieties, such as Clifford semigroups and normal
bands of groups are also not difficult to describe.

1. Free CR-products

A semigroup 5 is completely regular if it is a union of its maximal subgroups.
For an element x of S, x~l and x° denote the inverse of x and the identity element,
respectively, in the maximal subgroup Hx. See [2,5] for basic properties of such
semigroups.

Throughout, U will denote the variety of unary semigroups (semigroups
equipped with a unary operation x —>• x~l). The class CR of completely regular
semigroups forms a (unary) subvariety of U, determined by the identities

xx~xx — x, xx~x=x~lx, (x~1)~i=x.

Let {Si },<=/ be a family of disjoint completely regular semigroups; denote their
free CR-product by *CR{5, },e/, or *CRS, for short. Thus there exist monomorph-
isms i)i : 5, ->• *CR St,i e I, and for any T e CR and morphisms fa : 5, ->• T,
i € / , there is a unique morphism (j> : *CR 5, -> T such that rj, <f> = fa, i € I.
(See [4, Section 9]).

In this section we construct *CRS, as a quotient of a certain free unary semi-
group, which must first be described. For the moment, let {5,},6/ be any family
of disjoint unary semigroups. Let X = (J.€/ 5, and let F be the free monoid on
the set X U {(,)"'}. Then (see [3]) F\JX is the smallest subsemigroup of F such
that X c FUX and (w)~l e F\JX whenever u> e FUX (and then, of course,
(w)~l is the 'inverse' of w). Let e be the unary congruence on F\]x generated
by {(s • t, st) : s,t e 5,, / e /} U {((s)~\ s~l) : s e St, i e I], where s • t
denotes the product in F. The following proposition is easily proved.
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PROPOSITION 1.1. Let {5,},e/ be a family of disjoint unary semigroups. Put
X = (J(g/ S, and let U — F\]x/€. Then U (together with the morphisms
Pi : x —> xe, x € Sj, i e / ) is isomorphic with the free U-product *v 5,.

The members of the monoid F are words in the letters X U {(,) ~ '} . A segment
of a word w is a word 5 such that w — as b for some a, b e F; s is initial if
a — 1 and terminal \ib — 1.

PROPOSITION 1.2. Eache-class of F\JX contains a unique word w such that

(a) successive letters of w do not belong to the same set 5, and
(b) w contains no segment of the form (s)"1, where s belongs to some S,.

PROOF. That each word in F\JX is e -equivalent to such a word is easily
established by an inductive argument, based on lengths of words; a simple
confluence argument establishes uniqueness.

In the sequel we generally assume, without comment, that U consists of all
such words in F\}x. with appropriately modified multiplication and inversion.
With this understanding we then refer to words, and their letters, in U.

PROPOSITION 1.3. Let{Sj}ieI be a family of disjoint completely regular semig-
roups. Define p to be the semigroup congruence on U = FUx/e generated by
the pairs

(u(urlu, u), («(«)"', («)"'«), (((Mr1)"1, «), ueU.

Then U/p is isomorphic with the free CR-product *CR S,.

PROOF. It is sufficient to show that p is a unary congruence, for then the result
follows from standard universal algebraic arguments. So suppose u,veU and
up = vp. From the generating relations it is clear that («)~'p is an inverse of
up in U/p and that (u)~lp J f up in U/p. Thus (u)~lp = (up)~l. Similarly,
(v)~lp - (vp)~l and thus (u)~lp - (v)~lp.

It is well known (and easily proved) that every congruence on a completely
regular semigroup is a unary congruence.
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2. Green's relation 2

Throughout this section, 5 denotes U/p = *CR 5,, the free CR-product of
arbitrary disjoint completely regular semigroups, and fy denotes the injection
Si —• S, i € / . Green's relation £> on any completely regular semigroup is
the least semilattice congruence [5, Theorem 4.6]. The variety S of semilattices
is a subvariety of CR. Thus S/@ is isomorphic with the free S-product of the
semilattices Yt = St/@, i e / . We now describe free S-products.

Let {Yi)iei be any family of disjoint semilattices. Let Y be the direct product
of the family {y,(1)},£/, where Y,(1) is obtained from Y, by adjoining a (new)
identity element. Thus Y consists of all functions / : / —>• (J,e / Y,(1) with
ife y;

(1), i e / . The support of such a function / is {/ e / : if # 1}. Let P be
the subsemilattice of Y consisting of the functions of finite nonempty support.
For each i € I, let a, : Yt —> P be defined by

if i = j

The following is folklore:

RESULT 2.1. The semilattice P, with morphisms a, defined above, is iso-
morphic with the free S-product *s Yt of the semilattices Yit i e / .

Now let u e U. We define the content c(u) as a function in P : for / e / ,
ic{u) = DsW, where s(u) is the product of all those letters in u, if any, that
belong to 5, (in the order in which they appear, say) or is 1 e y,(1) if no such
letter belongs to S,. Clearly the content defines a morphism c : U —>• P. For
each i e / and each x e 5,, c{x) = c(xe) = Dxai, so /6,c = ^ " a , , where
^ " is the natural map S, —> Yt. Thus cc~x is the least semilattice congruence
on U. Clearly p c cc~x, so cc~l induces the least semilattice congruence on
5 = U/p. The next proposition therefore describes <2) on S.

PROPOSITION 2.2. Let u,v G U. Then up <2) vp in * C R S, if and only if

c(u) - c{v).
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3. Coproducts of completely simple semigroups:
Green's relations

For the remainder of the paper we specialize to the case where each factor
S, belongs to CS, the subvariety of CR consisting of all completely simple
semigroups. At the end of this section we consider some difficulties associated
with the general case.

Since, now, each |Yj| = \Si/S>\ — 1, we may redefine c(u) as {/ G / : 5,
contains a letter of «}; c now defines a morphism of U upon the free semilattice
on / , consisting of the nonempty finite subsets of / , under union.

For each i e I, specify an arbitrary idempotent s, of S,. Denote by L((), Ri0

and //( / ), respectively, the S£-, &- and Jf -class of s, in 5,. (These play a
'normalizing' role.) For any word w G F, w denotes the word of £/' obtained
from w by deleting all unmatched parentheses and choosing the representative
of the resulting e-class (see Section 1).

Let u e U, with content A, say, \A\ — n > 1. By analogy with [1, 3, 9], put
uO — a, where a is the longest initial segment of u such that c(a) ^ A. Let y
be the next letter of u after the segment a; then y g {(,)"'}, so y G Sjt where
A — c(wO) = {;}. Put uo = (ysj)°, the idempotent in the ^f-class Ry D L0 ) of
5y. Thus y = (ua)y stnduOy = uOuay. The product L{u) = MO UO is defined
to be the left indicator of u.

Dually, let u 1 = b, where b is the longest terminal segment of u such that
c(b) ^ A; let ue — (SJX)°, the idempotent in the Jt?-class L, Pi /?(<:), where
x 6 Sk is the last letter of u before the segment b, and put /?(«) = ue wl, the
r/g/z? indicator of w. Note that if C(M) = {J}, that is, M belongs to the factor S,,
then MO = 1 = MI and uo and we are, respectively, the idempotents (MS,)° and
fa u)° of $.

LEMMA 3.1. Let u,v e U, with upv.lf

(i) \c(u)\ = 1 then u = v;
(ii) \c(u)\ > 1 ?/jen uO p vO and uo = vo, and dually.

PROOF, (i) Suppose u G S,, i G / . By Proposition 2.2, c(u) — c(v), so
v G 5, also. Since 5, embeds in 5, u — v.

(ii) It suffices to prove the result when v is obtained from u by an elementary
transition. Let u \ be the shortest initial segment of u with content that of u. In the
notation above, U\ — ay and U\ = ay = uOy. In the free monoid F, u — U\U2
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for some u2.
Suppose u factors as pqr, in U, with p and/or q possibly 1; note that all

matched pairs of parentheses lie within p, q or r. Let v — pq(q)~lq r. Various
possibilities must be treated.

(a) If a = pqr\ and r = rx y u2 in U (where rx may be 1) then u = pqrxyu2

and v = (pq(q)~lqrx) yu2; now vO = (pq(q)~lqrx) = pq(q)~lqrx p pqfx =
(pqrx) = wO. Clearly, ua = va.

(b) If a = pqx, y = q2rx, <7 = <7i<72 and r = rxu2, where qx, rx may be 1,
then M = pqiq2rxu2 and v = pqxq2 (q\q2y

x q\q2rxu2. Now c(q2) = c(y), so
vO = (pqx) = uO. Also y — q2rx & q2 (within some completely simple factor),
so vo = ua.

(c) In all other cases of this transition, v and u both begin with the segment
ay. Thus vO = uO and va = ua.

The reverse transition is handled similarly. Transitions associated with
(q)~lq —• q{q)~l and q —• O?"1)"1 and their reverses involve only ad-
dition or deletion of parentheses and are handled easily.

LEMMA 3.2. Let u e U, |C(M)| > 1. Let ux be an initial segment of u,
regarded as a word in F. Then u pux u2tfor some u2 e U. Thus u p MI(MI)"1 M

and, in particular, u p L(u)u' for some u' e U.

PROOF. We proceed by induction on the number of unmatched left parentheses
in «i. Let u = uxw in F. If ux has no unmatched parenthesis then u = uxw
(as a product in U). Otherwise, write ux = p(q, where q has no unmatched left
parenthesis. Since u e U,w = r)" 's for some r, s. Thus u = p{qr)~xs in U, so
u pv = pqr{qr)~l {qr)~ls. But pq has one fewer unmatched left parenthesis,
so vp (pq)A u2 for some u2 6 U, where (pq)A = ux. This completes the proof
of the first statement, the second being an immediate consequence. To prove
the third, we use the notation in the preamble to Lemma 3.1: L(u) = uOua =
ag = (ag)A, where u — ays e ag • ys, so that ag is an initial segment of u, in F.

For ease of exposition, we extend p from U to U1 by putting \p — {1}.

THEOREM 3.3. Let {S,},e/ be a family of disjoint completely simple semi-
groups, U — *u Sj and S = U/p = *CR St. Ifu,v e U then

(i) up @ vp if and only ifc(u) = c(v);
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(ii) up 8% vp if and only ifuOp vO and ua = va;
(iii) up S£ vp if and only ifulpvl and ue = ve.

PROOF.

(i) In view of the opening remarks of this section, this is a special case of
Proposition 2.2.

(ii) We first observe that up !% L(u)p. For by the preceding lemma,
&uP < RL(U)P\ but L(u)p @ up in S, since c(L(u)) = c(u), so equality of !%-
classes holds, the f^-class being completely simple. As a consequence, up 8% vp
if and only if L(u)p 8£ L(v)p. One implication is then immediate. Conversely,
if L(u)p ffl L(v)p then uOua p vOvat for some t e U. But (vOvat)O = vO
and (vOvat)a = va (since if t begins with a letter from the same factor as va,
then vat 8% va and the definitions of (vOva)a and (vOvat)a yield Jff-related
idempotents). By Lemma 3.1, uO p vO and ua — va.

(iii) This is dual to (ii).

This result simplifies considerably when the factors are groups—see Sec-
tion 5.

The proofs of the results in this section have followed closely those of Clifford
for free completely regular semigroups [1]. The author [7] has modified these
techniques to obtain some properties of free products of bands, in the variety B of
all bands. The difficulties which arise when the factors are no longer completely
simple are discussed in detail there. We conclude this section with an example
to show that in that case Green's relations ffl and .5? are not determined in such
a simple fashion.

Let 5i be a trivial semigroup {e} and let S2 be a two-element semilattice
{/. gh f > 8- lnU,eg = efg p ef(ef)~l efg = ef(ef)~leg. Suppose we
were to define MO as a, where a is the longest initial segment of u involving all
the factors but one that appear in u, and define ua as above. Then (eg)0 — e
and (eg)a = g; also (ef(ef)~l eg)0 = e and (ef(ef)~leg)a == / . Thus
Lemma 3.1 would now fail.

A slightly less naive definition for wO would be as a, with a the longest initial
segment whose content is greater than that of u (using the general definition of
content in Section 2) and with ua as before. In the given example, (eg)0 — e
but (ef{ef)~leg)0 — ef(ef)~le. Since e and ef(ef)~[e have different contents
they cannot be p-related. So Lemma 3.1 again fails. Nevertheless, some positive
results have been obtained for free band products [7], leaving open the prospect
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of further progress for completely regular semigroups in general.

4. Coproducts of completely simple semigroups: the word problem

Let {£,},<=/ be a family of disjoint completely simple semigroups; define
U = *v Si, recalling the remarks following Proposition 1.2; and let S — U/p =
*CR 5,-, as in Section 1. We solve the word problem in S (modulo those in the
factors Si) inductively, based on \c(u)\, that is, on the number of factors S,
involved in the word u e U under consideration.

If |C(M)| = 1 and u pv then u, v e 5, for some i € I and so u — v in 5,
(since 5, embeds in S). The inductive step involves an extension of the notion
of characteristic sequence introduced in [8].

Let |C(H)| = n > 2. The characteristic sequence [u] of u, to be constructed
below, will have the form

(HjejUjgj)0<j<k = (Moeowogo, ^\e\uxgx,..., ixkekukgk)

where for each j , \Xj e {1, —1}, c(w;) = c(u) — {ij} for some /, e c(u) and
ej and gj are idempotents of Sj. The expression ejUjgj is to be regarded as a
product in U (or in F); it is termed a link of u. (This term has a more general
meaning here than as originally used in [9]). A link ejUjgj is interior if neither
ej nor gj is 1. Let Link (u) be the set of interior links of u. It will be shown that
Link (M) = {ejUjgj : 0 < j < k} and that eo"ogo and ekukgk are, respectively,
the left and right indicators of u.

The characteristic sequence is constructed inductively, as in [8], on the number
of segments (q)~l of u with c{q) = c(u).

(i) Suppose u has no such segment. Let b0,..., bk be the sequence of
segments of u, read from left to right, that are maximal such that \c(bj)\ —
\c(u)\ - 1. Put Uj = bj, 0 < j < k. Let c(u) - c(bj) = {ij} and let Xj and
y>j, respectively, be the letters of u that immediately precede and follow bj (with
value 1 if empty). Let e, = (s^ x,)0 and gj — (vy5,v)°, the idempotent in the
^f-class R^ PI LXJ or L(''° n Ryj, respectively, of Siy; or 1 if xj = 1 or y; = 1.
Let [M] be the sequence (+ejUjgj)o<j<k so defined.

(ii) Now suppose u — p(q)~lr, where c(q) — c(u). Put

[u] = ({pqO)qa, -q
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FIGURE 1

where

(w)
_ J l-w-l if \c(w)\ < |C(K)|

if \c(w)\ = \c(u)\

- (w0, ...,wt) = (-we, ..., —wo),

and pre-subscripting [post-subscripting] denotes pre-multiplication [post-mult-
iplication] of the first [last] link by the subscript.

In case (i) it is clear from a comparison of the definitions that ixoeouogo is the
left indicator of u, that is, /x0 = 1, e0 — 1, u0 — wO and g0 = ua. In fact, a
simple induction establishes that this is true for any u. Similarly, fikekukgk is
the right indicator of u, that is, iik — 1, ek — ue, uk = u\ and gk = 1.

EXAMPLE. Let Si and 52 be the two rectangular bands defined in Figure 1, with
designated idempotents S\ — e, s2 = / and the designated _£?- and ^-classes
thus as indicated.

Consider the word u = ajb (ajb)~l af € U. Then (ajb)0 = a, (ajb)a =
Uf)° = f, (ajb)\ =bmd (ajb)€ = (fj)° = j ; note that (ajb)a = aj(ba) =
aje; similarly b(ajb) = ejb. Thus

[u] = ((aje)f, -j [eje]f, ,- (ef)).

Now c(aje) = c(u), so {aje) = [aje] — (la/, eje, je • 1) and (aje)f =
(laf, eje, jef). Similarly, j (ef) = (jef, ef-l). Also[eje] — (lef, eje, je-
1), so j [eje]f = (jef, eje, jef) and - y [eje]f = (-jef, -eje, -jef).
Hence

[u] = (laf, eje, jef, -jef, -eje, -jef, jef, ef • 1).
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Similarly,

[(ajb)-[ajef] = ((a)f, -j[eje]j, j[ejef])

= (la/, -jef, -eje, -jef, jef, eje, jef, ef • 1).

Let Z be a countably infinite set of new variables and let FGZ denote the free
group on Z. Our main theorem is a close analogue of the Theorem in [8].

THEOREM 4.1. Let {5,},6/ be a family of disjoint completely simple semig-
roups, let U = *vSj and S = U/p = *CRS,. Let u,v e U. If\c(u)\ — 1 then
u pv if and only u — v; if \c(u)\ > 1 then u pv if and only if

(i) c(u) - c(v);
(ii) uO p vO and ua = vo;

(iii) «1 p vl and ue = ve;
(iv) if[u] = (HjejUjgj)0<j<k and [v] = (r)jfjVjhj)0<j<e and \fr is any map

from Link (u) U Link (v) into Z such that (ewg)\j/ — (e'w'g')\/r if and only if
e = e', wp w' and g — g', then

k I

\ \ UejUjgjW' = f [ UfjVjhjW* in FGZ.
y=i 7=1

If Link (w) or Link (v) is empty, the product is interpreted as the identity
element of FGZ. Before its proof, the theorem will be exemplified.

EXAMPLE. In the example above, Link {ajb{ajb)~l af) = {eje, jef} =
Link {{ajb)~l ajef). We may map eje to z\ and jef to z2, say, zx ^ z2. Then
the product associated with ajb(ajb)~x af is ziZ2Z2"

1zj~1z2~
1Z2 = 1 and that with

(ajb)'1 ajef is z2"
1zf1z2"

1z2ziZ2 = 1. According to Theorem 4.1, therefore,
ajb{ajb)~l af and (ajb)~l ajef represent the same element of S.

PROOF OF NECESSITY. Necessity of (i)—(iii) follows from Theorem 3.3. From
the definition of p, to prove (iv) it is only necessary to show that

(a) (iv) holds for («(«)" '«,«), (M(M)"1, (u)~lu) and (((M)"1)"1 , U) for
all u e U;

(b) if u pv and (iv) holds for (M, V) then (iv) holds for (su, sv) and (us, vs),
for any s e U.

https://doi.org/10.1017/S1446788700034844 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700034844


222 Peter R. Jones [11]

We need the following lemma. Observe first that the operators 0 and a on
words in U may be iterated: putwO0 = M and MCF° = 1 and define uO" = (M0"" ' )0

and uo" — (M0""')a for n > 1. The operators 1 and e are iterated similarly.

LEMMA 4.2. Lets,u e U. Then

(i) ifc(s) and c(u) are incomparable then [su] — (+ejWjgj)0<jsh, where
ej = s€Ja, wj = slja uOj(l, gj = uo^, Oa = hfi = 0 and for 0 < j < h, ja
and j/3 are positive integers determined by the order in which the factors 5,
involved in s last appear and the order in which the factors involved in u first
appear, respectively;

(ii) ifc(u) C c(s) and [s] - (r)jfjSjhj)o<j<e then

[su] = (rjofosoho, •••, m-ife-\Si-\hi-i, ft{seu)).

PROOF. This follows straightforwardly from the definition of characteristic
sequence.

To prove (a) above, let u e U, \c(u)\ > 2, and suppose [u] = (iJ,jejUjgj)0£j<k

= (luogo, T, ekuk 1), say. By definition, recalling that u0 — wO, g0 = uo,
ek = we and uk = u\,

1U] = ([Uuo]go, ~ek [Uk U U0]g0, ek

By Lemma 4.2 (ii) and its dual,

-(et{uku0)g0, T, ekuk-l) a n d

ek[ukUU0]go-(et{ukU0)g0, T, ek(ukU0)g0).

Substituting these three sequences into the previous one, applying an appro-
priate map i/r and evaluating in FGZ verifies that (iv) holds in this case. The
case (w(w)"1, (W)~'M) is similar. Considering (((M)"1)"1 , U) we have, applying
the definition,

O, -ek[Uk(uylu0]g0, ekgk • 1).

Applying the definition once more,

l - ({ukU0)g0, -ek[UkUU0]g0, ek
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and so ejMt(M)-1M0]g0 = U(«*wo)go> -«*[«* "«o]go> «*<«t«o)«o)- Substituting

this last sequence in the expression above and using the formulas obtained for
the first case, we obtain

[((W)"")"1] = (l«0g0, -ek(
ukUo)go,ek{

ukuo)go> T, ek(
ukuo)go, ~ek («*«o)gO' ekgk' ! ) •

The proof may now be easily completed.
The proof of (b) above is by induction on the content. Suppose that (iv) holds

for (w, v), u,v e U, u pv, and let s e 5. By Theorem 3.3, c(u) = c(v). Sup-
pose firstly that c(u) and c(s) are incomparable. Then [su] = (+ejWjgj)0<j<h,
in the notation of Lemma 4.2 (i). Similarly, [sv] — (+fjZjhj)0<j<e, where by
repeated applications of Lemma 3.1, from upv it follows that h = I, that
/ ; = s\

ja = e} and h, = vaiP = uo'p = gjt and that z, = sl>a vtyp p
slJa uOJP — Wj, for 0 < j < h. Thus for any appropriate map \jt into Z,
(ejWjgj)ir = (fjZjhj)f,Q < j < h, and so n*Ii' (ej™jgj)if = Ytjll (fjzjhjW
in FGZ, that is, (iv) holds for (SM, 5U).

Next suppose c(u) c c(5). Let [*] = (r)jfjSjhj)0<j<e = (lso^o. 5, / ^ • 1),
say. By Lemma 4.2 (ii),

[s«] = (lsoho, S, fe(seu)) and

[JU] = (lsoho, S, ft{sev)).

If c(u) c cfe) then/,(^«) = ft{stu) • 1 and/,(^i>) = ft(stv) • 1. Since ^ is
only applied to interior links, the result is clear. Otherwise, c{stu) = C(SM) and
fow) = [S^M], (5fu) = [^u]. If C(M) and cfe) are incomparable then the first part
of the proof shows that (iv) holds for (stu, stv). Moreover, the leading terms of
fe[s(u] and/,|>fv] are p-related since they are, respectively, ft(seu) 0 (stu)o and
fi{stv)Q(stv)a and applying Lemma 3.1 to stu and stv, (stu)0 p (siv)O and
(stu)a = (S(V)a. Under an appropriate map \fs, these two terms are therefore
equal and (iv) holds for (su, sv). The remaining case has c(se)^c(u) (that is,
c(u) = c(s)). By the dual of Lemma 4.2 (ii), ft[stu] = (ft{siu0)ua, T, «e(«l)-l)
andft[stv] = (f({sev0)va, V, V€(ul)-l), where [u] = (luOucr, T, «e(Ml)- l)and
[v] = (ivOva, V, ve(vl) • 1). The case where c(s() and c(«0) are incomparable
is completed similarly to the previously considered case. In the remaining
possibility, ft{stu0)u<T = ft(stu0)ua and fe(sev0)va = ft(sev0)vcr. As above,
these links are p-related and therefore equal under any appropriate map ty. It
now follows that (iv) holds for (su, sv) in this case also.

The alternative case, c(s) c c(u), holds similarly. Thus (iv) holds for (su, sv)
in all cases. By duality, it holds for (us, vs) also.
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PROOF OF SUFFICIENCY. The main tool in the proof of sufficiency in [8] was
the 'Decomposition Lemma,' based on arguments in [9]. Its analogue here is
Lemma 4.3. Recall from Section 3 that for / e / , s, denotes the distinguished
idempotent of 5,, belonging to the M1 -class H(i) = /?(0 D L(0. It will be
convenient to assume / is well ordered.

LEMMA 4.3. Let u e U, c(u) = A, say, \A\ > 2. Let [u] = (HjejUjgj)0<j<k-
Then

k-\

(1) u p coL(lu0g0) Y\o(ejUjgj)*J o)R(ekuk)
7 = 1

where for ewg G {ejUjgj : 0 < j < k),

(oL(ewg) = ewg f (fR(w)gf)'1

co(ewg) = fewg f (fR(w)gfy1

(oR(ewg) = fewg

and if A = [ii < ... < /„}, f = stl ... sin (s,-, . . . sin)~
l £ U-

PROOF. For notational convenience, put /, = R(Uj)gj (= UjCUjlgj), 0 <
j < k. Observe that /; also equals ej+[L(uj+\) = e;+1M;+i0My+1cr.

First consider the case where u has no segment (q)~] with c(q) = c(u). Let
d denote the terminal segment of u that begins with ux and put W = d. If, on
the one hand, «o was obtained from the initial segment b0 (see the definition
of [u]) without deleting any unmatched parentheses then u = uou' = uogou',
for some u' € U; thus W — (uol)u' = (uo\)gou'. By the dual of Lemma 3.2,
"ogo P uogoUoy^o = uogoilo)'1 R(uo)go = uogoilo^eiiuoVgo- Therefore

On the other hand, if some parenthesis was deleted from b0 we may write
u0 — pg, where g begins with a left parenthesis and is an initial segment of
some segment (e)~l of u. So u — p(e)~lf for some / e U'. Since, by
hypothesis, c(e) ^ c(u), and the right parenthesis )" ' is to the right of g0 = ua
(see Section 3), it follows that the initial ( of g is to the right of («0)e, whence
«ol = hg for some h e U1. Thus W = h(e)~i f and since by Lemma 3.2,
(e)-1 P ggo(ggo)-l(e)-\ Wphggo(ggor

l(e)-lf = (uol)go(ggor
l(e)-lf.

Similarly

u = p{e)~lfppggo{ggQ)~l (e)~lf = uogo (ggo)~] W " 1 /

PuogoUo)~l eiiuo^goiggorHe)'1 f
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puogo (A))"1 ex hggo (ggo)~l (e)~lf

using the proof of the first case in the central step.
In either case, therefore, u p MogofYo)"1 e{W. Next observe that ( / ( / / o / ) " 1

f h)p is an idempotent in U/p which is _&?-related to (uogo)p, by Theorem 3.3,
since /0 = R(uogo). Thus

puogofiflofr' fexW = <oL(lu0go) fex W,

since Io = R(uo)go = exL(ux) = L(exux) = L(exW).
Now these arguments may be applied to W and repeated until (1) is achieved.
The rest of the proof proceeds inductively on the number of segments of u of

the form (q)'1 with c{q) — c{u).
Suppose u = p{q)~xr. By Lemma 3.2, L(q)L{q)~l(q)~l p(q)~\ so

uppUq)L(q)-\q)-lr0. The p-class of the word /"(/R(q) q L{q)/)"'
/ R(q) q L(q) is an idempotent in U/p that is ̂ f-related to L{q), by the same
lemma, so

uppL{q) fifRiq) q L(q)f)'1 f R{q) q L(q)L(qyl (qy
lr

ppUq) f(fR(q) q L{q)fyl fR{q) q{qylr

and thus
(2) u p pL(q) f(fR(q) q Hq)f)~l f R{q)r

since R(q)q(q)~l p R(q), by the same lemma again. (Compare with [9,
Lemma 2.1]).

Note that all the words of the form f w f that appear in (1) or (2) have content
c(u). By Theorem 3.3, therefore, each such ( / w f)p belongs to the subgroup
HfP of U/p. Since fR{L{q))f also belongs to this group,

u p PL(q) f (fR(L(q))fyl (fR(q) q L(q)f (/R(L(q))fylyl fR(q)r.
(3)

Suppose c(pqO) ^ c(u). Then {pqO)qa = l(pqO)qa (= l«ogo) and

a>L(l(pq0)qa) = pqOqa f {f R{pqV)qof)~l

= PUq)f(fR(L(q))fy\

since L(q) = qOqo and R(L(q)) = R(qOqa) = R(pqOqo) = R{pqG)qo.
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Otherwise c(pqO) = c(u). Let [pqO] = (njfjrjhj)0<j<t. By the inductive
hypothesis,

e-i

pqO p (oL(lr0h0) ]~[ (oifjrjhj)"' a>R(fert).
7 = 1

Since c(qO) = c(rt), we have R(qO) = R{rt) and R(L(q)) = R(qO)qa =
R(rt)qo.

Hence

coR(ftri\)qcjf(fR(L(q))frl = fferlqaf(fR(re)qcTfyl=(o(f(rlqa)

and

£ - 1

PL(q)f(fR(L(q))fri P Q>L(\roho)Y\a>{fjrjh})'' co(fertqa).
7 = 1

This covers the first segment of the right hand side of (3). We next treat
the large inverted term. Let [(ql)q (qO)] — (r}jCjtjdj)0<j<h- By the inductive
hypothesis,

qlqqO p coL(lt0d0) ]~[ co{Cjtjdj)ni coR(chth).
7 = 1

Now fR(q) = fqcql and fqecoL(lt0d0) = co(qet0do); similarly, L(q)f
{fR{L{q))fY' = qOqaf(fR(L(q))frl and coR(chthl)qaf(fR(L(q))f)-1

— co{chthqo), since R(L(q)) = R(qO)qa = R{tk)qo, similarly to the earlier
argument. Combining these two equations gives

fR(q)qL(q)f(fR(L(q))fTl p co(q€tod0) f [ toiCjtjdj)"' co{chthqa).
7 = 1

A similar, but simpler, analysis applies to the last segment, fR(q)r, of (3). By
substituting these equations into (3) and comparing the result with the definition
of [u], the proof of the lemma is completed.

To complete the proof of sufficiency, let u, v e U, with \c(u)\ > 2, sat-
isfying the conditions in Theorem 4.1. Let [u] = ((j,jejUjgj)0<j<k, [v] —
(rijfjVjhj)0<j<e. By Lemma 4.3,

k-l

upa)L(luogo) Y\ oiejiijgjY1 ooR{ekuk)
7 = 1
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and
i-i

vpa>L(lvoho)

Let \jr be any map of Link (u) U Link (v) into Z, as in the statement of the
theorem. Then

k-l l-\

Y[ (ejUjgjW* = ]~[ {fjVjhjW in FGZ.
7 = 1 j=\

For any ewg e Link (M) ULink (v), co(ewg) = fewgf(/R(w)gf)~l. Thus
for any ewg, e'w'g' e Link (u) U Link (v), if (ewg)xff = (e'w'g')i/f in Z then
a)(ewg) p a)(e'w'g'). For by hypothesis e — e', g = g' and w p w', whence,
by Lemma 3.1, R(w) p R(w'). Since for all such ewg, (ewg)p belongs to the
subgroup Hfp of U/p,

k-\ e-i

Y\co(ejujgjr p Yl co(fjVjhj)"'.
j = \ y = l

But by hypothesis (ii), uop v0 and g0 = h0, so R(u0) p R(v0) and
^L(1MO£O) P wL(lvoho). Similarly coR(ekuk) p (oR{fiVe). Hence upv.

COROLLARY 4.4. Let {5,},£/ be a disjoint family of completely simple semig-
roups and put S = *CR 5,. Then the maximal subgroups of S, other than those
of the original factors 5,, are free groups.

PROOF. Let H be a maximal subgroup of S that is disjoint from | J j e / S,. By
Theorem 3.3, H determines a finite subset A = {iu i2,..., /„} of / , with n > 2,
namely c(u) for any u e H. Let Link^ = |J{Link ( « ) : « € U, c(u) = A}.
Let xfr be a map of Link4 into a sufficiently large set Y, such that for ewg,
e'w'g' e LinkA, (ewg)ij/ = (e'w'g')yfr if and only if e = e', wpw' and g — g'.

For 1 < j < n, let s,y be the designated idempotent in St/, as in Section 3. Put
s = sit... Sj, stl ... 5,n ,. By Theorem 3.3, H c Dsp, and so H = Hsp. Clearly,
sO = st[ ... sin_s —si and so = se — sin = d, say.

Note that

d{sls0)d = d(slsO)d = dis^ .. .sin_yd e Link (£,„$,, .. .$,-„_,.$,•, . . .«,•„),

so (d(slsO)d)-^ is well defined.

https://doi.org/10.1017/S1446788700034844 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700034844


228 Peter R.Jones [17]

Let u, v G U, with [u] = (/xy^M7g;)0<7<t = (l«ogo> T, ekuk • 1) and
[v] = (ijfjVjhj)Osj<e = (lvoho, V, feve • 1), say. If up, vp e //,p then by
Theorem 3.3, UQ = uO p sO p vO — v0, go = ua — so = d = va = h0, uk =
u\ ps\ pv\ — ve and gk = ue = se = d — ve = he. By Lemma 4.2 and its
dual [uv] = (luogo, T, d{ulvQ)d, V, ftvt\).

Now (d{ulvO)d)xff = (ds\sOd)\fr, since ulvOpslsO. Thus the map
>t— 1

7 = 1

is a morphism of Hsp into FGy which, by Theorem 4.1, is injective. The
Schreier subgroup theorem completes the proof.

5. Coproducts of groups

Let {G,},6/ be a family of disjoint groups. Theorem 4.1 simplifies, to the
extent that the solution looks almost identical to that for free completely regular
semigroups. For the designated idempotent s, of G, is obviously its identity, and
//<'•> = L(I) = R(i) = G,. Hence if u € U = *vGt andejUjgj isalinkof u, then
either ej = 1 or ey is the identity of G, , where c(u) — C(UJ) — {/,-}, and similarly
for gj. Thus we may omit mention of e, and gj altogether. Theorem 3.3 now
specializes as follows.

PROPOSITION 5.1. Let {G,},e/ be a family of disjoint groups, U = *vGj and
S = U/p = *CR G,. Ifu, v 6 U then

(i) up Qi vp if and only if c(u) = c(v);
(ii) up & vp if and only ifc(u) = c(v) and «0 p vO;

(iii) up Jz? vp if and only ifc(u) — c(v) and ul pv\.

The definition of the characteristic sequence [u] of u may be simplified:
[u] = {iijUj)Osjsk, where

(i) if M has no segment of the form (q)~l with c(q) = c(u), then /xy = 1
and Uj = bj,0 < j <k, as before, and

(ii) if u — p{q)~^r, where c(q) — c(u), then [u] — ({pqO), — [qlqqO],
(qlr)), where

w if c(w) 7̂  c(u)
[w] if c(w) = c(u).
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Now Theorem 4.1 becomes the following (cf. [8, Theorem]).

COROLLARY 5.2. Let{Gj}ie, be a family ofdisjoint groups and let U = *u G,.
Let u,v € U, \c(u)\ > 2. Then u pv if and only if

(i) c(u) = c(v),
(ii) u 0 p v 0,

(iii) u 1 p v 1,
(iv) if[u] = (v<jitj)o<j<k and [v] — (^vy)o<7<€ and x/s is any map from

{ « ! , . . . , M*_I} U{t>i, . . . , D^-I) to Z such that for s, t in the domain, s\j/ = tiff if

and only if s p t, then njl} {UjW = Fiji! (tyW '» F Gz-

By standard arguments, when each group G, is infinite cyclic, *CR G, =
FCR/ and Corollary 5.1 becomes precisely the Theorem in [8]. A more novel
special case is that when each group G, is trivial, G, = {«,}, say. Let / = {et :
/ € / } . Then / is a set of idempotents of 5 = *CR {e,} which generates S and is
bijective with / .

PROPOSITION 5.3. The free product S — *CR{e,} of trivial groups {e,},e/,
together with the injection 6 : i t-+ eit i € I, is the free idempotent-generated
completely regular semigroup f /CR/ on I, in the following sense. For any
map 4> of I into the set ET of idempotents of a completely regular semigroup
there is a unique morphism 4> : S -»• T such that 0<p = 4>.

PROOF. Let </> be as in the statement of the theorem. Then for each /, the
restriction <pt of </> to {/} induces the monomorphism 0, of the group {et} into
T given by e,</>, = i<f>. These monomorphisms extend uniquely to a morphism
4>: S -+ T such that e,0 = e,</i, for all / e / . Thus 64> - 4>.

Corollary 5.2 therefore solves the word problem in FICRA, for any set A. In
particular, by Corollary 4.4, the nontrivial subgroups of FICKA are free. In the
next section we show that F1CRA is isomorphic with the completely regular
subsemigroup of FCR4 generated by {a0 : a e A}.

6. Subsemigroups of the free product

In this section we show that if for each / e / , 7} is a (completely) regular
subsemigroup of the completely simple semigroup 5, then the completely regular
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subsemigroup of the free product S — *CR 5, generated by \JieI Tt is isomorphic
to *CR Tj. (It was shown in [7] that for bands, at least, this need not happen if
complete simplicity of the factors is relaxed. We do not know if the same is true
for completely regular semigroups.)

Recall from Section 1 the notation X, for |J16/ 5,, and F, for the free monoid
on X U {(,)"'}. Now let Y - \Jiel T,; c X and let FY be the submonoid of F
generated by Y U {(,)"'}. Clearly, FY is freely generated by this set. Also FVY,
the free unary semigroup on Y, is (isomorphic to) the smallest subsemigroup
of FY such that Y c FVY and (w)~l e FUy whenever w e FVY; thus FVY

is the unary subsemigroup of FVX generated by Y. Let dY denote the unary
congruence on F\JY generated by

{(s • t, st) :s,teT,, / e /} U {((0"1, r 1 ) : t e T,, i e / } .

Suppose v, w € F\]Y and v e w (in FUX)- Let v and w, respectively, denote the
unique words in F\]Y that are eY -related to v and w according to Proposition 1.2,
as applied to Y. Then applying the same proposition to X we see that since
fr ^ ex, v — w and so veY w. Hence e restricts to eY on FX\Y and we may
identify the free unary product *u7] with a unary subsemigroup UY, say, of U —
*vcpSj. Furthermore, we may suppose that UY comprises those 'reduced'words
of U whose letters (other than ( and )""') belong to Y (see the remarks following
Proposition 1.2).

All the discussion so far has been valid in general, for 7} a unary subsemigroup
of Sj, i € / . Now let each 5, be completely simple. Denote by pY the congruence
on UY that induces *CR7J, as in Proposition 1.3. In the notation of Section 3,
for each / € / , we may choose the designated idempotent s, of 5, from 7}. For
u e U, if u e UY it is clear that MO, wl e UY also. Further, ua = (ysj)° e UY

and ue — (SJX)° € UY (see Section 3 for the definition of x and y). In fact,
if [M] = [/J>jejUjgj}o<j<ic denotes the characteristic sequence (Section 4) of u,
regarded as an element of U, then similar reasoning shows that each e}••, gj e 7)
for some ij e / , and each uj e UY. Hence [u] is also the characteristic sequence
of M, when u is regarded as an element of UY.

Now denote by (U,e/ 7})m e completely regular subsemigroup of 5 = *CRS,

generated by the subsemigroups 7}, / e / . Clearly, (U,e/ ^>) ' s m e image of UY

under the projection of U on U/p = S. From Theorem 4.1 and the discussion in
the preceding paragraph, it is now evident that for words u, v in U, if u, v € UY

and u p v then u pY v; that is, p restricts to pY on UY. Hence (\Jiel 7}) = *CR7j.
This completes the proof of the main result of the section.
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THEOREM 6.1. Let {S,-},-e/ be a family of completely simple semigroups and
let Tt be a regular subsemigroup of Sit i £ I. Then the unary subsemigroup of
*CRS, generated by the semigroups Titi e / , is isomorphic with *CR Tt.

COROLLARY 6.2. The free idempotent-generated completely regular semi-
group FICRA on a set A is isomorphic with the unary subsemigroup of FCRA

generated by {a0 : a e A}.
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