PROPERTIES OF THE FIXED POINT SET OF CONTRACTIVE MULTI-FUNCTIONS

by HELGA SCHIRMER

1. Introduction. A well known theorem by S. Banach states that a contractive function $f: X \to X$ on a complete metric space X has a fixed point, and that this fixed point is unique. This result has a partial extension to multi-functions: every contractive compact-valued multi-function on a complete metric space has a fixed point (see Definition 1 and Theorem 1 below). But simple examples show that this fixed point is no longer unique. We investigate some questions concerned with the properties of the fixed point set Φ of a contractive multi-function φ . Is, e.g., Φ connected if φ is connected-valued? Is Φ convex if φ is convex-valued? The answer is yes if X is the real line (§2), but examples in §3 and §4 show that in general the answer is no.

Let D be the Hausdorff metric generated by the metric of the space X.

DEFINITION 1. A multi-function $\varphi: X \to X$ is contractive if there exists a $k \in [0, 1)$ such that for every distinct pair $p, q \in X$

 $D(\varphi(p),\varphi(q)) \leq kD(p,q).$

p is a fixed point of φ if $p \in \varphi(p)$. The following theorem asserts the existence of a fixed point for contractive multi-functions.

THEOREM 1. Every compact-valued contractive multi-function $\varphi: X \rightarrow X$ on a complete metric space X has a fixed point.

The proof is a fairly easy modification of the corresponding proof in the singlevalued case. We omit it as Theorem 1 will not be needed in the following, and as a very similar theorem was announced in Markin [1].

2. Contractive Multi-functions on the Real Line. As the only subsets on the real line R^1 which are connected or convex are the intervals, properties of the fixed point set of a contractive multi-function on R^1 with connected or convex images are easy to investigate.

THEOREM 2. Let $\varphi: \mathbb{R}^1 \to \mathbb{R}^1$ be a contractive multi-function such that $\varphi(x)$ is compact and connected for all $x \in \mathbb{R}^1$. Then the fixed point set of φ is compact and connected.

Proof. As $\varphi(x)$ is compact and connected, it is either a compact interval or a single point, i.e.

 $\varphi(x) = [m, M], -\infty < m \le M < \infty$, for all $x \in \mathbb{R}^1$.

Received by the editors June 12, 1969.

Then we have for any distinct pair $x_1, x_2 \in \mathbb{R}^1$ with $\varphi(x_i) = [m_i, M_i]$ for i = 1, 2, ...

$$D(\varphi(x_1), \varphi(x_2)) = \max(|M_2 - M_1|, |m_2 - m_1|),$$

so that for some $k \in [0, 1)$ both

$$|M_2 - M_1| \le k |x_2 - x_1|$$
 and $|m_2 - m_1| \le k |x_2 - x_1|$.

Therefore

 $a(x) = \min \varphi(x)$ and $b(x) = \max \varphi(x)$

are two contractive single-valued functions on R^1 , and hence have each a unique fixed point a_0 resp. b_0 . A look at the graph of φ in $R^1 \times R^1$ shows that clearly $a_0 \leq b_0$ and that $[a_0, b_0]$ is the fixed point set of φ .

NOTE. The word "connected" in Theorem 2 can obviously be replaced by "convex".

QUESTION. If the image of the contractive function $\varphi: \mathbb{R}^1 \to \mathbb{R}^1$ consists of exactly *n* points for all $x \in \mathbb{R}^1$, does the fixed point set of φ consist of *n* points?

3. The fixed point set of a connected-valued function need not be connected. Define first a multi-function $\psi: \mathbb{R}^2 \to \mathbb{R}^2$ on the Euclidean plane as follows. For every $p = (x, y) \in \mathbb{R}^2$ let $\psi(p)$ be the boundary of the square with sides parallel to the axes, side length one, and centre at $p' = (\frac{1}{4}x, \frac{1}{4}y)$. Then ψ is a contractive function as

(1)
$$D(\psi(p_1), \psi(p_2)) = D(p'_1, p'_2) = \frac{1}{4}D(p_1, p_2),$$

and its fixed point set Ψ is the boundary of the square with centre at the origin, side length $\frac{4}{3}$ and sides parallel to the axes.

We now modify ψ to a contractive multi-function φ which is still connectedvalued, but has a nonconnected fixed point set. Let X be the closed strip of R^2 defined by

$$X = \{(x, y) \in \mathbb{R}^2 \mid x - 1 \le y \le x + 1\},\$$

and define $\varphi: X \to X$ by $\varphi(p) = \psi(p) \cap X$ for all $p \in X$. Then the fixed point set Φ of φ is given by $\Phi = \Psi \cap X$ and hence has two components. Clearly $\varphi(p)$ is compact for all $p \in X$, and it is still connected as a square with side length one and sides parallel to the axes cannot intersect both y = x - 1 and y = x + 1, so that at most one corner is cut off $\psi(p)$ to obtain $\varphi(p)$. It remains to show that $\varphi: X \to X$ is contractive. We assert that, with p' defined as above,

(2)
$$D(\varphi(p_1), \varphi(p_2)) \le 2D(p'_1, p'_2)$$

and hence

$$D(\varphi(p_1), \varphi(p_2)) \le k D(p_1, p_2)$$
 with $k = \frac{1}{2}$.

(In fact $k = \frac{\sqrt{2}}{4}$, but the proof is longer and the result not needed.) If $\varphi(p_i) = \psi(p_i)$ for both i=1 and i=2 then (2) follows from (1). Therefore it is

[June

only necessary to consider the case where for at least one p_i , say for p_1 , we have $\varphi(p_1) \neq \psi(p_1)$. Then (see Figure 1) $\varphi(p_1)$ consists of the boundary of a square of which one corner with vertex v_1 is cut off by a line *l* parallel to a diagonal of the square. Let v_2 be the vertex of $\psi(p_2)$ corresponding to v_1 , and let v_3 be the point such that $v_3v_1 \parallel l$ and $v_3v_2 \perp l$. Then clearly

$$D(v_1, v_3) \leq D(v_1, v_2)$$
 and $D(v_3, v_2) \leq D(v_1, v_2)$.

Denote by S the part of the boundary of the square with vertex v_3 cut off by l. Then

$$D(\varphi(p_1), S) = D(v_1, v_3).$$

One can also check that, whether v_2 is cut off by l or not,

$$D(S, \varphi(p_2)) \leq D(v_3, v_2).$$

https://doi.org/10.4153/CMB-1970-036-4 Published online by Cambridge University Press

HELGA SCHIRMER

Hence

$$D(\varphi(p_1), \varphi(p_2)) \le D(\varphi(p_1), S) + D(S, \varphi(p_2))$$

$$\le D(v_1, v_3) + D(v_3, v_2)$$

$$\le 2D(v_1, v_2) = 2D(p'_1, p'_2),$$

so that (2) holds and φ is contractive.

Therefore φ is an example of a contractive function with compact and connected images which has a nonconnected fixed point set.

4. The fixed point set of a convex-valued function need not be convex. We define a multi-function $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$ on the Euclidean plane \mathbb{R}^2 in the following way. For any $p = (x, y) \in \mathbb{R}^2$, let $\varphi(p)$ be the closed disc with radius $\frac{1}{2}$ and centre p' = (x', y'), where

(3)
$$\begin{aligned} x' &= \frac{2}{3}x, \\ y' &= \frac{3}{4} - \frac{1}{2} |x| \end{aligned}$$

Then $\varphi(p)$ is clearly convex and compact for all $p \in R^2$. To see that φ is contractive note that for any $p_1, p_2 \in R^2$

$$D(\varphi(p_1), \varphi(p_2)) = D(p'_1, p'_2).$$

Hence, if $p_i = (x_i, y_i)$ are such that $x_i \ge 0$ for i = 1, 2, it follows from (3) that

$$D^{2}(\varphi(p_{1}),\varphi(p_{2})) = \frac{4}{9}(x_{1}-x_{2})^{2}+\frac{1}{4}(x_{1}-x_{2})^{2},$$

therefore

(4)
$$D(\varphi(p_1), \varphi(p_2)) = \frac{5}{6} |x_1 - x_2| \le k D(p_1, p_2)$$
 with $k = \frac{5}{6}$.

If $x_i \leq 0$ for i=1, 2, we obtain (4) similarly. If $x_1 > 0$ and $x_2 < 0$, let $p_3 = (0, y_3)$ be the point such that $p_1p_3p_2$ are collinear. Then, using the cases previously discussed,

$$D(\varphi(p_1), \varphi(p_2)) \le D(\varphi(p_1), \varphi(p_3)) + D(\varphi(p_3), \varphi(p_2))$$

$$\le kD(p_1, p_3) + kD(p_3, p_2)$$

$$= kD(p_1, p_2).$$

So (4) holds generally, and φ is contractive.

But the fixed point set of φ is not convex. To see this, test the points $(\pm 1, 0)$ and (0, 0). For p = (1, 0) the distance of p from the centre $p' = (\frac{2}{3}, \frac{1}{4})$ of its image is $<\frac{1}{2}$. The same is true for (-1, 0), so that $(\pm 1, 0)$ are two fixed points. But the distance of p = (0, 0) from the centre $p' = (0, \frac{3}{4})$ of its image is $>\frac{1}{2}$, so that (0, 0) is not a fixed point.

Hence φ is an example of a contractive function with compact and convex images which has a fixed point set which is not convex.

QUESTION: Is the fixed point set of φ connected if φ is a contractive multi-function with compact and convex images?

https://doi.org/10.4153/CMB-1970-036-4 Published online by Cambridge University Press

[June

172

Added in Proof. A proof of Theorem 1 has since been published, see [2, Theorem 5].

References

1. J. T. Markin, A fixed point theorem for set valued mappings, Bull. Amer. Math. Soc. 74 (1968), 639-640.

2. S. B. Nadler, Jr., Multi-valued contractive mappings, Pacific J. Math. 30 (1969), 475-488.

CARLETON UNIVERSITY, OTTAWA, ONTARIO