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The theory of strong interactions: quantum
chromodynamics

The basic features of the quark model of hadrons were set out in Chapter 1. Quarks

carry a colour index, and interact with the gluon fields which mediate the strong

interaction.

We have seen that in the Standard Model the electromagnetic interaction and

the weak interaction are well described by gauge theories. In the Standard Model

the strong interaction also is described by a gauge theory. In this chapter we show

how this is done. The theory is known as quantum chromodynamics (QCD) and

has the remarkable property that in the theory quarks are confined, as appears to be

the case experimentally (Section 1.4). In this chapter we concentrate exclusively

on the strong interaction. The electromagnetic and weak interactions of quarks are

neglected.

16.1 A local SU (3) gauge theory

In QCD, we have three fields for each flavour of quark. These are put into so-called

colour triplets. For example the u quark is associated with the triplet

u =
⎛
⎝ ur

ug

ub

⎞
⎠ ,

where ur, ug, ub are four-component Dirac spinors, and the subscripts r, g, b label

the colour states (red, green, blue, say).

We then postulate that the theory is invariant under a local SU(3) transformation

q → q′ = Uq (16.1a)

where q is any quark triplet, and U is any space- and time-dependent element of

the group SU(3). The mathematical steps follow those of the SU(2) theory of the

weak interaction of leptons. We introduce a 3 × 3 matrix gauge field Gμ, which
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154 Theory of strong interactions: quantum chromodynamics

is the analogue of the matrix field Wμ of the electroweak theory. Under an SU(3)

transformation,

Gμ → Gμ
′ = UGμU† + (i/g)(∂μU)U†. (16.1b)

We define

Dμq = (∂μ + igGμ)q. (16.2)

It follows that under a local SU(3) transformation

Dμ
′q′ = UDμq (16.3)

where Dμ
′q′ = (∂μ + igGμ

′)q′. The parameter g that appears in these equations is

the strong coupling constant.
Gμ is taken to be Hermitian and traceless, like Wμ in the electroweak theory,

and hence it can be expressed in terms of the eight matrices λa set out in Appendix

B, Section B.7:

Gμ = 1

2

8∑
a=1

Ga
μλa (16.4)

where the coefficients Ga
μ(x) are eight real independent gluon gauge fields. (The

factor 1
2

is conventional.)

The Yang–Mills construction (cf. Section 11.2),

Gμν = ∂μGν − ∂νGμ + ig(GμGν − GνGμ), (16.5)

leads to the result that, under SU(3) transformations of the form (16.1b),

G′
μν = UGμνU+. (16.6)

The gluon Lagrangian density is taken to be

Lgluon = −1

2
Tr[GμνGμν]. (16.7)

It follows from (16.16) and the cyclic invariance of the trace that Lgluon is gauge

invariant.

We can expand Gμν in terms of its ‘components’,

Gμν = 1

2

8∑
a=1

Ga
μνλa, (16.8)

using equation (B.27) of Appendix B. Hence, using also the property (B.28), that

Tr(λaλb) = 2δab,
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16.1 A local SU (3) gauge theory 155

the gluon Lagrangian density becomes

Lgluon = −1

4

8∑
a=1

Ga
μνGaμν. (16.9)

The quark Lagrangian density is taken to be of the standard Dirac form (equation

(7.7)):

Lquark =
6∑

f =1

[q̄ f iγ μ(∂μ + igGμ)q f − m f q̄ f q f ], (16.10)

where the sum is over all flavours of quark and m f are the ‘true’ quark masses

defined in Section 14.2. Lquark is evidently invariant under an SU(3) transformation

(using (16.3)). The reader should note here the very compact notation that has

been developed: as well as the explicit sum over flavours, there are sums over

colour indices and sums over the indices of the four-component Dirac spinor and γ

matrices. It is perhaps instructive for the reader to write out the expression in full.

The total strong interaction Lagrangian density is

Lstrong = Lgluon + Lquark. (16.11)

The eight gluon gauge fields have no mass terms. There is no direct coupling of

the gluon fields to the Higgs field. The Higgs field is relevant in that it gives mass

to the quarks. The field equations follow from Hamilton’s principle of stationary

action. For the six quark triplets we easily obtain (cf. Section 5.5)

(iγ μ Dμ − m f )q f = 0. (16.12)

For the eight gluon fields, variation of the Lagrangian density with respect to the

field Ga
ν gives (cf. Section 4.2)

∂μGaμν = j aν (16.13)

where

j aν = g[ fabcGb
μGcμν +

∑
f

q̄ f γ
ν(λa/2)q f ]. (16.14)

Here fabc are the SU(3) structure constants, defined by

[λa, λb] = λaλb − λbλa = 2i
8∑

c=1

fabcλc. (16.15)

(See Appendix B, Section B.7.) Their appearance here stems from the definition

(16.5) of Gμν .
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156 Theory of strong interactions: quantum chromodynamics

Since Gμν = −Gνμ it follows that

∂ν j aν = 0, (16.16)

and we have eight conserved currents. These are the Noether currents, which are a

consequence of the SU(3) symmetry taken as a global symmetry. We therefore have

eight constants of the motion, associated with the time-independent operators

Qa =
∫

j a0d3x. (16.17)

The field equations, and in particular the gluon field equations, are non-linear,

like the equations of the electroweak theory. It is clear from (16.14) that both the

quarks and the gluon fields themselves contribute to the currents j aν which are the

sources of the gluon fields. The quarks interact through the mediation of the gluon

fields; the gluon fields are also self-interacting.

Since the gluon fields are massless we might anticipate colour forces to be long

range, which appears inconsistent with the short range of the strong interaction.

However, the fields are known to be confining on a length scale greater than about

10−15 m = 1 fm: neither free quarks nor free ‘gluons’ have ever been observed.

In the electroweak theory, the ‘free field’ approximation in which all coupling

constants are set to zero is the basis for the successful perturbation calculations we

have seen in the preceding chapters. The free field approximation for quarks and

gluons is not a good starting point for calculations in QCD, except on the scale of

very small distances (≤ 0.1 fm) or very high energies ( > 10 GeV). For low energy

physics, the equations of the theory are analytically highly intractable. Even the

vacuum state is characterised by complicated field configurations that have so far

defied analysis. There is no analytical proof of confinement. Confinement is not dis-

played in perturbation theory, but numerical simulations demonstrate convincingly

that QCD has this necessary property for an acceptable theory.

16.2 Colour gauge transformations on baryons and mesons

Since colour symmetry plays such an important part in the theory of strong interac-

tions, it is natural to ask why it is not readily apparent in the particles, baryons and

mesons, formed from quarks by the strong interaction. Here we attempt to answer

that question.

In Section 1.4 we asserted that baryons are essentially made up of three quarks,

and mesons are essentially quark–antiquark pairs. We shall denote a three-quark

state in which quark 1 is in colour state i, quark 2 is in colour state j, and quark 3 is

in colour state k by |i, j, k〉, and take the colour indices to be the numbers 1, 2, 3.

We have suppressed all other aspects (position, spin, flavour) of the quarks. In
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16.2 Colour gauge transformations on baryons and mesons 157

Section 1.7 we saw that the Pauli principle required baryon states to be antisym-

metric in the interchange of colour indices. The only antisymmetric combination

of colour states we can construct is

|state〉 = (1/
√

6)εi jk |i, j, k〉, (16.18)

where εi jk is defined by:

ε123 = ε231 = ε312 = −ε132 = −ε321 = −ε213 = 1,

and εi jk = 0 if any two of i, j, k are the same. (1/
√

6) is a normalisation factor.

How does this state transform under a colour SU(3) transformation? We restrict

the discussion to a global (space- and time-independent) transformation, since a

baryon is an object extended in space. We consider the quark fields to be trans-

formed by q → q′ = Uq. In quantum field theory, these fields destroy quarks

and create antiquarks. It follows that under the transformation the baryon state

(16.18) will transform as | state〉 → | state〉′ = (1/
√

6)|a,b,c〉U ∗
aiU

∗
bjU

∗
ckεi jk . But

εi jkU ∗
aiU

∗
bjU

∗
ck = εabc det U∗ = εabc, since the determinant of an SU(3) matrix

is 1. Thus we have the important result that under an SU(3) transformation,

|state〉′ = |state〉. The transformation of the state is a trivial multiplication by unity.

The state is said to be a colour singlet.
Turning now to the mesons, we denote a state of a quark, colour i, and an

antiquark of colour j by |i, j̄〉. Again, we have suppressed all other aspects of the

quarks. Meson states are linear combinations

|mesons〉 = (1/
√

3)(|1, 1̄〉 + |2, 2̄〉 + |3, 3̄〉). (16.19)

Under an SU(3) transformation,

|meson〉 → |meson〉′ = (1/
√

3)|a, b̄〉U ∗
aiUbi .

But U ∗
aiUbi = UbiU

†
ia = δab, so that

|meson〉′ = |meson〉.

The meson states, like the baryon states, are colour singlets.

In the quark model, we see that colour transformations have no effect on the

observed particles. It can also be shown that the eight gluon colour operators Qa ,

defined by (16.17), give zero when they act on these states. Thus the SU(3) symmetry

is well hidden by Nature: the particles are blind to the transformation of colour

symmetry. These observations can be related to lattice QCD, in which calculations

indicate that all the allowed states of the theory have this property.
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158 Theory of strong interactions: quantum chromodynamics

16.3 Lattice QCD and asymptotic freedom

Numerical simulations of QCD replace continuous space-time by a finite but large

four-dimensional space and time lattice of points. The quark and gluon fields are

only defined at these points. Sophisticated computer programs have been written

that are capable of handling the lattice. Gluon fields are commuting boson fields.

The quark fields are anticommuting fermion fields and pose a technically much

more difficult numerical problem. In fact the first lattice calculations were done

neglecting all quark fields, even those of the light u and d quarks, and thus excluding

all effects of virtual quark pair creation and annihilation. In this so-called quenched
approximation the Lagrangian density it taken to be the Lgluon of (16.9). Lgluon

displays confinement at distances greater than about a fermi.

At shorter distances, less than about 0.2 fermi, both Lgluon and the full QCD

Lagrangian density display another important property, known as asymptotic free-
dom. The effective strong interaction coupling constant becomes so small at short

distances that quarks and gluons can be considered as approximately free, and their

interactions can be treated in perturbation theory.

To set the scene for the discussion of the effective ‘running’ strong interaction

coupling constant, we first discuss the case of electromagnetism.

At atomic distances ∼ 10−10 m, the electrostatic interaction between an electron

and a positron is given by the Coulomb energy V (r ) = −e2/4πr . In the lowest order

of perturbation theory, the amplitude for electron–positron Coulomb scattering is

proportional to the Fourier transform V (Q2) of V(r),

V (Q2) =
∫

V(r )eiQ·rd3r = −e2/Q2, (16.20)

where Q is the momentum transfer in the centre of mass system.

In QED, this result is modified by quantum corrections: virtual e+e− pairs created

from the vacuum are polarised by the electric field of a charge, so that its measured

charge at atomic distances is a ‘bare’ charge screened by virtual e+e− pairs. At

short distances the screening is reduced, so that the effective charge is greater. Per-

turbation calculations in QED that include vacuum polarisation effects (Fig. 16.1)

show that at large Q2, (16.20) is modified to

V(Q2) = − e2

Q2

1

1 − (e2/12π2) ln(Q2/4m2)
(16.21)

where m is the electron mass. This result holds for large Q2 	 4m2 (but not so

large Q2 that the denominator vanishes!). Thus at large Q2 we have an effective

coupling constant

α(Q2) = e2(Q2)

4π
= (e2/4π )

1 − (e2/12π2) ln(Q2/4m2)
, (16.22)
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16.3 Lattice QCD and asymptotic freedom 159

Figure 16.1 (a) The lowest order Feynman diagram representing single photon
exchange. The corresponding perturbation calculation reproduces the result of
(16.20). (b) The lowest order modification due to vacuum polarisation. Including
this effect gives, at large Q2/m2, the result of (16.21).

which increases as Q2 increases (or, equivalently, as we probe shorter distances).

Because e2/12π2 ≈ 10−3 the effects of vacuum polarisation are small, but in atomic

physics they have been calculated and measured with high precision.

Similar vacuum polarisation effects occur in QCD, but the coupling is much

larger and the consequences are more dramatic. If the scattering of a quark and

an antiquark is calculated to the same order of perturbation theory as that used to

obtain (16.22), then at large Q2 the effective strong coupling constant αs(Q2) is

(see Close, 1979, p. 217)

αs(Q2) = g2(Q2)

4π
= g2/4π

1 + (g2/16π2)[11 − (2/3)nf] ln(Q2/λ2)
. (16.23)

In this expression λ is a parameter with the dimensions of energy that replaces

the electron mass appearing in QED. It is a necessary parameter associated with

the renormalisation scheme. nf is the effective number of quark flavours. For very

large Q2 > (mass of the top quark)2, nf = 6, but nf is smaller at smaller Q2. The

important point to note is that (11 − (2/3)nf) is a positive number. Thus, in contrast

to what happens in QED, g(Q2) decreases as Q2 increases, and this is the basis of
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160 Theory of strong interactions: quantum chromodynamics

Figure 16.2 There are Feynman graphs similar to those of Fig. 16.1 but for gluon
exchange between quarks and antiquarks. An additional lowest order contribution
to vacuum polarisation is associated with this Feynman graph coming from the
gluon self-coupling.

asymptotic freedom. As with QED the fermions contribute with a negative sign,

but their contribution is outweighed by the virtual gluons that contribute the num-

ber 11. The difference is due to the presence of gluon loops in QCD (Fig. 16.2).

This property of QCD was discovered by Gross and Wilczek (1973) and Politzer

(1973).

Although renormalisation seems to necessitate the introduction of a second,

dimensioned, parameter λ, the effective coupling constant is in fact dependent on

only one parameter. We can set

1

g2
− 1

16π2
[11 − (2/3)n f ] ln λ2 = − 1

16π2
[11 − (2/3)nf] ln 
2, (16.24)
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thus defining 
, and then

αs(Q2) = g2(Q2)

4π
= 4π

[11 − (2/3)nf] ln(Q2/
2)
. (16.25)

This remarkable feature survives in all orders of perturbation theory. Higher terms

in the expansion of αs(Q2) are given in, for example, Particle Data Group (2005).


 is well defined in the limit of large Q2, and it is standard practice to regard

the one parameter 
, rather than the two parameters g and λ, as the fundamental

constant of QCD, which must be determined from experiment. It is also interesting

to note that we have replaced a dimensionless parameter g by a dimensioned one,


. Asymptotic freedom is displayed since αs(Q2) → 0 as Q2 → ∞. It is clear

from (16.25) that perturbation theory breaks down at Q2 = 
2, when the effective

coupling constant becomes infinite. Small values of Q2 are associated with large

distances, and the length scale 
−1 is called the confinement length.

16.4 The quark–antiquark interaction at short distances

In QED, single photon exchange between an electron and a positron gives the

Coulomb potential

V(r ) = 1

(2π )3

∫
V (Q2)e−iQ·r d3 Q = e2

4πr
= −α

r
,

where V(Q2) = −e2/Q2 and α is the fine-structure constant. In QCD perturba-

tion theory, single photon exchange is replaced by the sum of eight single gluon

exchanges. To lowest order, the Coulomb-like potential between a quark and an

antiquark in a colour singlet state and at a distance r apart may be shown to be (see

Leader and Predazzi, 1982, p. 175)

VQCD(r ) = −
∑

a

g2

4πr

1

3

λai j

2

λaji

2
= −

∑
a

g2

4πr

1

12
Tr(λaλa) = −4

3

g2

4πr
.

(16.26)

The factor (1/3) is from the normalisation of the colour singlet state (see (16.19)).

With quantum corrections, the effective potential at short distances becomes

VQCD = −4

3

αs(r )

r
,

where

αs(r )

r
= 4π

(2π )3

∫
αs(Q2)

Q2
e−iQ·r d3 Q. (16.27)
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162 Theory of strong interactions: quantum chromodynamics

This is a significant result for the charmonium cc̄ and bottomonium bb̄ systems,

in which the heavy quark and antiquark are slowly moving. In these systems the

colour Coulomb energy is the main contribution to the potential energy: colour

magnetic effects are of relative order v/c. The behaviour of αs(Q2) at large Q2

gives the dominant contribution to VQCD(r ) at small r (Problem 16.5). We shall

return to charmonium and bottomonium in Chapter 17.

16.5 The conservation of quarks

In addition to the SU(3) local colour symmetry, the Lagrangian density (16.11) has

six global U(1) symmetries:

qf → qf
′ = exp(iαf)qf. (16.28)

In the Standard Model these remain global and are not elevated into local gauge

symmetries. They imply conservation of quark number for each flavour of quark.

Thus the strong interaction does not change quark flavour. Regarding mesons and

baryons, the K+, for example, which can be denoted K(us̄) has u quark number

1 and s quark number −1, the proton P (uud) has u quark number 2 and d quark

number 1. Only the weak interaction, as exemplified in weak decays, can change

quark flavour. Including the weak interaction, and in particular that part involving

the Kobayashi–Maskawa mixing matrix, the six U(1) symmetries reduce to one.

Individual quark flavour numbers are not conserved, and only the overall quark

number remains constant.

16.6 Isospin symmetry

The estimated masses of the u quark (1.5 MeV < mu < 4 MeV) and d quark

(4 MeV < md < 8 MeV) are small compared with those of the s quark (100 MeV <

ms < 300 MeV) and the heavy c, b and t quarks. The masses of the u and d quarks

are also small compared with those of the lightest hadrons: the π0 has a mass

∼ 135 MeV and the proton has a mass ∼ 938 MeV. At low energies we may there-

fore neglect all but the u and d quarks, and consider the Lagrangian density to be,

as a first approximation,

Lud = ūiγ μ(∂μ + igGμ)u + d̄iγ μ(∂μ + igGμ)d − muūu − mdd̄d (16.29)

where here Gμ is the gluon field matrix, evaluated from the field equations (16.13)

with all but the u and d quark fields neglected. The fields u and d in (16.29)

are triplets of Dirac fermion fields; colour indices and Dirac indices have been

suppressed.
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We now combine the u and d fields into an isospin doublet,

D(x) =
(

u(x)

d(x)

)
(16.30)

and we can write

Lud = D̄iγ μ(∂μ + igGμ)D − (1/2)(mu + md)D̄D − (1/2)(mu − md)D̄τ3D
(16.31)

where

τ3 =
(

1 0

0 −1

)
and D̄ = (u+γ 0, d†γ 0).

Lud is invariant under a global U(1) transformation

D → D′ = exp(−iα0)D, (16.32)

which leads (cf. Section 4.1) to the conserved quark current

Jμ = D̄γ μD = ūγ μu + d̄γ μd. (16.33)

It is also invariant under a global U(1) transformation

D → D′ = exp(−iα3τ 3)D (16.34)

which leads to the conserved current

J3
μ = D̄γ μτ 3D = ūγ μu − dγ μd. (16.35)

(16.33) and (16.35) show that this Lagrangian density (16.31) conserves both u and

d quark numbers separately.

So-called isospin symmetry appears if we neglect the mass difference (mu − md).

The resulting, simplified, Lagrangian density is invariant under the global SU(2)

transformation

D → D′ = exp(−iαkτ k)D (16.36)

where the τ k are the generators of the group SU(2) (Appendix B, Section B.3).

In addition to the conserved current (16.35) we now have also the conserved

currents

Jμ

1 = D̄γ μτ 1D, Jμ

2 = D̄γ μτ 2D (16.37)

and the corresponding time-independent quantities∫
D†τ kD d3x, k = 1,2,3. (16.38)

https://doi.org/10.1017/9781009401685.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401685.018


164 Theory of strong interactions: quantum chromodynamics

SU(2) transformations are equivalent to rotations in a three-dimensional ‘isospin

space’. In analogy with the intrinsic angular momentum operator S = (1/2)σ, we

define the isospin operator I = (1/2)τ ; then

I2 = I1
2 + I2

2 + I3
2 = (3/4)

(
1 0

0 1

)
= 1

2

(
1

2
+ 1

) (
1 0

0 1

)
.

A u quark state is an eigenstate of I2 and I3 with I = 1/2, I3 = 1/2, and a d quark

state is an eigenstate with I = 1/2, I3 = −1/2. The mathematics of isospin is

identical to the mathematics of angular momentum, and the formalism of isospin is

very useful in understanding and classifying hadron states, as indicated in Chapter

1. We see here its origin in QCD, with the neglect of the u − d mass difference and

the electromagnetic and weak interactions.

16.7 Chiral symmetry

If we neglect entirely the quark masses, further approximate symmetries arise. These

are of interest in particle physics. The Lagrangian density (16.31) may be written

in terms of the left-handed and right-handed isospin doublets L = (1/2)(1 − γ 5)D
and R = (1/2)(1 + γ 5)D. Neglecting the mass terms it becomes

L = L†iσ̃ μ(∂μ + igGμ)L + R†iσμ(∂μ + igGμ)R. (16.39)

L and R are now doublets of two-component spinors, and there are eight conserved

currents:

L†σ̃ μL, L†σ̃ μτ kL, R†σμR, R†σμτ kR, k = 1, 2, 3.

An important observation is that the currents L†σ̃ μτ 1L and L†σ̃ μτ 2L couple to

the W ± boson fields in the Lagrangian density (14.15), and appear in the effective

Lagrangian density (14.22). The relevant quark factor in (14.15) is u†
Lσ̃ μdLVud, and

we may write

u†
Lσ̃ μdL = L†σ̃ μ(1/2)(τ 1 + iτ 2)L,

d†
Lσ̃ μuL = L†σ̃ μ(1/2)(τ 1 − iτ 2)L. (16.40)

This observation gives insight into the nature of the effective Lagrangian for β

decay, as we shall see in Chapter 18.

The independent symmetry transformations

L → L′ = exp[ − i(α0 + αkτ k)]L, R → R

and

R → R′ = exp[ − i(β0 + βkτ k)]R, L → L
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may be written in terms of Dirac spinors as

D → D′ = exp[ − i(α0 + αkτ k)(1/2)(1 − γ 5)]D, (16.41)

D → D′ = exp[ − i(β0 + βkτ k)(1/2)(1 + γ 5)]D, (16.42)

respectively.

The eight independent symmetry operations can also be taken as

D → D′ = exp[ − i(α′0 + α′kτ k)]D (16.43)

which give conservation of quark number and isospin, and

D → D′ = exp[ − i(β ′0 + β ′kτ k)γ 5]D (16.44)

The last four are known as the chiral symmetries.

Problems

16.1 Show that

Ga
μν = (∂μGa

ν − ∂νGa
μ) − g

∑
b,c

fabcGb
μGc

ν .

16.2 Using Problem 16.1, show that the gluon self-coupling terms in the Lagrangian

density (16.9) are

Lint = g(∂μGa
ν fabcGbμGcν) − (g2/4) fabc fadeGb

μGc
νGdμGeν .

16.3 Verify the expression (16.14) for the current j aν .

16.4 Estimate the value of Q for which V (Q2) of equation (16.21) becomes infinite.

16.5 From (16.27) show that

αs(r ) = 2

π

∞∫
0

αs(x2/r2)
sin x

x
dx .

(Note that the expression (16.25) for αs(x2/r2) is only valid for x > 
r , but for

small r this range may be anticipated to give the main contribution to the integral.)
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