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In this paper a fully coupled particle-size segregation model for granular flows (Barker
et al., J. Fluid Mech., vol. 909, 2021, p. A22) is used to simulate the development of the
patterns in a triangular rotating drum. The results are compared with the experimental
patterns formed with bidisperse and tridisperse granular mixtures, and with varying
compositions and fill heights. In all cases the agreement between the simulations and
experiments is remarkably good. The experimental patterns are generated in a narrow
gap between transparent front and back sidewalls. These prevent three-dimensional
motion, but also impose friction on the flow, making it thinner and faster than it would
otherwise be. This promotes segregation, as it simultaneously increases the shear rate
and reduces the local pressure. To obtain the correct flow dynamics and segregation,
width-averaged sidewall friction is incorporated into the two-dimensional simulations,
which are performed in OpenFOAM�. The free-surface avalanche forms a boundary layer
within which all the segregation occurs. Material in the lower reach of the avalanche
is continuously deposited into an underlying solid body of grains, which rotates with
the drum, and is eventually re-entrained into the avalanche along its upper reach.
The changing geometry of the granular region (as the drum rotates) implies that the
avalanche is constantly adjusting its length, position and depth. This generates a complex
quasi-periodic flow, which when combined with particle-size segregation generates
amazing patterns in the solid rotating granular body after only two drum rotations.
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1. Introduction

Granular materials are abundant in the natural world, in industrial processes and in our
everyday lives. Indeed, after fluids, granular materials are the most common material
used by mankind in a wide range of processes in the bulk chemical, civil, pharmaceutical,
mining, agricultural and food industries (Merrow 1984; Bates 1997; Shinbrot & Muzzio
2000; Richard et al. 2005). Despite their widespread use, our ability to model their
behaviour using continuum theories lags far behind that of computational fluid dynamics
for liquids. This is because the rheology of granular flows is more complex, and not yet
fully understood (GDR MiDi 2004; Jop, Forterre & Pouliquen 2006), with aggregates
of grains simultaneously behaving as a solid, a liquid or a gas in disparate spatially and
temporally evolving regions. Physicists and engineers have therefore relied heavily on
discrete element method/discrete particle model (DEM/DPM) numerical simulations to
understand particle flow behaviour and optimize the design of industrial systems (Cundall
& Strack 1979; Silbert et al. 2001; Cleary & Sawley 2002; GDR MiDi 2004; da Cruz et al.
2005; Zhu et al. 2008; Ketterhagen, Ende & Hancock 2009; Chialvo, Sun & Sundaresan
2012; Weinhart et al. 2013; Vo et al. 2020). However, as the number of particles increases,
DEM/DPM simulations rapidly become prohibitively computationally expensive, which
restricts their use to small systems, with usually less than a few million particles. There is
therefore a pressing need to develop reliable and efficient continuum methods, that do not
need to resolve each individual particle and particle collision.

As a prototypical example of a non-trivial granular flow, this paper focuses on the
mixing and segregation of particles in a partially filled thin triangular rotating drum
(Mounty 2007). Similar flows in elliptical and square drums were first investigated by
Hill et al. (1999) and Ottino & Khakhar (2000), who showed experimentally that the
combination of flow and segregation produced beautiful quasi-periodic patterns. An
example of the pattern formed in a triangular drum, 70 % filled with a mixture of
large green, medium white and small red glass beads, is shown in figure 1. The full
time-dependent evolution can be seen in supplementary movie 1 available at https://doi.
org/10.1017/jfm.2023.1022. Two arms of small and medium particles rapidly form, which
radiate out from the central core towards the drum corners, forming a striking pattern.
Experiments in square, pentagonal and hexagonal drums (not shown) also produce a series
of arms, but with progressively reduced length as the number of sides is increased. This
paper therefore focuses exclusively on the triangular drum, which has the longest arms.

As the drum rotates, most of the grains are in solid-body rotation, but a thin avalanche
forms above a critical free-surface angle and transports grains rapidly downslope. Grains
in the avalanche are progressively deposited along its lower reach, and are slowly rotated
(with the drum) back up to where they re-enter the avalanche along its upper reach. The
flow is akin to that formed in the rolling regime of a circular rotating drum, where a
steady-state avalanche can form (Henein, Brimacombe & Watkinson 1983; Rajchenbach
1990; Metcalfe et al. 1995; Gray & Hutter 1997; Gray 2001). However, unlike a circular
drum, the geometrical shape occupied by the grains constantly changes as the triangular
drum rotates, which precludes the formation of a steady state. As a result, the free-surface
position as well as the maximum avalanche depth and length are functions of time. Hill
et al. (1999) and Ottino & Khakhar (2000) showed that for monodisperse particles rotating
in elliptical and square drums, the resulting flow field leads to chaotic advection of tracer
particles. A similar result holds for triangular drums (Mounty 2007). Moreover, if the drum
is more than half full, then a central core of grains can form that are never entrained into
the avalanche and essentially just rotate with the drum (although there is some very slow
creep, Socie et al. 2005). This corresponds to the central green region in figure 1.
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Particle segregation patterns in a triangular rotating drum

Figure 1. Image of a triangular rotating drum experiment 70 % filled with large green (600–800 μm), medium
white (400–500 μm) and small red (125–160 μm) glass beads in a 30:40:30 mix. The drum rotates clockwise
with a rotation rate of Ω = −π/48 rad s−1. Most of the grains are in solid-body rotation but a thin avalanche
develops at the free surface, within which all the segregation occurs. After just two revolutions this produces
a stunning quasi-periodic pattern of small- and medium-particle rich arms radiating towards the corners of the
drum that are surrounded by large grains. There is also a central undisturbed core, which just rotates with the
drum. Supplementary movie 1 shows the full time-dependent evolution.

Particle-size segregation adds an important ordering mechanism on top of these
deceptively simple chaotic flows. Particles in the slightly dilated rapidly shearing thin
surface avalanche are able to segregate by size, with the largest grains being pushed
towards the surface by force imbalances and the small grains percolating down to the base
under the action of gravity (Gray & Ancey 2011; Gray 2018; Trewhela, Ancey & Gray
2021). This leads to the development of an inversely graded particle-size distribution,
with the largest grains concentrated at the surface and the smallest ones at the base. In
the lower reach of the avalanche, particles are continuously and progressively deposited
into the underlying solid rotating body. Since the smallest particles are at the base of
the avalanche, they are deposited first, closer to the centre of the drum, while the largest
particles at the surface of the avalanches are deposited last, closest to the drum wall.

In a circular rotating drum the particle-size segregation leads to the development of a
radial particle-size distribution with the smallest particles concentrated in a ring around
the central core and the largest grains in another ring adjacent to the drum wall (Gray
& Hutter 1997; Gray & Ancey 2011). In the triangular rotating drum the particle-size
distribution is considerably more complicated, but broadly speaking the largest grains are
still concentrated next to the drum wall and the smallest ones are closest to the central
core. However, the combination of particle-size segregation and the complex underlying
bulk flow allows a pattern to develop, with the small and medium sized particles forming
arms that are surrounded by large particles. The arms start from a position adjacent to
the central core, and radiate out with a clockwise rotation to point towards the corners of

979 A40-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
22

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1022


E.S.F. Maguire and others

the drum. This pattern forms after only two drum revolutions and is quasi-periodic, never
truly settling down, but repeating in a closely similar way.

Partially filled non-circular rotating drums provide a simple example of complex
granular flow with spatially and temporally evolving solid-like and liquid-like regions.
Accurately modelling such flows with continuum theories is still a challenge. Barker et al.
(2021) developed a fully coupled theory capable of modelling both the bulk flow and
the particle-size segregation. The theory is based on the incompressible μ(I) rheology
for granular flows, in which the friction μ is a function of the non-dimensional inertial
number I (GDR MiDi 2004; Jop et al. 2006). Rather than using the classical μ(I) curve,
Barker et al. (2021) use a modified functional form that introduces a creep state at low
inertial numbers and asymptotes to a linear dependence at high inertial numbers (Barker &
Gray 2017). This partially regularized form of the theory ensures that it is mathematically
well-posed over a much wider range of inertial numbers than the original theory (Barker
et al. 2015).

The inertial number I = γ̇ d/( p/ρ∗)1/2, where γ̇ is the shear rate, d is the particle
diameter, p is the pressure and ρ∗ is the intrinsic density of the grains. The fact that
the rheology is locally particle-size dependent, is profound. It implies that, in general,
the local flow behaviour is dependent on the evolving particle-size distribution. Modelling
particle-size segregation patterns in rotating drums is therefore not necessarily just a matter
of developing a theory for a monodisperse bulk flow (or parameterizing the velocity
and pressure fields using the results of DEM/DPM simulations), and then solving for
the particle-size segregation. In general, it is necessary to consider the feedback that the
particle-size distribution has on the bulk flow dynamics. In some flows the feedback can
have a significant effect, such as in segregation-induced fingering instabilities, bulbous
flow fronts, stratification patterns and petal formation in cylindrical drums (Williams 1968;
Gray & Hutter 1997; Makse et al. 1997; Pouliquen, Delour & Savage 1997; Pouliquen &
Vallance 1999; Zuriguel et al. 2006; Gray & Ancey 2009; Woodhouse et al. 2012; Baker,
Johnson & Gray 2016b; Denissen et al. 2019; Barker et al. 2021). In other flows, the
feedback can be more subtle, and prescribed fields may be sufficient to capture the main
features of the segregation as well as the bulk dynamics (e.g. Wiederseiner et al. 2011;
Schlick et al. 2015; Deng et al. 2020). The problem is that there is no way of knowing a
priori whether the feedback in a particular flow will be significant or not.

In order to take account of segregation-induced feedback on the bulk flow, this paper
adopts the fully coupled framework developed by Barker et al. (2021). Barker et al. (2021)
showed that this theory was able to capture the qualitative features of the segregation
patterns observed in the thin square rotating drum experiments of Hill et al. (1999), but
it over predicted the avalanche depth and under predicted its speed. The transparent front
and back sidewalls (which allow observation of the patterns) impose a significant frictional
force on the flow (Taberlet et al. 2003; Jop, Forterre & Pouliquen 2005). In particular, Jop
et al. (2005) showed that sidewalls generate granular flows that are thinner and faster than
those in wider channels. In order to make quantitative comparisons between the theory
and experiments it is therefore necessary to include these sidewall friction effects into the
general theory. This paper therefore makes careful quantitative comparisons between a
fully coupled theory, which includes sidewall friction, and experiments in a thin triangular
rotating drum.

The paper is structured as follows: In § 2 the governing equations are introduced and
generalized to account for sidewall friction, and § 3 summarizes the numerical method.
This is used in § 4 to compare simulations with experiments performed in a 70 % filled
triangular rotating drum with a 50:50 bidisperse mixture of large and small particles. The
effect of the sidewalls is quantified in § 5 by comparing these results with equivalent
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Particle segregation patterns in a triangular rotating drum

simulations performed in the absence of sidewall friction. Sections 6 and 7 study the
effect of changing the fill level and mixture composition, and § 8 compares tridisperse
simulations to experiments.

2. Governing equations

2.1. The partially regularized μ(I) rheology
Consider a body of granular material containing particles of differing sizes, shapes and
frictional properties, but with a constant intrinsic grain density ρ∗. The solids volume
fraction Φ is also assumed to be constant, so that the bulk density ρ = Φρ∗ is constant.
Mass balance then implies that the bulk flow field u is incompressible,

∇ · u = 0, (2.1)

where ∇ is the gradient operator and · is the dot product. Although shear and
gravity-driven segregation relies on the formation of void spaces inside a flowing
mixture, the bulk solids volume fraction in granular avalanches has been shown to
remain approximately constant, and incompressibility is therefore a reasonable assumption
(Tripathi & Khakhar 2011). The momentum balance is

ρ

(
∂u
∂t

+ u·∇u
)

= −∇p + ∇ · (2ηD) + ρg, (2.2)

where p is the pressure, D = ∇u + ∇uT is the strain rate and g is the constant gravitational
acceleration vector. The μ(I) rheology (GDR MiDi 2004; Jop et al. 2006) relates the
deviatoric stress to the strain-rate tensor D through a granular viscosity

η = μ(I)p
2‖D‖ , (2.3)

where the second invariant of the strain-rate tensor is

‖D‖ =
√

1
2

tr(D2). (2.4)

In terms of this second invariant, the inertial number becomes

I = 2d‖D‖√
p/ρ∗

, (2.5)

where d is the grain diameter. The μ(I) rheology is an empirical law that was
formulated using dimensional analysis alongside evidence from DEM/DPM simulations
and experiments across a range of steady-state monodisperse flow geometries (GDR MiDi
2004). Jop et al. (2005) derived the classical functional form

μ(I) = μsI0 + μdI
I0 + I

, (2.6)

from the basal friction measurements of Pouliquen & Forterre (2002). This starts at the
static friction μs at I = 0 and asymptotes to the dynamic friction μd for large inertial
numbers. The range of inertial numbers over which this transition occurs is controlled by
the parameter I0. Barker et al. (2015) found that this formulation was well-posed for inertial
numbers in the range [IN

1 , IN
2 ] provided that the difference μd − μs was sufficiently large.
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The lower and upper neutral stability limits IN
1 and IN

2 are found by substituting (2.6)
into equation (3.9) of Barker & Gray (2017) and determining the values of I for which
the condition C = 0. When the inertial number is too low (I < IN

1 ) or too high (I > IN
2 ),

the system leads to unbounded growth of small perturbations (ill-posedness) in the high
wavenumber limit. This leads to grid-dependent results in numerical simulations (Barker
et al. 2015; Barker & Gray 2017; Martin et al. 2017), and indicates that important physics
is missing in the model.

The issue of ill-posed behaviour can be resolved by the inclusion of higher
gradients (Goddard & Lee 2017), non-locality (Kamrin & Koval 2012; Kamrin 2019) or
compressibility (Barker et al. 2017; Heyman et al. 2017; Schaeffer et al. 2019), but these
all add further complexity to the equations. A simple, but practical, approach that retains
the structure of the incompressible Navier–Stokes equations (2.1)–(2.2), is to modify the
shape of the μ(I) curve to increase the theory’s range of well-posedness. In the small
inertial number limit, Barker & Gray (2017) solved for the boundary between well- and
ill-posed regions in parameter space to motivate the alternative μ(I) function,

μ(I) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√√√√√ α

log
(

A
I

) for I ≤ IN
1 ,

μsI0 + μdI + μ∞I2

I0 + I
for I > IN

1 ,

(2.7)

where α � 2 ensures that the lower branch is well-posed for I ∈ [0, IN
1 ], μ∞ is a new

material constant and the constant

A = IN
1 exp

(
α(I0 + IN

1 )2

(μsI0 + μdIN
1 + μ∞(IN

1 )2)2

)
(2.8)

ensures that the function (2.7) is continuous at I = IN
1 . The function (2.7) implies that

the friction μ = 0 at I = 0. The partially regularized theory therefore does not have
a static yield stress, but instead creeps for inertial numbers I ≤ IN

1 . This makes little
practical difference to numerical simulations, which already necessitate high viscosity
regularization (see § 3).

Since IN
1 � 1, it follows that the upper branch of (2.7) closely approximates the original

function (2.6) for IN
1 < I � 1. At large inertial numbers the upper branch asymptotes

to μ = μd + μ∞I, instead of tending to the constant value μd. This is consistent with
the high speed chute flow experiments of Holyoake & McElwaine (2012) and Barker &
Gray (2017), which showed there was a linear dependence on I at large inertial numbers.
Such experiments therefore provide a means of determining the new material constant
μ∞. Barker et al. (2021) showed that the creep state at small inertial numbers and the
linear dependence of μ on I at large inertial numbers significantly extends the range of
well-posedness from I = 0 to IN

2 	 17. It is for this reason that the theory is known as the
partially regularized μ(I) rheology, as it does not guarantee well-posedness, but instead
makes the well-posed range much larger than that of the original theory (Jop et al. 2006),
where IN

2 	 0.28 (Barker & Gray 2017).
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Particle segregation patterns in a triangular rotating drum

2.2. Generalized polydisperse segregation theory
The granular material is assumed to consist of n discrete particle species ν that have
differing particle diameters dν , but the same intrinsic grain density ρ∗. Each species has
a volume fraction per unit granular volume φν ∈ [0, 1], which satisfies the summation
constraint ∑

∀ν

φν = 1. (2.9)

All of the existing bidisperse and polydisperse theories for particle-size segregation
(e.g. Bridgwater, Foo & Stephens 1985; Savage & Lun 1988; Dolgunin & Ukolov 1995;
Gray & Thornton 2005; Gray & Chugunov 2006; Fan & Hill 2011; Gray & Ancey 2011;
Schlick et al. 2015; Gray 2018; Barker et al. 2021) can be recast in the form of a general
segregation–advection–diffusion equation for each species ν,

∂φν

∂t
+ ∇ · (φνu) + ∇ · F ν = ∇ · Dν, (2.10)

where F ν and Dν are the segregation and diffusive flux vectors for species ν, respectively.
By summing (2.10) over each species and applying the summation constraint (2.9), the
incompressibility condition (2.1) is satisfied provided∑

∀ν

F ν = 0 and
∑
∀ν

Dν = 0. (2.11a,b)

For a bidisperse mixture, the segregation flux function should satisfy the constraint
that no segregation occurs when the volume fraction of either species is zero (Bridgwater
et al. 1985). The simplest form therefore has a linear dependence on the species volume
fractions, as proposed for a bidisperse mixture by Gray & Thornton (2005). This was
later generalized for a polydisperse mixture (Gray & Ancey 2011; Barker et al. 2021) by a
summation of the segregation flux functions over each bidisperse sub-mixture, to give

F ν =
∑

∀λ /=ν

fνλφνφλeνλ, (2.12)

where fνλ is the segregation velocity magnitude and eνλ is the unit vector along the
segregation direction. This satisfies the summation constraint (2.11) provided

fνλ = fλν, eνλ = −eλν. (2.13a,b)

In Barker et al. (2021) the diffusive flux vector is defined by analogy with the
Maxwell–Stefan equations (Maxwell 1867)

Dν =
∑

∀λ /=ν

Dνλ(φ
λ∇φν − φν∇φλ), (2.14)

so that, in general, the diffusion rate Dνλ may vary between sub-mixtures, while still
satisfying (2.11), provided Dνλ = Dλν . When the diffusion rate is the same across all
sub-mixtures, (2.14) reduces to the standard equation for Fickian diffusion.

2.3. Segregation induced feedback on the bulk flow
The inertial number (2.5) is particle-size dependent. Hence, even if the particles have
identical microscopic frictional properties, the local friction μ and, hence, the bulk
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flow behaviour will depend on the local particle size (GDR MiDi 2004). Particle-size
segregation can therefore feedback on the local flow dynamics. By defining a volume
fraction weighted mean particle size

d̄ =
∑
∀ν

φνdν, (2.15)

it is possible to generalize the inertial number definition (2.5) to polydisperse mixtures

I = 2d̄‖D‖√
p/ρ∗

. (2.16)

This is sufficient to capture simple frictional feedback from the evolving particle-size
distribution of otherwise identical particles (Rognon et al. 2007; Tripathi & Khakhar 2011;
Denissen et al. 2019; Barker et al. 2021). This implies that, for the same flow depth, small
particles will flow faster than large grains, so long as non-local wall effects do not come
into play (Pouliquen & Forterre 2002; Kamrin & Koval 2014; Edwards & Gray 2015;
Edwards et al. 2019; Rocha, Johnson & Gray 2019).

There are more complex effects in which the frictional properties of the particles differ
due to their shape and/or microscopic surface properties. For each pure phase ν, this can
often be accounted for by modifying the parameters μν

s , μν
d, μν∞ and Iν

0 in the friction law
(2.7). The local effective friction of the mixture can then be defined as the volume fraction
weighted average of the constituent frictions,

μ̄(I) =
∑
∀ν

φνμν(I). (2.17)

This leads naturally to a new definition for the granular viscosity (2.3), which replaces η

in the bulk momentum balance (2.2)

η̄ = μ̄(I)p
2‖D‖ . (2.18)

The combination of (2.16) and (2.17) allows the frictional differences caused by variations
in particle size and surface properties to feedback on the bulk motion. This is crucial for
segregation-induced flow fingering, which frequently occurs in geophysical mass flows,
and is responsible for longer run out (Pouliquen et al. 1997; Pouliquen & Vallance 1999;
Iverson & Vallance 2001; Iverson 2003; Johnson et al. 2012; Woodhouse et al. 2012;
Kokelaar et al. 2014; Baker et al. 2016b; Edwards et al. 2023).

2.4. The feedback of the bulk flow on particle-size segregation and diffusion
Each particle species ν is transported by the bulk velocity field u in the segregation–
advection–diffusion equation (2.10). The particle-size distribution is therefore directly
affected by the local velocity u. The local shear rate γ̇ = 2||D|| and the pressure p also
affect the segregation and diffusion through the functional dependence of the segregation
velocity magnitude fνλ and diffusion rateDνλ between each species ν and λ pair.

Barker et al. (2021) surveyed the existing literature for specific functional forms. In
particular, dimensional analysis demands that the diffusion rate scales with the shear rate
times the particle-size squared, times an arbitrary function of the inertial number. This
scaling was implied by the analysis of Scott & Bridgwater (1975) on the relationship
between particle percolation velocity and diffusion, and has been extensively confirmed
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A = 0.04, B = 0.7125, C = 0.2712,
E = 2.0957, a = 9 φs

c = 0.2.

Table 1. Parameter values used in the numerical simulations. The value of the universal constant A in the
diffusivity (2.19) is based on the DEM/DPM simulations of (Tripathi & Khakhar 2013; Cai et al. 2019; Artoni
et al. 2021; Bancroft & Johnson 2021). The values of the universal constants B and C in the segregation law
(2.20) are based on those suggested by the single-intruder experiments of Trewhela et al. (2021), although B is
corrected for the absence of an interstitial fluid. The remaining non-dimensional constants E, a and φs

c are also
taken from Trewhela et al. (2021).

by experimental observations (Bridgwater 1980; Natarajan, Hunt & Taylor 1995; Utter &
Behringer 2004; Katsuragi, Abate & Durian 2010) and numerical simulations (Tripathi &
Khakhar 2013; Fan et al. 2014; Cai et al. 2019). The simplest model for the diffusion rate
between each species ν and λ is therefore

Dνλ = 2A‖D‖d̄2, (2.19)

where A is a universal constant specified in table 1. Note that the diffusion is therefore
assumed to be the same for each species pair, and hence, the diffusive flux (2.14) reduces
to standard Fickian diffusion. Campbell (1997) found that diffusion in granular shear
flows was anisotropic, and Utter & Behringer (2004) studied monodisperse Couette flow
experiments using flat disc-shaped particles, from which they measured a radial diffusion
coefficient of A = 0.108 and a tangential diffusion coefficient of A = 0.223. Evidence
from bidisperse DEM/DPM shear-cell simulations with spherical particles implies that
the anisotropy is only slight, and that insteadA ∈ (0.03, 0.05) (Tripathi & Khakhar 2013;
Cai et al. 2019; Artoni et al. 2021; Bancroft & Johnson 2021). Therefore isotropic diffusion
can be reasonably assumed, andA = 0.04 is used here.

Trewhela et al. (2021) performed single-intruder shear-box experiments to derive a
scaling law for segregation of large and small particles in a bidisperse mixture. This law is
now generalized to polydisperse systems. For a sub-mixture composed of particles ν and
λ, the segregation velocity magnitude is

fνλ =
(

2Bρ∗g‖D‖d̄2

Cρ∗gd̄ + p

)
Fνλ(φ

ν, φλ, Rνλ), (2.20)

where B and C are universal constants determined by Trewhela et al. (2021) (given
in table 1). The function Fνλ accounts for packing effects and the segregation-rate
dependence on the generalized grain-size ratio

Rνλ = max
(

dν

dλ
,

dλ

dν

)
, (2.21)

where Rνλ = Rλν > 1. The scaling law (2.20) is able to capture a variety of phenomena
observed in slightly dilated, bidisperse, sheared granular flows, where kinetic sieving and
squeeze expulsion are the dominant segregation mechanisms (Middleton 1970; Bridgwater
et al. 1985; Savage & Lun 1988; Gray 2018).

Kinetic sieving is a shear driven process that allows smaller particles to percolate
down under the action of gravity, while squeeze expulsion describes the process in
which particles are squeezed upwards to maintain bulk incompressibility. Dimensional
analysis suggests that the segregation rate should have the dimensions of a velocity,

979 A40-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
22

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1022


E.S.F. Maguire and others

and (2.20) assumes that fνλ behaves like γ̇ d̄ = 2||D||d̄, which automatically implies
that the segregation flux function fνλφνφλ is asymmetric (Gajjar & Gray 2014; van der
Vaart et al. 2015). By performing experiments with a density matched interstitial fluid,
Vallance & Savage (2000) showed that segregation shuts off in the absence of gravity
(see also Thornton, Gray & Hogg 2006). The effect of gravity is included indirectly
in the round bracketed term in (2.20) through a dependence on the reciprocal of the
non-dimensionalized pressure p/(ρ∗gd̄). If the shear rate is constant, this form implies
that the deeper one goes into the mixture, the lower the segregation rate becomes. This
was observed directly in Trewhela et al. (2021) experiments, i.e. the intruders did not rise
linearly with time in response to a spatially uniform shear rate, but were either percolated
down or squeezed up faster near the free surface. The constant C in (2.20) was included
to avoid a singularity at zero pressure. Further evidence of the pressure dependence of
segregation is provided in the papers of Golick & Daniels (2009), Fry et al. (2018) and
Bancroft & Johnson (2021).

Trewhela et al. (2021) found that for moderate grain-size ratios of large and small
particles (i.e. for Rsl ∈ [1, 4.17], where s and l denote small and large particles,
respectively), the segregation rate of large intruders had a linear dependence on (Rsl − 1).
However, the segregation rate of a small intruder obeyed a quadratic law of the form (Rsl −
1) + E(Rsl − 1)2, where E was a non-dimensional constant. The additional quadratic
dependence arose because small intruders find it increasingly easy to percolate through
a matrix of large grains as the particle-size ratio approaches the spontaneous percolation
limit at around Rsl 	 6. Trewhela et al. (2021) extended their model to intermediate
concentrations by assuming that

Fsl = (Rsl − 1) + EΛ(φs)(Rsl − 1)2, (2.22)

where the function

Λ(φs) =
⎧⎨⎩1 − φs

φs
c

for φs ≤ φs
c,

0 for φs > φs
c,

(2.23)

gives the right Fsl dependence in the limit as φs → 0, 1 and shuts off the quadratic
dependence when the small-particle concentration exceeds φs

c (defined in table 1).
Trewhela et al. (2021) showed that this functional form was capable of quantitatively
capturing the spatial and temporal evolution of the particle-size distribution measured in
the refractive-index-matched shear-box experiments of van der Vaart et al. (2015).

However, there is evidence from experiments and DEM/DPM simulations suggesting
that for 50:50 mixtures of large and small particles in geometries for which the velocity
and shear rate are functions of space and time, the segregation intensity is maximal near
a grain-size ratio of Rsl = 2 (Golick & Daniels 2009; Thornton et al. 2012), whereas the
formulation (2.22) is monotonically increasing with the size ratio. Trewhela et al. (2021)
therefore suggested an alternative size-ratio dependency that captures this effect, within
the framework of the incompressible segregation theory

Fsl = (Rsl − 1) + EΛ(φs)(Rsl − 1)2

1 + a(Rsl − 1)2φsφl , (2.24)

where a is a constant defined in table 1. The numerator in (2.24) is the same as (2.22),
but the denominator now includes a reduction factor 1 + a(Rsl − 1)2φsφl, which shuts off
when φs = 0 and φl = 0, and reduces the segregation rate at intermediate configurations.
The idea is that this factor parameterizes the enhanced packing of mixtures of particles
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of different sizes, which is thought to reduce the segregation rate. Trewhela et al. (2021)
showed that for a 50:50 mix, (2.24) predicts a peak segregation rate at Rsl 	 1.66, which
is very close to the maximum at Rsl = 1.7 observed in the DEM/DPM simulations of
Thornton et al. (2012). The bidisperse simulations in §§ 4–7 of this paper are performed
using the functional form (2.24). Almost nothing is known about how the segregation
rate and the packing behaves in polydisperse sheared granular mixtures. The tridisperse
simulations presented in § 8 therefore use a trivial pairwise generalization of (2.24) as an
illustration.

2.5. Sidewall friction
It has long been known that confining lateral sidewalls play an important role in granular
flow experiments (Greve & Hutter 1993; Taberlet et al. 2003; Jop et al. 2005; Baker, Barker
& Gray 2016a). In rotating drum flows the additional friction introduced by sidewalls
results in avalanches that are significantly thinner and faster than flows without sidewall
friction (Hill et al. 1999; Ottino & Khakhar 2000; Jop et al. 2005; Mounty 2007). As
a result, the two-dimensional square rotating drum simulations of Barker et al. (2021)
could not be compared directly to experiments. In principle, a Coulomb friction boundary
condition could be imposed on the sidewalls and then the governing equations could be
solved in three dimensions for any width of drum. However, in this paper the influence
of sidewall friction is incorporated into the governing equations by width averaging the
momentum balance equation (2.2). This reduces the problem to a two-dimensional one,
which is much more computationally efficient.

Consider then a three-dimensional granular flow confined within a narrow channel
between y = 0 and y = W, where there can be slip at the sidewalls and only weak velocity
gradients in the y direction. Proceeding in a similar manner to Jop et al. (2005), assuming
a Coulomb friction boundary condition at the lateral sidewalls implies

τn = −μWp
u
|u| , at y = 0, W, (2.25)

where n is an outward pointing normal to the sidewall, μW is a constant wall
friction coefficient and the term −u/|u| ensures that friction acts against the flow. The
three-dimensional mass and momentum balance equations, defined analogously with
(2.1) and (2.2), may then be integrated across the channel width in a similar fashion to
the depth-averaged approach for a shallow system (Gray 2001; Gray & Edwards 2014).
Width-integrated variables are defined by

f̃ = 1
W

∫ W

0
f dy, (2.26)

for any variable f , and when variations in the y direction are small, f̃g 	 f̃ g̃ for any two
variables f and g. Integrating and applying the boundary conditions (2.25) results in a
two-dimensional system for which the mass and momentum balances become

∇ · ũ = 0, (2.27)

ρ

(
∂ũ
∂t

+ ũ · ∇ũ
)

= −∇p̃ + ∇ · (2η̃D̃) + ρg − 2
W

μWp
ũ

|ũ| , (2.28)

where ∇ = (∂/∂x, ∂/∂z)T , the two-dimensional gradient operator. Since there is no lateral
flow and small velocity gradients in the y direction, u/|u| 	 ũ/|ũ|, and the tilde notation
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μs = tan(22◦) μd = tan(34◦) I0 = 0.249 μ∞ = 0.04
α = 1.9 IN

1 = 0.02048 ρ∗ = 2500 kg m−3 Φ = 0.6
ds = 0.35 × 10−3 m dl = 0.7 × 10−3 m Rsl = 2 e = −g/|g|
�a = 1 kg m−3 ηa = 10−3 kg (ms)−1 fag = 5 m s−1 Dal = Das = 0 m2 s−1

μW = tan(15.5◦) W = 3 × 10−3 m

Table 2. Parameters for the large and small glass beads, the air phase and the triangular drum. The physical
parameters for glass beads are adapted from those used by Rocha et al. (2019) and Mangeney et al. (2007),
to model the experiments of Félix & Thomas (2004). These parameters are used to determine I0 using the
definition given by Jop et al. (2005), and μ∞ is chosen to ensure a well-posed partially regularized μ(I) curve
up to I = 17.0189.

may be dropped on the understanding that the variables (u, p, η, D) from this point
onwards refer to width-averaged quantities of the form (2.26). The final term in the
momentum balance equation (2.28) models the influence of sidewall friction on the bulk
flow. This alteration provides a straightforward method of capturing three-dimensional
wall friction effects in a two-dimensional framework.

3. Numerical method

The mass (2.27) and momentum balances (2.28) are solved in conservative form,

∇ · u = 0, (3.1)

∂

∂t
(�u) + ∇ · (�u ⊗ u) = −∇p + ∇ · (2ηD) + �g − 2

W
μWp

u
|u| , (3.2)

where � is the mixture density and ⊗ is the dyadic product. In order to handle the
evolving free surface, Barker et al. (2021) used a two-fluid approach in which an excess
air phase was considered in addition to the grains. As a result, the governing equations
can be numerically solved in a fixed domain, rather than using a deformable grid that
adjusts to the evolving free surface, or a particle-based numerical method, i.e. smooth
particle hydrodynamics or the material point method. The solids volume fraction, Φ,
remains unchanged throughout the mixture, with the excess air considered separately to
the background interstitial air, which has volume fraction 1 − Φ per unit mixture volume.
For a bidisperse granular mixture of small and large particles with excess air, there are
volume fractions ϕs, ϕl and ϕa, respectively. The mixture density � and viscosity η are
therefore defined as volume fraction weighted averages including the excess air phase

� =
∑
∀ν

ϕν�ν, η =
∑
∀ν

ϕνην. (3.3a,b)

The density of air �a is a constant and �g = Φρ∗ 
 �a, where the superscript g denotes
the granular phase. The granular viscosities ηg are derived from (2.18) and the viscosity
of air ηa is assumed to be constant. All the relevant numerical parameters are specified in
table 2. The excess air is of sufficiently low density and viscosity that it does not affect the
motion of the grains, and is purely a numerical convenience.

The two-fluid approach uses the counter-gradient transport method (Rusche 2002;
Weller 2008) to sharpen the air–grain interface. This can lead to grid-dependent
bubbles of excess air becoming trapped within the high viscosity granular matrix
(Barker et al. 2021). In order to remove these bubbles, Barker et al. (2021) used the
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Particle segregation patterns in a triangular rotating drum

advection–segregation–diffusion equations (2.10) to rapidly expel the excess air from the
grains. Instead of solving a bidisperse segregation problem, Barker et al. (2021) therefore
solved a three-phase segregation problem. The segregation of both the grains and the
excess air was assumed to align with gravity, and it was assumed that air–grain diffusion
was zero. This implies that the advection–segregation–diffusion equation (2.10) produces
a system of three conservation laws,

∂ϕl

∂t
+ ∇ · (ϕlu) + ∇ ·

(
−flsϕlϕs g

|g| + fagϕ
lϕa g

|g|
)

= ∇ · (Dls(ϕ
s∇ϕl − ϕl∇ϕs)),

(3.4)

∂ϕs

∂t
+ ∇ · (ϕsu) + ∇ ·

(
fslϕ

sϕl g
|g| + fagϕ

sϕa g
|g|
)

= ∇ · (Dsl(ϕ
l∇ϕs − ϕs∇ϕl)),

(3.5)

∂ϕa

∂t
+ ∇ · (ϕau) + ∇ ·

(
−fagϕ

aϕg g
|g|
)

= 0, (3.6)

where the overall concentration of grains is

ϕg = ϕs + ϕl = 1 − ϕa. (3.7)

The granular segregation velocity magnitude fsl is defined by the scaling law (2.20) with
Fsl given by (2.24), and fag = fas = fal assumed to equal a sufficiently large constant
(defined in table 2) to expel the excess air rapidly from the grains. The sum of (3.4)–(3.6)
reduces to the bulk incompressibility relation (3.1). Moreover, when there is no excess air
ϕa = 0, they reduce to the bidisperse advection–segregation–diffusion equations (Gray &
Chugunov 2006; Gray 2018).

Equations (3.1)–(3.2) are of the form of the incompressible Navier–Stokes equations
and the pressure–velocity coupling is solved by the PISO algorithm in OpenFOAM (Issa
1986), while the concentration equations (3.4)–(3.6) are solved using the multidimensional
universal limiter for explicit solution algorithm (Weller 2006). The velocity solution
and coupling to the mixture composition are calculated explicitly, leading to a
Courant–Friedrichs–Lewy (CFL) criterion incorporating the local viscosity (Moukalled,
Mangani & Darwish 2016), where the CFL number is defined as

CFL = |u|�t
�x

+ η �t
ρ �x2 . (3.8)

This should be limited to a characteristic value for the time integration scheme (such as
unity for forward Euler). In most multi-phase flows the convective term dominates and
the second, viscous term is neglected. The reverse is true for static granular material as
the strain rate tends to zero and the viscosity thus becomes infinite, with the resulting
requirement that time steps become infinitesimally small. To avoid infinitesimal time steps,
a high, constant cutoff value ηmax is used for the viscosity (see, e.g. Lagrée, Staron &
Popinet 2011; Staron, Lagrée & Popinet 2012), which is redefined as

η = min(ηmax, η). (3.9)

This means that a Newtonian viscosity is activated as ‖D‖ → 0 or p → ∞. Smaller
time steps are nevertheless required relative to low viscosity simulations as the viscosity
continues to dominate the CFL number. Finally, since the partially regularized μ(I)
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rheology (2.7) does not have a yield stress and instead enters a creep regime for small
values of the inertial number to maintain well-posedness (Barker & Gray 2017), it is not
able to model static material, as detailed in § 2.1. It is important to note that although the
μ(I) rheology of Jop et al. (2005) does have a yield stress, the maximum viscosity cutoff
(3.9) introduces a creep state numerically. This is, however, not sufficient to guarantee
well-posedness of the equations (Barker et al. 2015; Barker & Gray 2017; Martin et al.
2017). The partially regularized theory of Barker & Gray (2017), used here, is therefore
strongly preferable due its significantly extended region of well-posedness. The numerical
method has been extensively tested by Barker et al. (2021), and the influence of the wall
friction term is further tested in Appendix A against a semi-infinite shear-box solution
between lateral sidewalls.

4. Segregation and flow of a bidisperse mixture in a triangular rotating drum

4.1. Experimental set-up
Experiments were conducted in a triangular rotating drum with equilateral sides of length
L = 0.257 m. This was formed from an aluminium outer frame that was confined between
two transparent polymethyl methacrylate (PMMA) plates (separated by a gap of width
W = 3 × 10−3 m) and screwed together. Before assembly, the PMMA walls were cleaned
with anti-static spray and dried to prevent smaller particles sticking to the sidewalls. The
glass beads used in the experiments were sourced from Sigmund Lindner GmbH. The
larger green glass beads were sieved to a diameter dl = 600–800 μm, while the smaller
red beads had a diameter ds = 300–400 μm. The desired volumes of large and small
grains were measured separately, mixed together and then filled into the drum through
a gap in the aluminium frame, which was then tightly closed with a stopper. The exact
volume of grains in the drum can vary slightly from the individual combined large and
small volumes due to enhanced packing of the mixture (Golick & Daniels 2009; Thornton
et al. 2012). If necessary, additional grains were added to obtain the desired fill. For the
particle-size ratios used in this paper these packing effects were small, and the theory,
which is incompressible, appears to be able to capture the observed dynamics and the
segregation patterns to a high degree of accuracy.

Particles of different sizes have a strong propensity to segregate. In order to obtain
an approximately homogenous initial condition, the drum was oriented horizontally and
shaken to induce segregation in the direction normal to the lateral transparent sidewalls.
The large green beads therefore segregated to the front (observable) wall, with the small
red beads concealed behind them against the rear wall. At any given cross-section of the
drum an approximately uniform initial mixture of large and small particles was generated.
The back of the drum was then attached to an ElectroCraft S642-1B/T servo motor and a
modulation speed control unit to control the rotation rate. The axis of rotation coincided
with the centre of the triangle. The drum was narrow enough that cross-slope particle
diffusion, within the flowing avalanche, was sufficient to smooth out any lateral variation
across it. The final pattern was therefore approximately uniform across the gap, except in
the central core, which never entered the avalanche. This initial condition therefore has the
additional advantage that the undisturbed core appears to the observer from the front as a
uniform region of green particles, providing a strong contrast with the predominantly small
red particles that are deposited adjacent to the core. The sidewall friction μW = tan(15.5◦)
is a material property of both the glass beads and the PMMA, and is measured empirically
from the angle of failure for a bidisperse mixture of static grains on a gradually inclined
PMMA surface (see table 2).
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Particle segregation patterns in a triangular rotating drum

Figure 2 shows a series of photographs of the evolving pattern that develops when a
50:50 bidisperse mixture of large and small grains is rotated in a 70 % filled triangular
drum rotating at 2.5 rpm. Supplementary movie 2 shows the full time-dependent evolution.
The granular free surface, which was initially horizontal, inclines until a critical angle
is exceeded, and a thin surface avalanche forms. The particles segregate very efficiently
from one another in the surface avalanche, with the large particles rising to the surface
and the small particle percolating down to the base, where they are first to deposit into
the underlying solid rotating body of grains. As a result, the large green grains end up
adjacent to the drum wall and the smaller red particles deposit closer to the central core.
The complex flow field allows a quasi-periodic pattern to develop after just two rotations,
which has small-particle rich arms that radiate outwards and point towards the corners of
the triangle. A full discussion of the experimental results is deferred until the particle-size
distribution of the numerical simulation is introduced in § 4.4.

4.2. Coordinate system, boundary and initial conditions for the simulations
In order to simulate the segregation of the grains in the experimental rotating drum, a fixed
Cartesian coordinate system Oxz is defined with the origin O at the axis of rotation and
the z coordinate pointing in the opposite direction to gravity. The large- and small-particle
diameters are assumed to take average values dl = 700 μm and ds = 350 μm. The large
particles are therefore twice the size of the small grains. The drum is filled to 70 % of
its volume with an initially homogeneous 50:50 mixture of large and small grains, so
that ϕs = ϕl = 0.5 everywhere within the granular material. In addition, at t = 0 all the
material is assumed to be in solid-body rotation with velocity

u = Ωrθ , (4.1)

where Ω is the rotation rate, r is the radial coordinate and θ is the azimuthal unit
vector (Gray 2001). A rotation rate of 2.5 rpm (Ω = −π/12 rad s−1) is imposed, which
places the drum in the rolling, or continuously avalanching, regime (Henein et al. 1983;
Rajchenbach 1990; Gray 2001; Mellmann 2001; Ding et al. 2002; Yang et al. 2008). This
implies that when the slope exceeds a critical angle, a liquid-like free-surface avalanche
forms that continuously erodes and deposits grains with an underlying solid rotating
granular body beneath.

It is useful to define the relative velocity to the drum as

û = u − Ωrθ . (4.2)

No-slip and no-penetration conditions are imposed on the triangular walls which, using
the relative velocity, can be expressed as û = 0 on the drum walls. These conditions are
applied on the rotating mesh using OpenFOAM’s mesh-motion routines, with a structured
triangular mesh containing N2 = 6002 cells. The parameters for segregation and diffusion
are the universal constants summarized in table 1, while the frictional and remaining
parameters for the glass beads and sidewall friction are specified in table 2. There are
therefore no fitting parameters used in the simulations.

4.3. Bulk flow solutions and comparison to experiments
In the experiments and numerical simulations, the granular free surface is initially
horizontal. As the drum rotates the granular material performs solid-body rotation until a
critical angle is reached, and a liquid-like avalanche develops adjacent to the free surface.
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Figure 2. Experimental photos of a 70 % filled drum with a 50:50 mixture of large green (dl = 600–800 μm)
and small red (ds = 300–400 μm) glass beads rotating at 2.5 rpm. Solid-body rotation occurs in the first 2
seconds. The sequence starts at t = 2 s and progresses in increments of 2 s (30◦ rotation), from left to right,
top to bottom, up to t = 48 s (two revolutions). Once the surface avalanche develops, the mixture gradually
segregates into a structure of small-particle arms. The protruding stopper provides a reference point for
the rotation. Supplementary movie 2 shows the full time-dependent evolution and is available in the online
supplementary material.
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Figure 3. Quasi-periodic motion repeating every 120◦ of revolution for a 70 % full triangular drum computed
using the parameters from tables 1 and 2. For illustration, each field is shown at t = 42, 44, 46 and 48 s, from
left to right, corresponding to one third of a revolution. A black dot is plotted on one corner of the drum frame
so that the changing orientation may be easily tracked. Panel (a) shows the modulus of the relative velocity field,
(b) the pressure and (c) the base 10 logarithm of the inertial number. The white dashed line in (c) represents
the position below which the high viscosity cutoff (3.9) becomes active. The full time-dependent evolution of
each of the fields is shown in supplementary movies 3–5 (available online).

Due to sidewall friction, the critical free-surface inclination is significantly higher than
the static friction angle ζs = tan−1(μs), which is usually the approximate angle of failure
(Barker et al. 2021). The free-surface inclination remains relatively constant, with only
subtle periodic variations as shown in figure 3 and supplementary movies 3–5. The entire
flow then exhibits a quasi-periodic pulsating behaviour every 120◦ of rotation (8 s), due to
the rotation of the drum and the continuously changing drum cross-section occupied by
the grains.
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There can be subtle feedback effects from the evolving grain-size distribution, but they
are not large at 70 % fill (Hill et al. 1999; Mounty 2007). The simulation reproduces very
closely the free-surface inclination observed experimentally (figure 2), including the slight
S-shape, which becomes more pronounced when the free surface is longest, and the subtle
inclination dip (at t = 42 s in figure 3), which occurs just past the halfway point of the
avalanche. Feedback between the bulk flow and the mixture composition plays a more
pivotal role at fill levels near 50 %, when the strongly composition-dependent velocity
field can lead to the formation of petal-like patterns in the particle distribution (Zuriguel
et al. 2006) for circular drums, and more complex patterns in triangular and square drums
(Hill et al. 1999; Khakhar et al. 1999; Ottino & Khakhar 2000; Mounty 2007).

The length of the avalanche depends on the orientation of the drum. The orientations
that generate the longest avalanches also produce the deepest and fastest flowing motion
(see times t = 46 and 48 s in figure 3a). The longer avalanche length means that more
particles are entrained into the avalanche, which increases the flux and the peak velocities
that occur about halfway down the avalanche. In the lower reach of the avalanche the
particles are deposited back into the solid rotating body and the avalanche thins and
decelerates. The super inclination of the slope, combined with acceleration down the
increased avalanche length, may also contribute to the peak velocity.

The active avalanching layer is very thin, and is close to the depth observed in the
experiments shown in figure 2 and supplementary movie 2. Below the avalanching
layer the relative velocity û rapidly decays into a quasi-static creep state. The pressure
(figure 3b) has a lithostatic component, but with increasing depth the pressure gradient
becomes increasingly gravity aligned. Since both the segregation velocity magnitude and
the inertial number are strain-rate dependent, the inertial number (figure 3c) gives an
accurate identification of the active layer in which segregation takes place. It appears
slightly deeper than that implied by figure 3(a) since log10(I) is plotted. It exhibits less
variation in magnitude than |û| and p with changing orientation, in part due to the chosen
logarithmic scale, but also because the strain-rate dependent inertial number is tied to
velocity gradients rather than velocity. The white dashed line in figure 3(c) indicates the
threshold for the high viscosity cutoff (3.9). Above the white dashed line the dynamic and
creep regimes of the partially regularized rheology (2.7) are active, while below it the high
Newtonian viscosity is applied. Since this quasi-static creeping region is predominantly in
rigid body rotation, it has little influence on the overall flow dynamics.

4.4. Particle-size distribution
Figure 4 shows a sequence of images of the computed time-dependent evolution of the
small-particle concentration in the 70 % filled drum with a 50:50 mix of large and small
particles. Each image is directly comparable to the experimental photos in figure 2, and
is separated by two seconds, or equivalently, 30◦ angular increments, beginning at t = 2 s
and ending after two revolutions. Supplementary movie 6 shows the full time-dependent
evolution. In regions of solid-body-like rotation, the shear rate is very close to zero, so
the scaling laws, (2.19) and (2.20) imply that both the diffusion and the segregation are
negligibly small. The grains therefore stay at ϕs = 0.5 during their initial phase of rotation.
The surface avalanche is, however, very efficient at segregating differently sized particles,
because the shear rate is high and the pressure is low. This implies that the segregation
velocity magnitude (2.20) is much higher than in the solid rotating body, and the grains
can segregate. As the particles are deposited along the lower reach of the avalanche into
the solid rotating body of grains beneath, the segregation rate once again shuts off, and
the deposited particle-size distribution is rotated with the drum. The active region of
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Particle segregation patterns in a triangular rotating drum

segregation is therefore confined to a narrow boundary layer close to the free surface,
i.e. the avalanche. The highest rate of segregation occurs adjacent to the free surface, as
observed experimentally here (see § 4.5) and elsewhere (Gray & Hutter 1997; Khakhar,
McCarthy & Ottino 1997). This effect is intensified by the fact that particles near the
free surface have longer trajectories through the actively segregating layer before being
deposited, and hence, are subject to more accumulated shear.

Since the fill level of the drum exceeds 50 %, a central core forms that is never entrained
into the avalanche and remains at its initial concentration (Gray 2001; Mounty 2007).
The central core is a three-sided shape with curved sides, reminiscent of a Reuleaux
triangle. The size of the core is in good agreement with the experiment (figure 2), which
is a direct result of (i) the sidewall friction making the avalanche thinner and faster than
equivalent flows without sidewall friction, and (ii) the segregation (2.20) and diffusion
(2.19) laws confining the particle redistribution to the avalanching region. In contrast, in
Barker et al. (2021) simulations (which neglected sidewall friction) the avalanche was
deeper and slower, and consequently, both the central core size and the segregation were
underestimated compared with experimental observations (Hill et al. 1999; Ottino &
Khakhar 2000; Mounty 2007).

Over the first full rotation, the material separates out around the homogeneous core into
distinct regions of predominantly large or small particles with a diffuse region separating
them. The larger particles, that segregate to the surface of the avalanche, deposit close to
the drum wall, while the smaller particles at the base of the avalanche, deposit adjacent to
the central core. The combination of the complex time-dependent bulk flow (described in
§ 4.3) and the ordering mechanism of particle-size segregation then begins to generate a
pattern that has small-particle rich arms. The first arm emerges after one complete rotation
of the drum (figure 4), and the second arm then follows one third of a turn later. The time
scale for the gradual formation of the pattern is captured by the numerical simulation, as
shown by the excellent frame-by-frame match between figures 2 and 4, and supplementary
movie 7. Over the second rotation of the drum, the arms pass through the avalanche again,
the segregation becomes stronger and the pattern becomes more clearly defined. On each
third of a revolution the pattern then approximately repeats. Simulations are therefore only
performed for the first two drum revolutions.

The pattern exhibits a strong three-fold symmetry. To see this more clearly, it is useful
to plot the ϕs = 0.5 contour, and then replot it twice more rotated by ±2π/3 radians.
This is done in figure 5 at t = 36 and 44 s. In both cases this produces a triskelion-like
pattern with three arms that start adjacent to the central core and radiate outwards in a
clockwise sense ultimately pointing towards the corners of the drum. The outer length of
the arm is roughly parallel to the adjacent wall of the triangle, culminating in a flattened
top. In reality, the full triskelion structure cannot be seen, because one arm necessarily
lies above the free surface, but it is interesting to observe the three-fold symmetry using
this approach. At t = 36 s, the symmetry is almost perfect, because each arm has passed
through the avalanche an equal number of times. At t = 44 s, one of the arms has passed
through the avalanche an extra time, so the symmetry is not as good. The arm that has
passed through the avalanche an extra time has a large rich crevice that penetrates closer
to the central core, elongating the small-particle rich arm. This emphasizes the fact that
the pattern is continuing to evolve, with the best symmetries obtained when all the arms
have passed through the avalanche the same number of times. The same symmetry is
also evident in the experiments in figure 2, despite it being harder to generate a spatially
homogeneous initial mixture.
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0 0.2 0.4 0.6

ϕs
0.8 1.0

Figure 4. Small-particle concentration in a 70 % filled triangular rotating drum with a 50:50 mixture of large
and small particles, computed using the parameters specified in tables 1 and 2. The simulation is shown over
two full revolutions, beginning at t = 2 s and progressing in increments of 2 s, or 30 ◦ angular increments,
from left to right, top to bottom. The excess air above the grains is coloured white. The images are directly
comparable to the experimental photos in figure 2. A small black dot in one corner of the triangular frame
provides a reference point for the clockwise rotation. Supplementary movie 6 shows the full time-dependent
evolution, and this is compared side-by-side to the experiment in supplementary movie 7.
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Particle segregation patterns in a triangular rotating drum

(a) (b)

Figure 5. The rotational symmetry of the small-particle rich arms is shown by plotting the ϕs = 0.5 contour
for the numerical simulations of a 70 % filled triangular rotating drum containing a 50:50 bidisperse mixture
at t = 36 s (a) and t = 44 s (b). In both cases the original contour is plotted in black, the same contour rotated
by −2π/3 rad (i.e. rotation in the clockwise direction) in red and the contour rotated 2π/3 rad (anticlockwise)
in blue. At t = 44 s, one arm has been entrained through the avalanche an additional time, leading to a crevice
in this arm near the central core.

4.5. Quantitative analysis and numerical convergence
To provide a quantitative comparison between the simulations and the experiments,
this paper focuses on the small-particle concentration field. This can be approximately
determined from experimental images using the following method. First, the drum is filled
with a mixture of known small-particle concentration, shaken to achieve approximate
uniformity and then photographed. The drum, containing this same mixture, is repeatedly
shaken and photographed to reduce noise. This process is then repeated for a variety of
mean small-particle concentrations across the range ϕ̄s ∈ [0, 1]. All the images are then
cropped to remove the non-granular regions, and the colour profiles of the resulting raster
images are processed in MATLAB to return a matrix giving the RGB (red-green-blue)
intensities for each individual pixel. The ratio of the red intensity to the green intensity
is determined for each pixel, and averaged over the entire domain. The red and green
intensities exhibit a strong correlation with the mean small-particle concentration since
they correspond to the colours of the small and large particles, respectively. This process
returns a mean red to green pixel intensity ratio corresponding to each measured mean
(over the granular domain) small-particle concentration ϕ̄s, and the results for a given
concentration can be reliably reproduced experimentally. The ratio can then be plotted
against ϕs ∈ [0, 1] and a best fit curve drawn to give a complete set of unique expected
intensity ratios for every possible concentration. In fact, there is an approximately linear
relationship between the intensity ratio and the particle concentration, and consequently,
the mapping can be further improved.

Once the relationship between the intensity ratio and the concentration is assumed to
be linear, the appropriate linear fit can be determined using data taken from only two
concentrations. When the mean small-particle concentration ϕ̄s = 0 or 1, it follows that
ϕs = ϕ̄s at every point in the granular mixture. Therefore, the images with these two
mean particle concentrations can be divided into 8 × 8 pixel cells, where the cell size
is chosen to ensure a reasonable number of particles per cell, and the concentration in
every cell is known a priori. The mean colour intensity ratio in each individual cell is then
calculated, and the mean cell intensities when ϕs = 0 and 1 can be used to produce the
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linear fit between intensity ratio and small-particle concentration. This method has three
major advantages over using a greater number of points for ϕ̄s and taking the mean pixel
intensity ratio over the entire drum. First, since it uses data from 8 × 8 pixel cells, it can
be used to derive the concentration in cells of the same size from other drum images,
without any additional assumption of validity. Second, since the concentration in every
cell is known when ϕ̄s = 0 or 1, the standard deviation of the cell intensity ratio can be
trivially calculated and used to plot a set of worst fit lines that facilitate accurate error
estimation. Error is due to particle shadows and uneven light reflections (Hill et al. 1999),
which may be reduced, but not eradicated, by an appropriately positioned lighting set-up.
Finally, when the drums are filled with pure phases of small or large particles, attempts at
attaining a relatively homogeneous mixture are not subject to inadvertent segregation and
so the colour intensity data are more reliable than for intermediate particle concentrations.

Using the calculated mapping from colour intensity to concentration, images of the
developing rotating drum patterns from figure 2 are divided into 8 × 8 pixel cells, so
that the mean red to green intensity ratio can be determined for the individual cell and
a small-particle concentration value assigned using the set of expected intensity ratios. To
account for the undisturbed core, which appears to have ϕs = 0 but in reality has ϕs = 0.5
due to the method of attaining the initial mixture composition (see § 4.1), this region is
filled with black pixels for which an exception is made so that they are assigned the correct
concentration value. Note that although some pixels elsewhere in the drum appear very
dark due to gaps between particles adjacent to the transparent walls, over the 8 × 8 pixel
cells there is sufficient saturation of colour to avoid confusion with the central core region.
This results in a projected small-particle concentration field for the entire drum. Using this
method, the mean particle concentration of the experiments using an approximately 50:50
mixture of large and small particles is calculated to be ϕ̄s = 0.49 ± 0.03, matching very
closely with the approximate true value of ϕ̄s = 0.5.

The concentration field for the 70 % filled rotating drum after t = 48 s is shown in
figure 6. The number of pixels per cell is chosen to give a detailed concentration field
with strong image definition where each cell contains many particles. The subtle region
of weaker small-particle concentration above the core in the crevice of the arm being
entrained into the avalanche is more clearly visible in this image than in the pre-processed
image, which is shown in the final panel of figure 2. As predicted by the theory,
the predominantly large-particle regions adjacent to the drum walls are more strongly
segregated than the small-particle regions adjacent to the central core, since segregation is
strongest at the free surface, towards which the large particles are segregated. This was
not evident in the pre-processed images, but has been verified by examining the field
(ϕs − ϕ̄s)2, which confirms that the predominantly large-particle regions deviate further
from the mean particle concentration than the predominantly small regions.

To test the strength of the segregation and compare it directly to the simulation data,
the segregation intensity is defined analogously to Danckwerts (1952), as the standard
deviation of ϕs normalised by the mean small- and large-particle concentrations, ϕ̄s(1 −
ϕ̄s),

S =

√√√√√√√
∫∫

ω

(ϕs − ϕ̄s)2 dx dz

ϕ̄s(1 − ϕ̄s)

∫∫
ω

dx dz
, (4.3)

where ω is the part of the domain occupied by granular material. This implies that
S = 0 for a homogeneously mixed material, and S = 1 when it is fully segregated.
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Particle segregation patterns in a triangular rotating drum

0 0.2 0.4 0.6

ϕs
0.8 1.0

Figure 6. Approximated small-particle concentration field at t = 48 s for the experiment using a triangular
drum 70 % filled with an approximately 50:50 mixture of large green and small red glass beads. The
small-particle concentration is obtained using the projection method described in § 4.5.

The computed and experimental segregation intensity are plotted as a function of time
and at various grid resolutions in figure 7. Sidewall friction results in a free-surface
avalanche that acts as a very thin boundary layer where all the segregation occurs. To
correctly predict the segregation and, hence, the overall pattern formation, this boundary
layer must be adequately resolved, which requires a very fine numerical mesh. For coarser
meshes, the avalanche is under resolved and numerical diffusion therefore leads to an
underestimation of the segregation intensity. Although the finest resolution, which uses
6002 triangular cells, is not perfectly resolved, the two finest meshes yield similar results,
and the time evolution of the segregation intensities demonstrates convergence of the
solution with increasing refinement. Furthermore, the simulations appear to be converging
on a solution within the error bounds of that derived from experiments. This comparison
confirms the earlier observation that the segregation takes place over a similar time scale
in simulations and experiments, even when the avalanche is severely under resolved. This
means that the numerical simulations provide a strong qualitative and quantitative match
with experimental data without the need for any fitting parameters.

The simulation data shows periodic peaks and troughs in segregation intensity with
a period of one third of a revolution. This can be expected given the variation in
the avalanche dynamics with the shifting geometry (see § 4.3 and figure 3), which
produces higher strain rates, longer particle trajectories through the avalanche and, hence,
stronger segregation when the avalanche is at its longest. Both the experimental and
computed segregation intensity begin to stabilize after the second revolution, with the
final segregation intensity of S = 0.77 at t = 48 s at the highest resolution. After this time
it will continue to plateau over many revolutions, but will never become fully periodic
(Mounty 2007).
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Figure 7. Comparison of the segregation intensity S, defined in (4.3), with time, in a 70 % filled drum with
a 50:50 mix of large and small particles. The experimental data are computed every third of a revolution
(i.e. every 8 s) and is shown using red circles. The error bars represent the ±1 standard deviation in the RGB
intensity mapping used to determine the small-particle concentration. The simulation data (coloured lines) is
shown for grid resolutions N = 300, 400, 500 and 600. This is equivalent to a total number N2 mesh cells. In
the inset, the segregation intensity of the simulations at t = 48 s is plotted against the grid resolution, with the
segregation intensity calculated for the experiment represented by the dashed blue line for comparison, while
the dot-dashed red lines represent the experimental error of the intensity.

5. The importance of lateral sidewall friction

The theoretical and numerical framework used to compute the rotating drum simulation in
§ 4 uses width-averaged, two-dimensional mass and momentum equations with Coulomb
slip assumed on the transparent confining sidewalls. These sidewalls are separated by a
narrow gap in experiments, in order to keep the flow fully two dimensional, and hence,
allow observation of the pattern (see figure 2). It is of interest to see what effect the
sidewalls have on the pattern that forms.

Figure 8(a) shows a comparison between the particle-size distribution patterns formed in
the experiment in § 4.1 at t = 48 s, and numerical simulations with and without sidewall
friction. As discussed in § 4.4, the simulation computed with sidewall friction matches
excellently to the experimental results, without any fitting parameters. However, for the
simulations without sidewall friction, almost no segregation has occurred after two drum
revolutions. The segregation intensity is just S = 0.0663, which indicates that there has
been little deviation from the initial mixed state. A very thin region of large particles and
a weaker region of small particles are discernible close to the drum walls, but in place
of the triskelion pattern there is a simple triangular shape. This indicates that sidewall
friction is not only a necessary consideration for accurate modelling of rotating drum
experiments performed in narrow gaps between transparent sidewalls, but is one of the
dominant physical mechanisms determining the nature and extent of the segregation. At
later times the segregation intensity continues to increase without sidewall friction, but
even after 20 revolutions, when S = 0.3007, it has not reached a plateau. This indicates
that the simulations without sidewall friction dramatically over estimate the segregation
time scale.
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Particle segregation patterns in a triangular rotating drum

(a)

(b)

(c)
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ϕs 0.6 0.8 1.0

|û| (m s–1) p (N m–2) log10 (I )

0 0.01 0.02 0.03 0.04 0 0.4 0.8 1.2 1.6 2.0

(×103)

–6 –5 –4 –3 –2 –1

Figure 8. (a) Particle-size distributions in a bidisperse triangular rotating drum flow at t = 48 s for the
experiment described in § 4.1 (left), the simulation with sidewall friction (middle) and without sidewall friction
(right). Supplementary movies 2, 6 and 8 show the corresponding time-dependent evolution and are available
online. (b) The corresponding simulated bulk flow fields with sidewall friction and (c) without sidewall friction.
The simulations without sidewall friction assume μW = 0. The rest of the parameters are summarized in
tables 1 and 2. The black dashed line indicates the position below which the high viscosity cutoff (3.9) becomes
active. The particle segregation is extremely weak and the free-surface inclination angle is drastically reduced
without sidewall friction.

In the absence of sidewall friction the free surface is straight rather than S-shaped,
and the inclination angle is reduced to a value close to the static friction angle of
ζs = tan−1(μs) = 22◦ (Barker et al. 2021). The bulk flow fields, with and without sidewall
friction, are plotted in figures 8(b) and 8(c), respectively. Since the segregation law (2.20)
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is the same in both simulations, it is the differences in the bulk flow dynamics that
underpins the weak segregation in the absence of sidewall friction. The peak velocity
magnitude |û| ≈ 0.14 ms−1 without sidewall friction, which is a five-fold reduction
relative to the simulation computed with sidewall friction, where |û| ≈ 0.7 ms−1. Overall
the modulus of the relative velocity in the free-surface avalanche is about an order
of magnitude smaller without sidewall friction. The avalanche is also much thicker, as
predicted by the observations of Jop et al. (2005), and the velocity decays only gradually.
The pressure field is similar, but the inertial number never approaches the high values
with I ≈ 1 observed in the presence of sidewall friction. The high viscosity cutoff is
activated much deeper into the flow without sidewall friction. This reveals why the mixture
segregates so weakly; the reduced strain-rate magnitude, owing to the thicker, slower flow,
feeds back into the segregation scaling law (2.20) and inhibits the particle segregation.
Barker et al. (2021) showed that this could be partially circumvented by using artificially
over-sized particles, comparable to the order of magnitude to the avalanche depth. This
naturally results in a more strongly segregated mixture, but nevertheless fails to predict
the patterns observed in experiments with the accuracy of the computations presented in
§ 4. The simulations in figure 8 therefore demonstrate that for rotating drum flows confined
within a thin channel, it is essential that lateral sidewall friction be incorporated to capture
the correct flow dynamics and the resulting particle-size segregation.

6. Varying fill fractions

The fill fraction is now varied systematically using the same homogeneous 50:50 initial
mixture of large and small particles, and the same rotation rate as in § 4. Figure 9 shows
the experimental and computed patterns that form after two revolutions for fill levels of (a)
30 %, (b) 50 %, (c) 70 % and (d) 80 %. In comparison with the 70 % filled drum discussed
in § 4, the homogeneous central core for the 80 % filled drum is much larger due to the
elevated position of the free-surface avalanche, whereas for the 30 % and 50 % filled drums
no core forms as all the particles pass through the avalanche during each revolution.

Structurally, a similar pattern emerges for the 70 % and 80 % filled drums, although
interestingly the homogeneous central cores appear to have opposite orientations. In fact,
the corners of the central core are formed when the free-surface avalanche is longest,
and therefore, fastest and thickest, and the corners in the 80 % filled drum are simply
more subtle because the core region bulges outwards between corners. This is evident in
the experiment and particularly in the numerical simulation shown in figure 9(d), which
successfully capture the broad features observed experimentally. The undisturbed core is
slightly larger in the simulation, suggesting the avalanche thickness is underestimated, but
it accurately reproduces the shape that develops in the experiment. Unlike the 70 % filled
drum, the core does not approximate a Reuleaux triangle as the curvature of the sides is
not approximately constant. The small-particle rich lobes are less pronounced than for the
70 % filled drum in figure 9(c), and do not exhibit the flattened tip in either simulation or
experiment, instead producing a pointed tip. As shown in supplementary movies 11 and 14,
the simulation at 80 % fill correctly captures the time evolution of the small-particle arms,
which form over the first drum revolution and become slightly shorter after subsequent
re-entrainment in the second revolution. The S-shaped free surface is reproduced very
accurately by the numerical simulation, with the curvature particularly pronounced around
the downslope avalanche position.

The patterns in the 30 % and 50 % filled drums are qualitatively very different to those
discussed so far. Both cases are apparently reduced to a single small-particle lobe, which
is repeatedly entrained through the free-surface avalanche and re-orientated towards the
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(a)

(b)

(c)

(d )

0 0.2 0.4 0.6 0.8 1.0

ϕs

Figure 9. Comparison of triangular rotating drum patterns at various fill fractions for experiments (left) and
computations (right). The same 50:50 mixture of large green and small red glass beads is used as in § 4, and
the pattern is shown after two drum revolutions at t = 48 s. The drums are (a) 30 %, (b) 50 %, (c) 70 % and
(d) 80 % filled. Supplementary movies 2 and 6 show the existing experimental and simulated 70 % filled case,
while supplementary movies 9–14 show the other fill levels and are available online.
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Figure 10. Photo of the experiment (a) and the small-particle concentration in the numerical simulation (b)
of a 50 % filled drum at t = 42 s containing a 50:50 mix of large green and small red glass beads. Two
small-particle arms are distinguishable when the free surface is approximately parallel to the lower drum wall.

second corner of the drum frame in the clockwise direction, or by −4π/3. Furthermore,
the arms have a slight arc in the anti-clockwise direction, unlike the 70 % and 80 % filled
drums for which the arms have a clockwise arc, which is also predicted by both numerical
simulations. At both 30 % and 50 % filled, the numerical simulation accurately captures
the structure of the particle-size distribution observed in the experiment, although the
S-shape of the free surface is weaker in the former simulation. At the 30 % fill level, the
small-particle concentration is very strong on the outer curved edge of the arm and more
diffuse towards the inside.

For the 50 % filled drum, there are regions of high small-particle concentration either
side of the arm near the free surface, which would eventually coalesce into a more obvious
second arm if the fill level were increased. In fact, the particle distribution structure at
50 % filled is a transitional stage between the structures observed at lower and higher fill
fractions, and may be said to consist of two small-particle arms. At orientations when the
free surface is approximately parallel to the lower drum wall, for example, at t = 42 s,
plotted in figure 10, there are small-particle regions orientated towards both the corners
of the drum occupied by granular material. These regions may be interpreted as a single
arm, partially deposited downslope and partially in the upslope position, re-orientated
by −4π/3 each time it passes through the avalanche. However, they should instead be
identified as two genuinely distinct small-particle arms re-orientated by −2π/3 after
each entrainment. In figure 9(b) the second arm is undergoing entrainment through the
avalanche, separated from the other by a more diffuse region.

Quantitative comparisons between the segregation intensity (4.3) in the numerical
simulations and the experiments is shown in figure 11. In each case, the time scale and
intensity of segregation in the simulations matches very closely with the experimental
data. For both experiments and simulations, the final segregation at t = 48 s is weakest
at 80 % fill (where S = 0.69, taken from the simulation data) and strongest at 50 %
fill (S = 0.81), while the 30 % filled drum takes an intermediate value (S = 0.73). The
segregation is weakest at 80 % fill partly due the enlarged undisturbed central core, and
may be highest at 50 % fill due to the relatively small variation in the avalanche length,
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Figure 11. Comparison of the temporal evolution of the segregation intensity (4.3) between experiments
(symbols with error bars) and numerical simulations (curves), for 80 %, 50 % and 30 % filled drums. A 50:50
mix of large and small particles is used in each case, and each simulation is performed with N2 = 6002 grid
points.

as can be seen in the supplementary movies. The intensity in the experiments is initially
slightly stronger at 30 % fill than 50 % fill, before the latter case becomes significantly
stronger in the second revolution of the drum. This behaviour is also predicted in the
simulations, where the curves intersect near t = 16 s before diverging. While the 80 %
filled drum exhibits a relatively smooth increase with only small peaks and troughs of the
segregation intensity, which very gradually plateaus, at 50 % and particularly at 30 % fill
the intensity fluctuates more erratically. At 30 % fill each peak represents a brief plateau,
which actually decrease in intensity before again increasing, and the estimated intensity of
the experiments broadly confirms this phenomenon since the intensity is higher at t = 24 s
than t = 32 s. The peak and trough shapes of the simulation curves are heavily dependent
on the fill fraction, and they also become more pronounced at a 30 % fill fraction because
the rotation of the drum walls dramatically alters the geometry of the enclosed granular
region.

7. Varying mean particle concentrations

Attention is now turned to the dependence of the particle-size distribution and bulk flow
fields on the mixture composition. Initially two further cases are examined; a 70:30 and
a 30:70 mix of the of large green (dl = 600–800 μm) and small red (ds = 300–400 μm)
particles, in addition to the original 50:50 mix. For ease of notation, these mixtures will
also be referred to by the mean initial small-particle concentration, i.e. ϕ̄s = 0.3, 0.5 and
0.7, respectively. In all cases the fill level is 70 %. In the experiments the same technique
of shaking the drum in the horizontal orientation is used to produce an approximately
homogeneous initial mixture. This time, however, the inversely graded layers of large
and small particles can differ in thickness. Results from the experiments and numerical
simulations are displayed in figure 12 and supplementary movies 2, 6 and 15–18.

Structurally the small-particle arms are similar for each of the three mixes, and develop
over the same time scale. The particle species separate out into somewhat diffuse regions
over the first revolution, and then over the second revolution form a clear triskelion
structure of small-particle arms surrounding an undisturbed core. The different core
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(a)

(b)

(c)

0 0.2 0.4 0.6 0.8 1.0

ϕs

Figure 12. Comparison of the experimental (left) and computed (right) patterns for the case of (a) 70:30,
(b) 50:50 and (c) 30:70 mixes of large green and small red glass beads in a 70 % filled rotating drum. These
cases are equivalently referred to as φ̄s = 0.3, 0.5 and 0.7 mixes. The pattern is shown after two revolutions at
t = 48 s. Supplementary movies 2, 6 and 15–18 show the full time-dependent evolution of the patterns.
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Figure 13. Variation of (a) the segregation intensity, S, and (b) the total area of the homogeneous central
core, A, as a function of the mean small-particle concentration ϕ̄s = 0.1, 0.3, 0.5, 0.7 and 0.9, at t = 48 s.
The segregation intensity is plotted for the numerical simulations (solid red circles and lines) and experiments
(blue circles). The mixture with ϕ̄s = 0.5 segregates most strongly. The area of the homogeneous central core
is plotted for the numerical simulations, and is generally smaller for flows with a higher mean concentration of
large particles, due to their increased friction and deeper erosion (Hill et al. 1999; Barker et al. 2021).

colours in each of the numerical simulations represent the varying mean initial particle
concentration. The small-particle lobes are longer and thicker when the small-particle
content is higher, as one would expect. Furthermore, the flattened top that is nearly parallel
to the adjacent drum wall can be seen very clearly in the computed solution in figure 12(c),
while in figure 12(a) it is not obviously present at all. Because the small-particle arms are
very thin when ϕ̄s = 0.3, the inner triangular region of high large-particle concentration,
enclosed by the core and partially entrained arm, can be seen more clearly than in the
other cases. Generally, the computed patterns and free-surface inclination angles are in
very good agreement with the experiments, although the computed solution for ϕ̄s = 0.7
appears sharper than in the experiment.

The segregation scaling law (2.20) predicts that the segregation will be stronger in the
highly sheared large-particle rich regions close to the avalanche surface, than in the less
strongly sheared small-particle rich regions close to the avalanche base. These particle-size
distributions are then preserved in the slowly rotating deposit. This is a real effect that can
be seen in the experimentally derived concentration data in figure 6 in § 4.5. It is also
reflected in the simulations in figure 4. Varying the initial mean particle concentration
provides another perspective from which to consider this phenomenon.

Figure 13(a) shows the segregation intensities at t = 48 s for the experiments and
simulations with ϕ̄s = 0.3, 0.5 and 0.7, as well as for two further extreme cases with
ϕ̄s = 0.1 and ϕ̄s = 0.9. As the mean small-particle concentration increases, the mean
particle size decreases, and one might reasonably expect from the scaling law (2.20) that
this induces weaker overall segregation. However, the observed behaviour is significantly
more complex than this. Instead, the segregation intensity initially increases with the
mean small-particle concentration, up to a maximal value at ϕ̄s = 0.5, before it decreases
for ϕ̄s = 0.7 and 0.9. The segregation intensities derived from the simulation data
also match closely with the experiments, confirming this general trend. The agreement
between the simulations and experiments when ϕ̄s = 0.1 and 0.3 suggests that the value
φs

c = 0.2, which determines the point below which the segregation velocity magnitude
transitions to a quadratic dependence on the grain-size ratio, is accurate. The intensity is
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Figure 14. Magnitude of the relative velocity field (4.2) as a function of depth for 70 % filled rotating drums
with different mean particle concentrations ϕ̄s. The profiles are measured at the centre of the avalanche at
t = 48 s, and cutoff at the free surface, identified by drawing the contour for ϕa = 0. The vertical offset of the
plots is due to the increased slope inclination as ϕ̄s is decreased.

weaker for ϕ̄s = 0.9 than ϕ̄s = 0.1, as predicted based on the respective large-particle
concentrations, but conversely is stronger for ϕ̄s = 0.7 than ϕ̄s = 0.3. To discern the
reasons for these seemingly counter-intuitive results, it is necessary to look beyond the
functional dependence of the segregation scaling law and consider the more intricate
nature of segregation-mobility feedback interactions.

Hill et al. (1999) performed experiments for different rotating drum geometries and
observed that the avalanching layer was slower and deeper for flows with larger particles.
This effect is captured by Barker et al. (2021) fully coupled framework used here, since
the effective friction μ(I), defined in (2.7), is monotonically increasing in the inertial
number I, which itself depends linearly on the average particle size d̄, through (2.16). This
means that (all other things being equal) larger particles are more frictional than smaller
particles. In rotating drums the mass flux in the avalanche is imposed by the rotation
of the drum, so when the surface avalanche is rich in slower-moving large particles, it
becomes deeper. As a result, the homogeneously mixed central core becomes smaller with
increasing large-particle composition as shown in figure 13(b). However, the frictional
feedback is even more subtle than one might at first anticipate. As the mean small-particle
concentration is decreased, the friction of the mixture increases, which in turn steepens the
slope inclination and, hence, allows the more frictional mixture to attain higher velocities.
This can be seen in figure 14, which shows the relative velocity magnitude as a function
of z. The differences in the composition-dependent velocities are therefore not as big as
one would have anticipated based on simulations on a fixed slope (Barker et al. 2021), but
there is a very clear offset in position due to the increased slope inclination.

Although the variations in the segregation intensity in figure 13(a) are modest, the
reduced value of S at low ϕ̄s may therefore be attributed to the reduced shear rate and
deeper surface flows in the segregation scaling law (2.20). Conversely, at high values of
ϕ̄s the reduced segregation rate can be attributed to the linear dependence of (2.20) on
the average particle size d̄. As a result, there is a point, at approximately ϕ̄s = 0.5, where
the segregation intensity S is maximum. It is worth noting that the feedback effects of
the bulk dynamics on the segregation intensity, the area of the homogeneous core and
the slope inclination would not be predicted by a segregation model that used the same
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Particle segregation patterns in a triangular rotating drum

ds = 0.15 × 10−3 m, dm = 0.45 × 10−3 m, dl = 0.7 × 10−3 m

Table 3. Grain diameters for the small-, medium- and large-particle species used in the numerical
simulations in § 8.

prescribed velocity and pressure fields in all the simulations. At 70 % fill these effects are
relatively small, however, there is no guarantee that they would not be more significant
at other fill levels. In particular, the results of Zuriguel et al. (2006) in a circular drum
suggest that the system may be highly sensitive at 50 % fill.

8. Segregation in a tridisperse triangular rotating drum

In the experiment shown in figure 1, a tridisperse mixture of large green (dl =
600–800 μm), medium white (dm = 400–500 μm) and small red (ds = 120–180 μm)
particles is used to generate the pattern in a 70 % filled drum with a 30:40:30 mix. At the
rotation rate of Ω = −π/12 rad s−1, used in the experiments and simulations in § 4–7,
the medium grains do not segregate into clearly discernable regions. The rotation rate is
therefore reduced to Ω = −π/48 rad s−1 (0.625 rpm), as medium-particle rich regions
form at this speed. The reason for this is that the reduced rotation rate makes the avalanche
thinner, which increases the Péclet number for segregation, Peνλ = fνλ/Dνλ, due to the
reduced pressure in the segregation scaling law (2.20). Increasing the Péclet number is
equivalent to strengthening the segregation, as it compares the relative strength of the
segregation to the diffusion. The full time-dependent experimental evolution of the pattern
is available in supplementary movie 1.

The theory in § 2 is sufficiently general to model this case using the same parameters as
in tables 1 and 2, and with the mean diameters specified in table 3. The numerical method
in OpenFOAM is implemented for an arbitrary multi-component mixture and, hence,
requires only the specification of an additional granular phase. Rather than describing the
full set of advection–segregation–diffusion equations, which are analogous to the system
of equations (3.4)–(3.7), for brevity, only the segregation and diffusive fluxes will be
specified. For large, medium and small granular phases and an excess air phase, denoted
by the constituent letters l, m, s and a, respectively, the segregation fluxes are

F l = (−flsϕlϕs − flmϕlϕm + fagϕ
lϕa)

g
|g| , (8.1)

F m = (−fmsϕ
mϕs + fmlϕ

mϕl + fagϕ
mϕa)

g
|g| , (8.2)

F s = ( fsmϕsϕm + fslϕ
sϕl + fagϕ

sϕa)
g
|g| , (8.3)

F a = −fagϕ
aϕg g

|g| , (8.4)

and the diffusive fluxes are

Dl = Dls(ϕ
s∇ϕl − ϕl∇ϕs) +Dlm(ϕm∇ϕl − ϕl∇ϕm), (8.5)

Dm = Dms(ϕ
s∇ϕm − ϕm∇ϕs) +Dml(ϕ

l∇ϕm − ϕm∇ϕl), (8.6)
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Ds = Dsm(ϕm∇ϕs − ϕs∇ϕm) +Dsl(ϕ
l∇ϕs − ϕs∇ϕl), (8.7)

Da = 0, (8.8)

where the overall concentration of grains is now

ϕg = ϕs + ϕm + ϕl = 1 − ϕa. (8.9)

The simulation runs for two full revolutions, and the results from the experiment
and numerical simulation are presented in figure 15. Supplementary movies 1 and 19
show the full time-dependent evolution of the pattern. The simulations show that at the
slower rotation rate (Ω = −π/48 rad s−1) the avalanche is indeed thinner, and hence, the
central core is slightly larger than in the bidisperse simulations with Ω = −π/12 rad s−1.
Initially, no region of predominantly medium sized particles is clearly discernible,
although small- and large-particle rich regions begin to form quickly. This is because
the medium sized particles are being simultaneously segregated in opposite directions
by the other two species (8.2). In the second revolution, regions of predominantly
medium particles form, and the numerical simulations correctly predict that they are
strongest adjacent to the inner side of the small-particle arms, with weaker medium
regions down the outer length. Overall, the simulations provide a very good qualitative
match to the experimental particle-size distribution patterns, although the computed
small- and medium-particle arms are larger and less pointed. The granular free surface
is also slightly curved in the experiments, whereas it is almost flat in the simulations.
The tridisperse simulations were the most computationally expensive in this paper, and
required approximately 140 000 CPU hours to perform two drum revolutions using the
highest resolution grid.

9. Conclusions and discussion

In this paper a continuum model based on the polydisperse fully coupled theory of Barker
et al. (2021) is used to compute the particle-size segregation patterns that form in a
triangular rotating drum. The results are then compared with experiments performed in a
narrow drum using bidisperse and tridisperse granular mixtures. The transparent confining
sidewalls enable easy visualization of the resulting patterns, but also impose additional
sidewall friction, which makes the flow thinner and faster than it would be in a wide drum
(Hill et al. 1999; Jop et al. 2005). In order to quantitatively compare the experiments and
simulations it is therefore necessary to width average the flow, so that the sidewall friction
is represented by a single term in a two-dimensional momentum balance equation (2.28).

The bidisperse width-averaged model with wall friction reproduces the observed
patterns across a wide range of drum fill fractions and small-particle concentrations, and
quantitatively predicts how the segregation intensity evolves over time (see figures 2, 4, 7,
9, 11, 12, 13 and supplementary movies 2–7 and 9–18). In the absence of sidewall friction,
the avalanche (in which segregation occurs) is predicted to be much slower and deeper,
resulting in an under prediction of the segregation intensity by an order of magnitude
(figure 8 and supplementary movie 8). This emphasises the critical importance of sidewall
friction in modelling the flow and segregation here. The two-way coupling between
flow and segregation also influences the segregation patterns. For example, an increased
volume fraction of large particles results in a thicker, steeper surface avalanche (due to
the particle-size dependence of the rheology), which in turn leads to weaker segregation
(due to the shear rate and pressure dependence of the segregation rate). Segregation is also
weakened by the addition of a third, intermediate, grain size, and it is necessary to rotate
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(a)

(b)

(c)

0
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ϕl ϕm

ϕs 1
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Figure 15. Comparison of the particle-size distribution in a 70 % filled triangular rotating drum containing a
tridisperse mixture of large green (600–800 μm), medium white (400–500 μm) and small red (125–160 μm)
glass beads in a 30:40:30 mix. The experiment (left) and numerical simulation (right) are shown at (a) t = 64 s,
(b) t = 128 s and (c) t = 192 s. Each 64 s increment represents two thirds of a revolution. The numerical
particle concentrations are represented by a three-way contour scale, where the phases go from ϕν = 0 to 1.
The concentration of each phase at a specific point in the triangular scale is determined by projecting back
onto the scale, parallel to the sides, as shown. The drums rotate over two full revolutions at a rotation rate of
Ω = −π/48 rad s−1. Supplementary movies 1 and 19 show the full time-dependent development of the pattern
in the experiment and simulation, and are available in the online supplementary material.
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the drum slower in order to get clearly discernable regions that are rich in medium-size
grains (figures 1 and 15, and supplementary movies 1 and 19).

The results presented here demonstrate the power of the coupling method developed
by Barker et al. (2021) and represent a strong validation of the partially regularized
μ(I) rheology and the segregation scaling law of Trewhela et al. (2021). The original
incompressible μ(I) rheology was derived from observations of steady-state DEM/DPM
simulations and experiments on chutes and in circular rotating drums (Pouliquen &
Forterre 2002; GDR MiDi 2004; Jop et al. 2005). Although it has been successfully
applied to more complex geometries (Lacaze & Kerswell 2009; Staron, Lagrée & Popinet
2014), it is perhaps surprising that the partially regularized theory (Barker & Gray 2017)
is able to predict the bulk flow dynamics in a highly transient triangular rotating drum
with such accuracy. In the bidisperse simulations, both the avalanche depth and the
free-surface shape and inclination in the experiments are reproduced very closely by this
rheology. Furthermore, although the segregation scaling law of Trewhela et al. (2021) was
determined using data from refractive-index-matched oscillatory shear-box experiments
with a single small- or large-particle intruder, the results presented here are only the
latest successful application of this law to more complex geometries with less extreme
particle concentrations (Barker et al. 2021; Trewhela et al. 2021). These results therefore
suggest that the fully coupled theory used here provides a sufficient approximation of the
real physics for accurate modelling of polydisperse rotating drums in the continuously
avalanching or rolling regime (Rajchenbach 1990) in general. This therefore represents a
major breakthrough for continuum modelling of granular flow in rotating drums. This
could prove extremely useful in industrial settings where, for example, mixers fitted
with segregation-inhibiting baffles (McCarthy 2009) could be tested numerically using
continuum simulations before prototypes are produced.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.1022.
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Appendix A. Shear cell with sidewall friction

Consider a semi-infinite monodisperse body of grains, in a Cartesian coordinate system
Oxz, enclosed between confining sidewalls and driven by a top plate moving with velocity
(V0, 0) at z = 0. The granular material therefore occupies the region z ≤ 0. The top plate
is assumed to drive a steadily shearing velocity of the form u = (u, 0) in a gravity-free
environment. The only non-zero component of the strain-rate tensor is Dxz = (1/2) du/dz,
and hence, ‖D‖ = (1/2)|du/dz|. The z momentum balance implies that the pressure is
equal to a constant. For incompressible models, it is necessary to specify the pressure
p = p0 imposed by the top plate, which then applies throughout the granular material.
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Particle segregation patterns in a triangular rotating drum

Since u/|u| = (1, 0), the x momentum balance then reduces to

∂μ

∂z
= 2

W
μW , (A1)

where W is the channel width and μW is the sidewall friction. Using the chain rule and the
definition of the inertial number (2.5), this can be transformed into an ordinary differential
equation (ODE) for the velocity,

d2u
dz2 = 1

μ′(I)
2μW

Wd

√
p0

ρ∗
, (A2)

where d is the grain diameter, ρ∗ is the intrinsic grain density and μ′(I) is the derivative
of μ with respect to I. It is possible to obtain an exact solution by invoking the μ(I) curve
(2.6) of Jop et al. (2005). In this case μ can be differentiated to give

μ′(I) = (μd − μs)I0

(I0 + I)2 , (A3)

and so after again using the definition of the inertial number (2.5), (A2) becomes the
second-order nonlinear ODE

d2u
dz2 = β

(
1 + γ

du
dz

)2

, (A4)

where β and γ are the constants

β = 2μW

Wd

(
I0

μd − μs

)√
p0

ρ∗
and γ = d

I0

√
ρ∗
p0

. (A5a,b)

It is assumed that the material yields within a finite depth region, and therefore, that the
velocity is identically zero below a certain depth. Solving (A4) subject to the boundary
conditions that u = 0 and du/dz = 0 at some (as yet) unknown depth z = −h implies that

u(z) = − log(1 − βγ (z + h))

βγ 2 − z + h
γ

. (A6)

The depth h can be located exactly using the boundary condition u = V0 at z = 0, implying

log(1 − βγ h) + βγ h = −βγ 2V0. (A7)

This has a solution in the form of a LambertW function, and the flow depth is therefore

h = W(e−βγ 2V0−1) + 1
βγ

. (A8)

A numerical solution is computed in OpenFOAM assuming a no-slip boundary condition
at the base of the domain and periodic conditions on the left and right boundaries. The
sidewall friction causes the velocity to rapidly decay to zero below the driving top plate, as
shown in figure 16. Both the numerical and exact solutions agree very closely. In particular,
the numerical simulation is able to locate the avalanche depth very accurately regardless
of the extent of the domain in the z direction, i.e. if the domain extends below the position
z = −h, the velocity u will still reduce to approximately zero at the same position. Closely
related solutions also occur in vertical chutes and pipes (Barker, Zhu & Sun 2022).
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Figure 16. Comparison of the numerical solution computed in OpenFOAM by solving equations (3.1) and
(3.2) (red open circles) to the exact solution (black curve) given by (A6). The solution is computed using the
parameters defined in table 2, and assuming that the channel width W = 3 mm, the wall friction coefficient
μW = tan(15.5◦), the constant pressure p0 = 50 N m−2 and the top plate velocity V0 = 0.1 m s−1. In addition,
a particle diameter of d = ds = 0.35 × 10−3 m was used.
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