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An iterative scheme for determining glacier velocities and stresses
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ABSTRACT. There are no direct methods to measure the boundary condition at the base of a glacier.
Here, we propose a method that works by iteratively changing boundary conditions until a satisfactory
fit to surface observations is obtained. The method is an accelerated version of one known as Kozlov–
Maz’ya iteration. We apply it to the problem of ice flow through a transverse cross-section, and show
it to be effective by solving the inverse problem for a sequence of synthetic data. We also apply the
method to two real glaciers, Athabasca and Perito Moreno, one of which has a known basal velocity
distribution.

1. INTRODUCTION
The base of a glacier or an ice sheet is notoriously difficult
to access. Basal boundary conditions are therefore usually
unknown. Unfortunately they determine, to a large part, the
total discharge and flow behavior of the ice. It is therefore
desirable to try to infer the basal boundary condition from
measurements that can be made on the surface or from
air- or space-borne platforms, namely ice depth and surface
topography and velocities.
Various methods for solving the inverse problem to

compute basal boundary conditions exist. They depend on
the physical situation that is being addressed and often
rely on a simplified treatment of the full three-dimensional
(3-D) Stokes equations (i.e. the momentum balance equation
neglecting accelerating terms; Hutter, 1983). MacAyeal
(1992) pioneered the use of formal inverse methods in
glaciology to infer basal drag under ice streams using a zero-
order model based on shallowness (see alsoMacAyeal, 1993;
Joughin and others, 2004).
On the other hand, it is possible to calculate transfer

functions for variations of bed topography and slipperiness
to the ice surface (e.g. Raymond and Gudmundsson, 2005)
and to use linearized transfer functions to estimate bed
properties from surface measurements (Thorsteinsson and
others, 2003). Other applications include the derivation
of basal velocities along longitudinal profiles based on
longitudinal averaging (Truffer, 2004) or on a first-order
forward model and a Monte Carlo inversion (Chandler and
others, 2006).
Here we also consider a simplification to the general

Stokes equations for an incompressible fluid (Lliboutry,
1987, section 6.2). Following Lliboutry (1987, ch. 7), we
treat isothermal flow through a valley glacier’s cross-section
under the simplifying assumption that the in-plane velocity
components and all out-of-plane gradients are zero. That is,
in a coordinate system with z pointing out-of-plane along
the mean down-glacier slope, y perpendicularly upwards
and x across the glacier, we assume that the velocity vector
u = (0, 0,u)T has only one non-zero component and all
derivatives ∂/∂z disappear. The Stokes equations are then
greatly simplified, and the momentum balance in the z
direction reduces to

∂σ′xz
∂x

+
∂σ′yz
∂y

= ρg sinα, (1)

where σ′ is the deviatoric stress tensor (Paterson, 1994), ρ
is the density of ice, g the acceleration due to gravity and α
the out-of-plane surface slope. The deviatoric stresses can be
written in terms of velocity gradients by assuming a material
law, such as Glen’s flow law (Glen, 1955), and solving it
for σ′ij :

σ′ij = A
−1/nII

1−n
2n

ε̇ ε̇ij , (2)

where ε̇ij = 1/2(∂iuj + ∂jui ) is the strain-rate tensor, A is
a flow-rate factor and n is the flow-law exponent. IIε̇ =
1/2 tr(σ′2) is the second invariant of the deviatoric stress
tensor. We assume a regularized Glen flow law; in this
case Equation (1) can be written in terms of the velocity
component u in the z direction:

∇ ·
[(

κ2 + |∇u|2
) 1−n

2n ∇u
]
= f , (3)

where f = (2A)1/nρg sinα is the forcing function of this non-
linear Poisson equation, and depends only on geometry and
flow properties. The constant κ is a small number (relative to
typical strain rates) that regularizes the flow law at low strain
rates and prevents the problem of infinite viscosity at zero
strain rate (Hutter, 1983). It has the effect of linearizing the
flow law at low strain rates. It has been suggested that this
effect is due to diffusional creep (e.g. Goldsby and Kohlstedt,
2001). Pettit and Waddington (2003) have investigated the
impact of a similar term on flow and topography under low-
stress conditions in an ice divide. Here, we treat κ primarily
as a regularization parameter, and we keep it small enough
so that our results are not influenced by its numerical value.
Fortuitously, Equation (3) also describes the flow compon-

ent in a longitudinal cross-section under a first-order approxi-
mation to the Stokes equations (Colinge and Rappaz, 1999).
The remainder of this paper is kept general enough so that
the results apply to both situations, but our examples will all
consider out-of-plane flow through a glacier cross-section.
We choose to concentrate on this problem for the follow-

ing reasons. Equation (3) describes two simplified situations
that are glaciologically relevant, and several mathematical
results for this equation have already been derived. Existence
and uniqueness of solutions for Equation (3), with Dirichlet
boundary conditions (given velocities) on part of the bound-
ary and so-called Neumann (or natural) boundary conditions
(corresponding to zero tangential stress) on the remainder,
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follow from standard elliptic theory (Colinge and Rappaz,
1999). Avdonin and others (in press) then derived some use-
ful results for the operator that maps a basal velocity field to
the surface of a glacier via Equation (3). In particular, they
derived an expression for the functional derivative of this
operator. This can be useful for solving the inverse problem
(Parker, 1994, ch. 5).
Here we use a method originally proposed by Kozlov and

Maz’ya (1990) for the Laplace operator to solve for basal
velocities and shear stresses using corresponding observed
data at the surface as input. In the following we assume that
the bottom and surface topography of the glacier, as well
as its surface velocity, are known. The paper is organized
as follows. Section 2 describes methodology, which is quite
technical by necessity. Section 3 describes the application of
the method to several examples (both to fabricated data and
to actual data). These results are then discussed in section 4.
Details of the algorithm are given in the Appendix.

2. METHOD
2.1. Problem formulation
Let Ω be a region of the plane corresponding to a transverse
or longitudinal glacier cross-section.We divide the boundary
of Ω into three regions – S,B and E – corresponding to the
surface, base and remainder of the boundary. The region E is
included for completeness: it is necessary to specify upstream
and downstream boundary conditions when solving the
longitudinal first-order model (Colinge and Rappaz, 1999)
or it could be useful to provide those boundary conditions
when an outlet glacier in a deep trough is embedded in an
ice sheet.
We assume that velocities uS and uE have been prescribed

on S and E respectively, that shear stresses τS have been
prescribed on S and that the forcing term f is prescribed in
the interior. We wish to find a solution of a regularized Glen
flow-law fluid in Ω that satisfies the prescribed boundary
conditions. That is, we wish to find a solution to Equation (3)
with boundary conditions

u|S = uS
u|E = uE(

κ2 + |∇u|2
) 1−n

2n ∇νu

∣∣∣∣
S
= τS,

(4)

where ∇ν is the surface-normal gradient.
This type of boundary-value problem which provides both

Dirichlet and Neumann data on part of the boundary and
no data on another part is known as a Cauchy problem. The
governing partial differential equation (PDE) in Equation (3)
is an elliptic second-order differential equation; an elliptic
Cauchy problem is a fundamental example of what is known
as an ill-posed problem (Hadamard, 1923).
For general data (f ,uS, uE, τS), collectively known as

Cauchy data, no solution of this problem exists. Even among
data for which a solution exists, the map taking Cauchy data
to a solution of Equations (3) and (4) is not continuous in
the sense that small perturbations of the data can lead to
arbitrarily large effects on the solution. This is the central
difficulty presented by ill-posed problems. In practice, one
works with a regularization scheme that determines an
approximate solution of Equation (3), with the quality of the
approximation depending (non-linearly) on the quality of the
given Cauchy data. Our approach to finding a regularized

solution is based on an iterative method due to Kozlov and
Maz’ya for linear Cauchy problems.
For simplicity of discussion, we henceforth assume that τS,

f and uE are known exactly, but uS is subject to measurement
error. With regard to τS, this is not really a restriction since
in the physical problem under consideration the surface
shear stresses vanish everywhere. Of course, f contains
uncertainties (e.g. measurement error in the surface slope
and an empirical flow-rate parameter) and uE is an unknown
modeled flow. Our method does not treat uncertainties
in these terms. Also, measured surface velocities may be
affected by features of the flow field that are not captured
by our simplified treatment of the Stokes equations, or by
the Glen flow law for the full Stokes equations. It would be a
mistake to try to fit such features in the data, and we therefore
treat inadequacies of our model as errors in uS. If model
and data uncertainties can both be described with Gaussian
statistics (i.e. are normally distributed), this procedure of
adding model uncertainties to the data errors is fully justified
(Tarantola, 2004, p. 64). In practice, however, it is often
difficult to estimate the model uncertainties.

2.2. Kozlov–Maz’ya iteration for the Laplacian
Kozlov and Maz’ya (1990) introduced an iterative scheme
for solving the Cauchy problem for the Poisson equation
Δ u = f ; here Δ is the Laplacian, also commonly denoted
by ∇2. This method has subsequently been extended to
general second-order elliptic operators (Kozlov and others,
1992), the heat equation (Bastay and others, 2001) as well
as the linear Stokes equations (Bastay and others, 2005). We
describe the method here first in the context of the Poisson
equation. In this case, the Cauchy problem is

Δ u = f

u|S = uS
u|E = uE

∂νu|S = τS.

(5)

To illustrate the ill-posedness of this problem, consider the
case of a rectangular domain with x coordinate between 0
and 1 and y coordinate between 0 at the base B and H at
the surface S. For the specific data

f = 0

uS = sin(kπx)

uE = 0

τS = 0

(6)

where k = 1, 2, . . ., the solution of the Cauchy problem is

u(x, y ) = sin(kπx) cosh[kπ(H − y )]. (7)

Since the value of u at the base y = 0 is sin(kπx) cosh(kH),
surface velocities for mode k are amplified at the base by
a factor cosh(kπH) which grows exponentially in k . True
surface velocities will, of course, not consist of a single high-
order mode. However, they can be written in series form∑
k ak sin(kπx) and (inevitable) errors in measuring the high-

order modes will cause uncontrollably large oscillations
in the computed basal velocities. The goal of solving the
Cauchy problem is to find an approximate solution that does
not introduce spurious amplified noise at the base.
Kozlov–Maz’ya iteration (KM-iteration) uses the two pieces

of overdetermined surface data (uS and τS) in the course
of iterating back and forth between a pair of well-posed
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Fig. 1. Flow diagram of Kozlov–Maz’ya iteration. Two well-posed forward problems with different boundary conditions are solved alternately:
in the first problem an assumed (or previously calculated) basal shear stress is used together with measured surface velocities. In the second
problem, previously calculated basal velocities are used with a zero shear stress assumption at the top boundary. The two problems are
solved in iteration until convergence. The dashed line signifies Neumann conditions (basal shear stresses) and the dotted line signifies
Dirichlet conditions (velocities).

boundary value problems. The first problem uses the known
surface Neumann data τS and a guess for the basal Dirichlet
data, φ:

Δ v = f

∂νv |S = τS

v |E = uS
v |B = φ.

(8)

The second problem uses the known Dirichlet data uS and a
guess for the basal Neumann data ψ:

Δw = f

w |S = uS
w |E = uE

∂νw |B = ψ.

(9)

We let D and N be the operators taking φ to v and ψ to w ,
respectively. Note that v and w are down-glacier velocities,
not components of a 3-D velocity field.
The iterative process now proceeds as follows. Begin with

an initial guess ψ0 for the unknown basal Neumann data
and compute w0 = N (ψ0). This provides a guess φ0 for the
unknown basal Dirichlet data, namely φ0 = w0|B. We then
use this as input into D to compute v0 = D(φ0). Setting
ψ1 = ∂νv0|B, we have now completed one cycle of KM-
iteration. This process is outlined schematically in Figure 1.
LetK denote the effect of applying a round of KM-iteration,

so ψk+1 = K(ψk ). The operator K can be thought of as a map
from basal shear stresses to basal shear stresses. If a solution
u of Equation (5) exists, then ψ = ∂νu|B is a fixed point of
K. In the notation of Figure 1, if ψ0 = ∂νu|B, then w0 = u,
φ0 = u|B, v0 = u and ψ1 = ∂νu|B. That is, K(ψ) = ψ.
It was proved by Kozlov and Maz’ya (1990) that this fixed
point is unique and that the iterates ψk converge (in a certain
sense) to this fixed point. If we start with exact Cauchy data
(f , uS,uE, τS), the iterates ψk will therefore converge to the
exact basal Neumann data ψ. The solution of the Cauchy
problem is obtained by finding the unique fixed point of K.
Since the Cauchy data are never known exactly, to obtain

a regularized solution we must stop the iterations early. To

understand the effect of stopping iterations early, consider
again a rectangular domain with x coordinate between 0
and 1 and y coordinate between 0 and H and with all input
data set to zero:

f = 0

uS = 0

uE = 0

τS = 0.

(10)

The solution of this Cauchy problem is u = 0, and we can
observe explicitly how an initial guess for the basal Neumann
data ψ0 converges to zero in this case. (An analysis for the
case of non-zero data can be handled by considering the
error ψn−ψ between the iterates ψn and the true basal shear
stresses ψ.)
Expressing the initial guess ψ0 as a Fourier series

ψ0 =
∞∑
k=1

ak sin(kπx), (11)

we can apply KM-iteration (which is a linear map in the case
of zero data) to each term individually. Supposing that the
basal shear stress distribution is of the form of a single-term
Fourier series, ψ0 = sin(kπx), then one round of KM-iteration
yields a new guess

ψ1 = λ2k sin(kπx), (12)

where λk = tanh(kπH). This can be seen by noting that the
solution of Equation (9) with ψ = sin(kπx) is

w =
1
kπ

sin(kπx)
sinh[kπ(H − y )]
cosh(kπH)

. (13)

The corresponding basal-velocity distribution is obtained by
setting y = 0:

φ =
1
kπ

tanh(kπH) sin(kπx). (14)

Using this basal-velocity distribution as input in Equation (8)
yields a solution

v =
1
kπ

tanh(kπH) sin(kπx)
cosh[kπ(H − y )]
cosh(kπH)

(15)
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which has a basal shear stress distribution (formed by
computing −∂yv at y = 0):

ψ1 = tanh(kπH)
2 sin(kπx) = λ2k sin(kπx). (16)

This is the result of a single round of KM-iteration applied to
ψ0. For a full Fourier series, the result of applying m rounds
of KM-iteration to ψ0 is

ψm =
∞∑
k=1

λ2mk ak sin(kπx). (17)

Since each λk satisfies 0 < λk < 1, we see that each
term in the sum converges to zero. However, the factors λk
converge exponentially to 1, so corrections in the high-order
modes occur more andmore slowly. This increasing slowness
is a desired feature of KM-iteration. The ill-posedness of
the Cauchy problem arises from instability in the higher
modes (i.e. larger values of k ), and KM-iteration performs
fast correction on low-order modes while leaving high-order
modes nearly unchanged (unless a large number of iterations
are performed).
The process of stopping KM-iteration early corresponds

to correcting only a collection of low-order modes, starting
from an initial guess which expresses an a priori hypothesis
concerning the solution (e.g. the glacier is frozen to the bed).
For the ill-posed Cauchy problem, we must stop the iterations
before they converge, i.e. before we correct modes that our
measurement error does not justify correcting. Thus, to be a
regularization scheme, KM-iteration must be accompanied
by a stopping criterion. Since KM-iteration does not correct
errors in the high-order modes of the initial guess, the final
result of KM-iteration depends both on the initial guess and
the stopping criterion.
One common stopping criterion for iterative inverse

methods is the Morozov discrepancy principle (Nemirovskii,
1986; Hanke, 1995). In the case of KM-iteration which
attempts to solve the fixed point equation K(ψ) = ψ, the
discrepancy principle states that we should stop iterations
when the fixed point error K(ψ)−ψ is smaller than a certain
predetermined threshold that expresses our confidence in the
Cauchy data. In practice, this threshold is difficult to estimate,
and we use an alternative principle described in section 2.5
below.

2.3. Kozlov–Maz’ya iteration for the linearized
problem
The method we have described for the Laplacian generalizes
to general linear second-order elliptic operators (Kozlov and
others, 1992). If, for example, L is a second-order elliptic
operator of the form

Lu = ∂j[μ(x, y )∂ju] (18)

then its corresponding Neumann boundary operator is

Lνu = μ(x, y )∂νu (19)

and the Cauchy problem for this operator is

Lu = f

u|S = uS
u|E = uE

Lνu|S = τS.

(20)

The analogues of Equations (8) and (9) are

Lv = f

Lνv |S = τS

v |E = uE
v |B = φ

(21)

and
Lw = f

w |S = uS
w |E = uE

Lνw |B = ψ,

(22)

respectively. Just as for the Laplacian, these give rise to
operators D(φ) and N (ψ).

2.4. Accelerated Kozlov–Maz’ya iteration
Although KM-iteration is a regularization scheme for the
Cauchy problem Equation (20), the iterates for this scheme
converge quite slowly. Recall that for the rectangular domain
with zero initial data (Equation (10)) and a starting guess
φ0 =

∑∞
k=1 ak sin(kπx), the result of m rounds of KM-

iteration is

ψm =
∞∑
k=1

λ2mk ak sin(kπx), (23)

where λk = tanh(kπH). In order to correct mode k = 4 in a
fairly shallow domain with H = 1/3 we have λ4 ∼ 0.9995,
and hence more than 2500 iterations are required to reduce
the error in this mode to less than 10% of its starting value.
While this might be reasonable for a single linear problem,
we have found this slowness to be unacceptable as part of
an iteration scheme for a non-linear problem.
The slowness of KM-iteration has been addressed by

acceleration schemes involving certain tunable relaxation
parameters (Jourhmane and Nachaoui, 1999; Mera and
others, 2000). We have developed a general acceleration
technique for KM-iteration, based on recasting KM-iteration
as a form of a (decelerated) steepest descent scheme
for minimizing a certain functional. Using a superior
minimization scheme for this functional (the conjugate
gradient method) we obtain sufficient acceleration to make
KM-iteration feasible as the linear step of a non-linear
iteration loop. The Appendix contains a summary of the
acceleration scheme; a more complete analysis will be
presented in the mathematics literature (D. Maxwell and
others, unpublished information).

2.5. Stopping criterion
As mentioned previously, iterative regularization methods
require a stopping criterion to ensure that they do not overfit
measurement noise. For KM-iteration, which attempts to
solve the fixed point problem

K(ψ) = ψ, (24)

an appropriate stopping criterion is that the norm ofK(ψ)−ψ
be sufficiently small in a certain Sobolev space. A Sobolev
space is a vector space of functions equipped with a norm
that also includes the derivatives of the functions; they arise
naturally in the theory of partial differential equations (Adams
and Fournier, 2003). It can be shown that the level of
smallness can be determined by an estimate for the size of
the error in the Cauchy data (uS, τS) along with an estimate,
specific to the domain geometry, of how surface effects are
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attenuated at the base. See, for example, the discussion by
Bastay and others (2005).
This stopping criterion, however, is difficult to implement

in practice since it requires an estimate of geometry-
dependent attenuation factors. We have therefore used
a heuristic variation of the stopping criterion based on
matching the surface Dirichlet condition. Recall that in the
course of iterations, vk is a solution of the PDE that matches
the surface Neumann data exactly but might not match the
surface Dirichlet data well. Given an error threshold δ, we
stop iterations at the first k (δ) such that∫

S
(vk (δ)|S − uS)2 ds < δ2

∫
S
1 ds. (25)

That is, we stop iterations when vk (δ) approximates (in a
root-mean-square sense) uS to within tolerance δ. Although
this stopping criterion has worked well for us in practice, we
do not have a proof that this is a regularization scheme for
KM-iteration.

2.6. Non-linear iterations
The steps of KM-iteration generalize easily to the non-linear
Cauchy problem (Equations (3) and (4)). Let N ′, D′ and
K′ be the non-linear analogs of the operators N , D and
K introduced previously. We wish to solve the fixed-point
equation ψ = K′(ψ). Starting with an estimate ψk for basal
shear stresses, let wk+1 = N ′(ψk ), vk+1 = D′(wk |B) and
ψk+1 = K′(ψk ).
It seems reasonable to expect that this iteration method,

together with a stopping criterion, would provide a regulariz-
ation of the non-linear Cauchy problem. A proof of this does
not currently exist, however. More importantly, the slowness
that presents itself in the linear case is more significant now,
because many non-linear boundary value problems need
to be solved in the course of the iterations. Moreover, it is
not obvious how to directly apply our acceleration scheme
from the linear case to the non-linear case. Instead, we have
chosen to iterate the linear Cauchy problems in succession.
Suppose u solves

∇ ·
[(

κ2 + |∇u|2
) 1−n

2n ∇u
]
= f

u|S = uS
u|E = uE,

(26)

so u satisfies all the requirements of being a solution of the
Cauchy problem except for the surface Neumann condition
(every output of N ′ satisfies this condition). Let L be the
linearization of the non-linear partial differential operator in
Equation (3) about u, so

L(v ) = ∇ ·
[(

κ2 + |∇u|2
) 1−n

2n ∇v

+
1− n
2n

(
κ2 + |∇u|2

) 1−3n
2n
(∇u · ∇v )∇u

]
. (27)

If h is a solution of the linear Cauchy problem

Lh = 0

Lνh|S = 0
h|E = 0

Lνh|S = τS −
(
κ2 + |∇u|2

) 1−n
2n ∇νu

∣∣∣∣
S

(28)

then w = u + h is an approximate solution of the non-
linear Cauchy problem. This suggests an iterative technique
for solving the non-linear problem.
Starting with an estimate ψk−1 for the basal shear stresses,

we compute wk = N ′(ψk−1) and vk = D′(wk |B). Let

η2k =
1∫

S 1 ds

∫
S
(vk |S − uS)2 ds, (29)

so ηk is a measure of how close ψk−1 is to being the solution
we seek. For the final solution we would like ηk ≤ δ, but not
much smaller. We set Δk = ηk − δ, so Δk is the excess error
at step k , i.e. the error above the level of desired misfit δ.
To compute ψk , we compute the linearized operator Lk
corresponding to wk , and perform linear KM-iterations for
the linearized Cauchy problem Equation (28) with L = Lk ,
u = wk and with stopping threshold δk described below.
Letting hk be the basal shear stresses resulting from the linear
KM-iterations, we set

ψk = K′(ψk−1 + λhk ), (30)

where λ ∈ [0, 1] is obtained by a line search to minimize the
error ηk+1. These non-linear iterations stop when ηk < δ.
It is inefficient to use δ as the stopping threshold for early

iterations. If wk is far from its final value (which can be
detected from the excess error Δk ), Lk is a comparatively
poor approximation for the final non-linear PDE and using
the final value of δ results in linear iterations being wasted in
finding a very good solution of the Cauchy problem for the
wrong operator. Instead, we lower the stopping threshold δk
progressively by the rule

δk =

{
δ + μΔk Δk ≥ βδ

δ Δk < βδ
(31)

where 0 < β < 1 and 0 < μ < 1 are fixed parameters. That
is, we attempt to remove 100 (1 − μ)% of the excess error
Δk in the course of solving the linearized Cauchy problem
unless the excess error represents less than 100 β% of the
error threshold δ, in which case we attempt to remove all
excess error. In our computations we used η = 1/2 and
β = 1/10.

2.7. Dirichlet starting data
The algorithm, as we have presented it, is a map from basal
stresses to basal stresses. Mathematically, KM-iteration is
easiest to analyze when thought of this way. This has a
practical consequence for our acceleration scheme, which
is most simply written when considered as a map from
Neumann data to Neumann data. However, it is often
desirable to specify an initial guess of Dirichlet data at
the base (e.g. a frozen bed). Moreover, it is important to
start with a reasonable initial guess – the algorithm is run
to convergence only up to a stopping criterion, and the
final results depend on the initial guess (refer to the end
of section 2.2). It is easy to incorporate an initial guess of
Dirichlet data by pre-pending the algorithm with a half KM-
iteration (i.e. operator D′).
The final output of our algorithm is the output of operator

N ′, and hence satisfies the surface Dirichlet condition
exactly but the zero stress condition only approximately.
Since we have greater confidence in the surface stress
condition, we post-pend a half KM-iteration (operator N ′) to
the algorithm. In practice, then, our algorithm can be seen as
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Fig. 2. Reconstructed basal velocities forW = (a) 1; (b) 2; (c) 3; and
(d) 4. Distances are dimensionless and velocities are rescaled to a
common maximum for comparison. Dashed curves show the basal
velocity (centered Gaussian distribution) used in the forward model
to generate synthetic data, and solid curves are the solutions to the
inverse problem.

a map from basal Dirichlet data to Dirichlet data, with inner
loops that are maps on Neumann data.

2.8. The forward model
The implementation of our method requires the repeated
solving of four kinds of forward problems, namely those
described by D′ and N ′ (which differ only in their bound-
ary conditions) and their linearized variants D and N . In
all cases, we solve the forward problems using the finite-
element method. Colinge and Rappaz (1999) derived the
weak form of the non-linear PDE Equation (3), which was
then integrated over triangular elements using a given viscos-
ity distribution and linear shape function following standard
methods (e.g. Reddy, 2008). To treat the non-linearity in
operators D′ and N ′, we use the resulting velocity solution
to calculate a new viscosity distribution and iterate to con-
vergence. The triangular mesh was generated with the freely
available Matlab code distmesh (Persson and Strang, 2004;
http://www-math.mit.edu/∼persson/mesh/). The method was
implemented in Matlab and we checked it for convergence
with grid refinement.

3. RESULTS
We present two sets of results. In the first set, we solve the
forward problemwith specified bottom boundary conditions.
We then, after perturbing the surface velocities with noise,
solve the inverse problem to compute basal velocities
and compare these computed velocities with the originally
prescribed basal boundary condition. In a second set of
experiments, we apply the method to actual glaciers (in one
case to a glacier with a measured velocity distribution).

3.1. Synthetic data
The performance of any algorithm for constructing regular-
ized solutions of an ill-posed problem depends crucially on
the parameters of the associated well-posed problem (i.e.
the domain geometry and empirical constants appearing in
the PDE). For unfavorable domains, the recovered solution
will lack detail and convey little information about the true
solution. In order to address the applicability of our inverse

Fig. 3. Reconstructed basal velocities from noisy surface velocities
for the W = 2 domain. Surface velocities were perturbed with
white noise having amplitude (a) 0.5%; (b) 2%; (c) 5%; and (d) 10%
of the maximum surface velocity of the solution for this domain
of a glacier frozen at the base. Dashed curves show the basal
velocity (centered Gaussian distribution) used in the forward model
to generate synthetic data, and solid curves are the solutions to the
inverse problem.

method to typical glacier geometries, we considered a se-
quence of parabolic glacier cross-sections with unit depth
and with width 2W ; 1 < W < 4. For each cross-section of
half-width W , we solved forward problems for Equation (3)
(which has units of length−1 time−1/n , so by a suitable choice
of timescale any constant forcing term can be rescaled to
unity). The solution was found by specifying a constant for-
cing term f = 1 and basal velocities given by a Gaussian
profile

v0 exp
(
−1
2

( x
W

)2 1
σ2

)
, (32)

where σ = 1/4, v0 is half the maximum surface velocity of
the solution for the corresponding domain with a frozen base
and x = 0 is the center line of the glacier. This provides a
localized feature scaled relative to the glacier geometry and
typical surface velocity. We then perturbed the computed
surface velocities with white noise having amplitude 2%
of v0, and used the perturbed data as input to the inverse
method. Figure 2 shows the reconstructed and actual basal
velocities.
ForW ≥ 2 the algorithm correctly detects significant basal

sliding occurring in a region near the center of the glacier,
although atW = 2 the peak velocity is somewhat off-center.
AtW = 1 we are unable to resolve the localized feature and
the algorithm constructs a nearly constant basal velocity. In
general, increasingW increases both the localization of the
velocity peak and the correct recovery of its magnitude.
We used a noise level of 2% in our synthetic tests since

this level worked well in reconstructing solutions for real
datasets. It is instructive to see the effects of various noise
levels on solution quality. Figure 3 shows reconstructions
for a domain with W = 2 and noise levels 0.05%, 2%
(which corresponds with Fig. 2b), 5% and 10%. We used
the same Gaussian basal sliding profile as in Figure 2 for
this test. Increasing noise leads to a less defined peak in
the reconstruction with a broadening of the sliding region,
although even at 0.05% noise there was about 20% error in
the peak basal velocity. It is interesting to note that although
the predicted peak basal velocity was generally a decreasing
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Fig. 4. Reconstructed basal velocities for W = (a) 1; (b) 2; (c) 3;
and (d) 4. Distances are dimensionless and velocities are rescaled
to a common maximum for comparison. Dashed curves show the
basal velocities (Gaussian distribution centered on three-quarters of
the glacier width) used in the forward model to generate synthetic
surface data. Solid curves are the solutions of the inverse problem.

function of noise level, this trend did not persist at the 10%
noise level where very few iterations were required to match
a solution to within the larger error level.
As a further test of resolution, we conducted a similar

experiment with Gaussian basal velocity profiles centered
at a point halfway between the center and margin (Fig. 4).
Since the velocity peak is located at a lesser depth than the

previous experiment, and since there is a non-zero surface
velocity at one edge, this is an easier test case than the
centered sliding. For W ≥ 2, the algorithm correctly detects
localized sliding near the midpoint between the glacier
center and edge, with a bias to placing the peak sliding closer
to the edge. For W = 1, the algorithm detects that the peak
basal velocity occurs to the right, but the solution remains
nearly constant over much of the base. Again, increasingW
improves the quality of the reconstructed velocity.
Precise velocity features along the base are lost away from

the boundary. It is therefore possible that much of the solution
in the interior can be reconstructed even when resolution of
basal velocities is impossible. Figure 5 shows a comparison
of true and reconstructed interior velocities for W = 1 and
offset basal sliding. There is good agreement in the interior
away from a narrow boundary layer.
Specification of basal velocities together with a zero shear

stress condition at the surface determines a unique solution
for Equation (3). In principle, all properties of the solution
can therefore be determined if the basal velocities can be
recovered. We are particularly interested in the shear stresses

Fig. 5. (a) True and (b) reconstructed longitudinal velocities for
W = 1 with offset basal sliding (Fig. 4a). Units are dimensionless.

Fig. 6. Comparison of (a) reconstructed basal velocities and (b) basal
shear stresses for a Coulomb boundary condition. Units are
dimensionless. Dashed curves show the solutions of the forward
model and solid curves are the solutions of the inverse problem.

at the base (which also uniquely determine a solution up to a
constant). In practice, however, we expect that the degree to
which we can recover shear stresses will be less than that
for velocities, since a derivative is required to determine
stresses. In order to test the capability of the algorithm
to construct shear stresses, we considered for the forward
model a Coulomb boundary condition considered by Schoof
(2006). Each point of the base is assumed to have a yield
stress τc , and the boundary condition then reads

−τc < − |∇u|
1
n−1 ∂

∂ν
u < τc if u = 0

− |∇u|
1
n−1 ∂

∂ν
u = τc if u > 0

− |∇u|
1
n−1 ∂

∂ν
u = −τc if u < 0

(33)

where n is the flow-law exponent.
We constructed a forward solution corresponding to

figure 4b of Schoof (2006), where the domain consists of
a triangle with unit height and half-width cot(π/8) ∼ 2.4.
The yield stress is proportional to overburden pressure up
to the water table at height y = 0.84 and is proportional
to the difference between overburden and hydrostatic water
pressure below the water table. As with the parabolic
synthetic data, we added noise to this solution and used the
results as input for the inverse method.
Figure 6 shows a comparison of the reconstructed basal

velocities and shear stresses. The ice is sliding in a zone of
nearly half the glacier width at the base; the shear stress
in this region is the yield stress which decreases linearly
with depth. The reconstructed solution accurately detects the
linear profile and the location of the point where transition
to yield stress occurs. There are spurious oscillations in the
shear stress near the margin that correlate with oscillations
in the reconstructed basal velocities. This is a Gibbs-type
phenomenon. A basal velocity that is identically zero in
one region and non-zero in another must inherently contain
high frequencies, and these will not be resolved by the
inverse method.

3.2. Real data
3.2.1. Athabasca Glacier
Raymond (1971) derived velocities along a cross-section of
Athabasca Glacier, Canada, by measuring surface velocities
and ice deformation in boreholes drilled to the glacier bed.
We used the bed geometry and observed surface velocities
from this experiment to recover longitudinal velocities in
the interior. Our algorithm requires an error threshold for
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Fig. 7. Athabasca Glacier: (a) modeled velocity contour lines
(ma−1); (b) contour lines derived from measurements (Raymond,
1971); (c) measured (squares) and modeled (dashed curve) surface
velocities and measurement-derived (asterisks) and modeled basal
velocities (solid curve); and (d) modeled basal shear stress.

matching the surface velocities; we set this threshold to 2%
of the maximum surface velocity.
So far we have implicitly assumed that the flow-rate

factor A in the constitutive relationship for ice is well
known. This is not necessarily the case, and published
values vary by almost an order of magnitude (for a review
of some published values, see Truffer and others, 2001).
On Black Rapids Glacier, Alaska, they found that a value
of A = 0.1bar−3 a−1 worked well. However, using this
value we computed longitudinal velocities at the bed of
Athabasca Glacier that are approximately 15ma−1 slower
than observed values. This discrepancy is not due to a failure
of the inverse method: using the observed bed velocities
as input to the forward model yields surface velocities that
are significantly faster than observed values. That is, the
measured values are incompatible with a Glen flow law with
n = 3 and A = 0.1bar−3 a−1. We obtain significantly better
agreement between observed velocities and the velocities
obtained by our inverse method by using a stiffer model for
ice, in this case with A = 0.063bar−3 a−1 (Fig. 7).
We can gain a sense of the level of resolution achieved

by considering the eigenmodes (described below) of the
linearized Kozlov–Maz’ya iteration operator. Let L be the
linearization (about the reconstructed solution u) of the non-
linear partial differential operator in Equation (3), and let K
be the corresponding Kozlov–Maz’ya iteration operator with
all data (f , uS,uE, τS) set to zero. For this visualization, it is
most convenient to use the Dirichlet-to-Dirichlet operator
described in section 2.7.
A basal-velocity distribution φ that satisfies Kφ = μφ

for some number μ is called an eigenmode of K, and μ
is its corresponding eigenvalue. The eigenvalues of K can
be listed in order 0 < μ1 < μ2 < μ3 < · · · < 1, and
they converge quickly to 1. Roughly speaking, the process of

Fig. 8. (a) Eigenvalues of the Athabasca Kozlov–Maz’ya operator;
solid line is the threshold θ = 0.02. (b) Eigenmodes 2 (solid curve),
3 (heavy solid curve), 5 (dashed curve), and 10 (heavy dashed curve).
Velocities are dimensionless.

Kozlov–Maz’ya iteration corrects the error by correcting each
eigenmode in turn until the stopping criterion is reached.
If φk is an eigenmode of K with eigenvalue μk , then a
perturbation of basal velocities in the direction φk results
in a signal at the surface that is approximately attenuated by
the factor

√
1− μk . If V is a characteristic velocity, and if

our stopping criterion is set to threshold θV , we therefore
expect to detect a signal of size V from the base only for
those modes having

√
1− μk > θ.

Figure 8 shows the distribution of eigenvalues for the Ath-
abasca Glacier computation, as well as some representative
modes. We used a stopping threshold of 2% of the maximum
surface velocity; the last value of k with

√
1− μk > 0.02 is

k = 18. This mode represents the maximum mode that can
be imaged, and only if it were a dominant term in the basal
velocity function.

3.2.2. Glaciar Perito Moreno
We also applied the method to data from Glaciar Perito
Moreno, southern Patagonia icefield. A transverse section of
glacier bed topography was derived by seismic methods, and
a surface velocity profile was derived from interferometric
synthetic aperture radar (InSAR) data (Stuefer and others,
2007). Using the same value of A as for Athabasca Glacier
resulted in unphysical basal shear stresses, with the base
pulling the ice in places. Using a value of A = 0.1bar−3 a−1

results in a velocity distribution with significant basal motion
along the entire perimeter, but a maximum that is offset from
the deepest part of the glacier (Fig. 9).

Fig. 9. Glaciar Perito Moreno: (a) contour plot of modeled velocity
distribution (ma−1); (b) surface velocities derived from interfero-
metric SAR (squares) and modeled surface (dashed curve) and basal
velocities (solid curve); and (c) model-derived basal shear stress.
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Fig. 10. (a) Eigenvalues of the Perito Moreno Kozlov–Maz’ya
operator. Solid line is the threshold θ = 0.02. (b) Eigenmodes 2
(solid curve), 6 (heavy solid curve), 10 (dashed curve), and 20 (heavy
dashed curve). Velocities are dimensionless.

Figure 10 shows the eigenvalue distribution of the K oper-
ator and representative modes. We note that the comparative
shallowness of Glaciar Perito Moreno manifests itself in a
slower decay rate of the eigenvalues. More modes are resolv-
able than for the Athabasca cross-section, and the resolution
is more uniform across the base.

4. DISCUSSION AND CONCLUSIONS
We have attempted to resolve basal-velocity distributions
from observations that can be made at a glacier surface.
There are fundamental limits about the feature size in
these derived velocity distributions that can be successfully
resolved. Inverse methods can help us determine what these
limits are. This aspect of our results is not dependent on the
actual method used, although it is possible that the derived
velocity fields are.
We have found accelerated KM-iteration to work well and

have reasonable convergence properties for our problem.
We have experimented with other methods (e.g. Tichonov
regularization), but have not found them to perform better.
Numerical experiments with synthetic data show that

the recoverability of basal data is strongly dependent on
geometry. This can be understood intuitively: a point on the
center line of a glacier with half-width to depth ratio ofW =
1 is equidistant to its entire perimeter. It is therefore equally
sensitive to basal conditions along the entire perimeter. On
the other hand, features of the basal velocity field can be
better resolved in geometries with higher W . Fortunately,
this is the more typical situation in glaciology.
Van der Veen and Whillans (1989) proposed a method

to calculate englacial velocities by propagating measured
velocities downward, using a local force budget. Hantz and
Lliboutry (1981), Lliboutry (1987, ch. 7) and later Bahr and
others (1994) and Lliboutry (1995) pointed out the limits of
such a scheme and showed that it is not possible to reliably
calculate velocities at depths greater than about the half-
width of the glacier, due to inherent instabilities.
This can also be seen by observing how small-scale vari-

ations in basal boundary conditions propagate upward in
a forward (and well-posed) problem (Balise and Raymond,
1985). They showed that variations on spatial scales smaller
than one ice thickness cannot be resolved by surface meas-
urements. The calculation of transfer functions (Raymond
and Gudmundsson, 2005) is perhaps the clearest way to
illustrate this.
Of course, our method cannot escape such fundamental

limits. This is best illustrated by considering Figures 8 and 10:

the first few eigenmodes manage to resolve basal velocities
near the margins (where the ice is shallow), but only poorly
in the deeper parts. In that sense, it is important to point
out that our research presents one solution of the inverse
problem rather than the solution to the inverse problem
(Lliboutry, 1987, p. 180). The result of our iterative method
can be intuitively thought of as an approximate solution
to the inverse problem obtained by starting with an initial
guess and correcting eigenmodes in turn until the resulting
solution is compatible (within a prescribed error tolerance)
with measured surface data.
Athabasca Glacier is one of only a few glaciers with a

dataset suitable for model validation. Our tests with synthetic
data indicate that it should be possible to resolve the broad
pattern of basal motion, but perhaps not in great detail. As
a matter of fact, with a suitable choice of a flow-rate factor,
we can reconstruct the measured basal velocities. It should
be noted that the measurements are sparse and might also
miss smaller-scale variations in the basal-velocity field.
Glacier Perito Moreno has a more favorable geometry

(much wider than deep) for basal-velocity reconstruction.
Our results indicate large amounts of basal motion along the
entire base, with an off-center maximum. The derived stress
is minimal near the center of the channel. This is possibly due
to low effective pressures (overburden minus water pressures)
there. The basal stress distribution looks very similar to
that resulting from applying a free boundary problem to
failing/non-failing subglacial till, as in Figure 6. A similar
stress distribution and off-center velocity maximum was
found to reproduce observations on Black Rapids Glacier
(Truffer and others, 2001; Amundson and others, 2006).
A weakness of the method in its current state is the fact

that the constitutive relation for ice is not well enough
constrained. Different studies on different glaciers have
resulted in proposed values of A for temperate ice that differ
by factors of 2 or 3. This discrepancy could be real (due to
differences in grain-size distribution or water content), or due
to simplifying model assumptions that are being absorbed
into model parameters. While some constraints on A result
from otherwise unphysical results, it is clear that a rigorous
inverse study will also have to solve for a best-fit value for
the flow-rate factor A. This might be possible only if ice
deformation is measured directly in boreholes.
Another uncertainty is contained in the assessment of the

driving stress. Our simplified model assumes a constant out-
of-plane surface slope, and uncertainties in this slope have
a large effect on driving stress and hence ice deformation.
Because both the flow-rate factor A and the surface slope
occur in the parameter f in Equation (3), the surface slope
uncertainty can be absorbed into that ofA. This might explain
some of the reported variation in A (see section 3.2).
It should be noted that the actual velocity measurement

error can be kept very low and, depending on the measure-
ment method, it is not unusual that this error is well below
1%. One should not, however, use this as guidance for the
stopping criterion. The reason for this is that there can be
features in the velocity field that are not captured by our
simple model. It would be a mistake to try to match such
features. A practical way of dealing with this issue is to treat
the velocities as if they had a larger error. We do not have
a rigorous assessment of how large this error should be. We
used 2% of maximum surface velocity as the threshold. This
seemed to give reasonably detailed basal-velocity fields, but
did not show artifacts of overfitting, such as large-amplitude
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and short-wavelength oscillations. There are also so-called
heuristic schemes for determining the stopping threshold,
rather than specifying it a priori (Hanke, 1995), that would
be worth investigating.
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APPENDIX
ALGORITHM FOR ACCELERATED KM-ITERATION
Let D and N be the operators defined by the boundary
value problems Equations (8) and (9), respectively. D maps
basal Dirichlet data to interior velocities using a fixed surface
Neumann condition and N maps basal Neumann data to
interior velocities using a fixed surface Dirichlet condition.
For an interior velocity field w , define T (w ) = N (ψ) where
ψ = ∂νv |B and v = D (w |B ). Let D0, N0 and T0 be the
homogeneous versions of these operators (so f , uS , uE and τ
are all zero in Equations (8) and (9)).
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Let ψ0 be an initial guess for the basal Neumann condition
and let δ be a stopping tolerance. The following algorithm
returns a value of ψ such that N (ψ) is an approximate
solution of the Cauchy problem (Equation (5)).

u0 = N (ψ0);1

r0 = T (u0)− u0;2

d0 = r0;3

k = 0;4

while true do5

vk = D(uk |B );6

if
∫
S (vk − uS )

2 ds < δ2
∫
S 1 ds then7

return ∂νuk+1|B ;8

end9

αk =
∫
Ω |∇rk |

2 dV
/∫

Ω∇dk · ∇(dk − T0dk ) dV ;10

uk+1 = uk + αkdk ;11

rk+1 = rk − αk (dk − T0dk );12

βk =
∫
Ω |∇rk+1|

2 dV
/∫

Ω |∇rk |
2 dV ;13

dk+1 = rk+1 + βkdk ;14

k = k + 1;15

end16

If L is a second-order elliptic differential operator in
divergence form, so Lu = ∂i

(
aij∂ju

)
, then the above

algorithm can be applied to the Cauchy problem for L
by replacing terms of the form

∫
Ω∇u · ∇v dV with the

corresponding bilinear form
∫
Ω aij∂iu∂jv dV (and similarly

replacing
∫
Ω |∇u|

2 dV with
∫
Ω aij∂iu∂ju dV ).
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