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Abstract

The Wielandt subgroup of a group G, denoted by ω(G), is the intersection of the normalisers of all
subnormal subgroups of G. The terms of the Wielandt series of G are defined, inductively, by putting
ω0(G) = 1 and ωi+1(G)/ωi(G) = ω(G/ωi(G)). In this paper, we investigate the relations between the
p-length of a p-soluble finite group and the Wielandt series of its Sylow p-subgroups. Some recent
results are improved.
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1. Introduction

All groups considered in this paper are finite. Let p be a prime and P a p-group. For
convenience, we denote

Ωk(P) = 〈x ∈ P : xpk
= 1〉 and Ω(P) =

Ω1(P) if p is odd,
Ω2(P) if p = 2.

The Wielandt subgroup ω(G) of a group G is defined to be the intersection of the
normalisers of all subnormal subgroups of G (see [10]). The terms of the Wielandt
series of G are defined, inductively, by putting ω0(G) = 1 and ωi+1(G)/ωi(G) =

ω(G/ωi(G)). If, for some integer n,ωn(G) = G, then we say that G has a finite Wielandt
length, and define the Wielandt length of G, denoted by wl(G), to be the minimal n such
that ωn(G) = G.

Let P be a p-group for some prime p. Recall that the terms of the upper
central series of P are defined, inductively, by putting Z0(P) = 1 and Zi+1(P)/Zi(P) =

Z(P/Zi(P)). The nilpotent class of P, denoted by c(P), is defined to be the minimal
n such that Zn(P) = P. It is clear that for any nonnegative integer i, Zi(P) ≤ ωi(P).
Hence, the Wielandt length of P is less than or equal to the nilpotent class of P.
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In [5], Hall and Higman obtained bounds for the p-length of a finite p-soluble group
G in terms of the structure of a Sylow p-subgroup of G. One nice result proved in this
classical paper is that the p-length of G, denoted by lp(G), is bounded by the nilpotent
class of P.

Theorem 1.1 [5]. Let p be a prime and let P be a Sylow p-subgroup of a p-soluble
group G. Then lp(G) ≤ c(P).

More recently, González-Sánchez and Weigel [3] gave a sufficient condition for the
p-length of a p-soluble group to be at most 1 for odd primes.

Theorem 1.2 [3, Theorem E]. Let p be an odd prime and let P be a Sylow p-subgroup
of a p-soluble group G. If Ω(P) ≤ Zp−2(P), then the p-length of G is at most 1.

In [8], we proved the following theorem.

Theorem 1.3 [8, Corollary 4.1]. Let p be a prime and let P be a Sylow p-subgroup of
a p-soluble group G. Then lp(G) ≤ wl(P).

Clearly, Theorem 1.3 has improved Theorem 1.1 by replacing ‘lp(G) ≤ c(P)’ in
Theorem 1.1 with ‘lp(G) ≤ wl(P)’. A natural question is whether Theorem 1.2
can be improved in a similar way; more precisely, can we weaken the condition
‘Ω(P) ≤ Zp−2(P)’ in Theorem 1.2 to ‘Ω(P) ≤ ωp−2(P)’?

In this paper, our first result will give an affirmative answer to this question. Unlike
Theorem 1.2, we will also include the case p = 2. Moreover, unless p is a Fermat prime
and a Sylow 2-subgroup of G is abelian, we only require Ω(P) ≤ ωp−1(P), instead of
Ω(P) ≤ ωp−2(P), to prove that the p-length of G is at most 1.

Theorem A. Let p be a prime and let P be a Sylow p-subgroup of a p-soluble group G.
Suppose that Ω(P) ≤ ωn(P), where n = p − 2 if p is a Fermat prime and a Sylow
2-subgroup of G is not abelian, and n = p − 1 otherwise. Then the p-length of G
is at most 1.

Using Theorem A, we can prove the following results as applications.

Theorem B. Let p be a prime and let P be a Sylow p-subgroup of a group G. Suppose
that Ω(P) ≤ ωp−1(P). Then G is p-nilpotent if NG(P) is p-nilpotent.

Corollary 1.4 [3, Theorem D]. Let p be an odd prime and let P be a Sylow p-
subgroup of a group G. Suppose that Ω(P) ≤ Zp−1(P). Then G is p-nilpotent if NG(P)
is p-nilpotent.

As another application of Theorem A, we can improve Theorem 1.3 by giving a
better bound for the p-length of a finite p-soluble group G in terms of the Wielandt
length of a Sylow p-subgroup of G:

Theorem C. Let p be a prime and let P be a Sylow p-subgroup of a p-soluble group G.
Then lp(G) ≤ max{1,wl(P) − (p − 3)}. Moreover, unless p is a Fermat prime and a
Sylow 2-subgroup of G is not abelian, then lp(G) ≤ max{1,wl(P) − (p − 2)}.
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2. Preliminaries
The following theorem plays a crucial role in the proof of Theorem A.

Theorem 2.1 [5, Theorem B]. Let H be a p-soluble linear group over a field of
characteristic p, with no normal p-subgroup greater than 1. If g is an element of
order pm in H, then the minimal equation of g is (x − 1)r = 0, where r = pm, unless
there is an integer m0, not greater than m, such that pm0 − 1 is a power of a prime q
for which the Sylow q-subgroups of H are not abelian, in which case, if m0 is the least
such integer, then pm−m0 (pm0 − 1) ≤ r ≤ pm.

We now give some properties of the Wielandt series of finite groups. The first one
follows immediately from the definition.

Lemma 2.2. Let i be a nonnegative integer. Let K be a subnormal subgroup of a
group G. Then ωi+1(G) ≤ NG(Kωi(G)). In particular, if G is a nilpotent group, then
ωi+1(G) ≤ NG(Hωi(G)) for any subgroup H of G.

Lemma 2.3. Let p be a prime and P a p-group. Let M be a subgroup of P and N a
normal subgroup of P. Then:

(i) M ∩ ω(P) ≤ ω(M);
(ii) ω(P)N/N ≤ ω(P/N).

Proof. (i) Let x be any element of ω(P) ∩ M. Let K be any subnormal subgroup of
M. Clearly, K is also a subnormal subgroup of P since P is a p-group. It follows that
x ∈ ω(P) ∩ M ≤ NP(K) ∩ M = NM(K). Hence, x ∈ ω(M) and M ∩ ω(P) ≤ ω(M).

(ii) Let x be any element of ω(P). Let K/N be any subnormal subgroup of
P/N. Clearly, K is a subnormal subgroup of P. It follows that x ∈ NP(K) and thus
xN ∈ NP/N(K/N). Hence, xN ∈ ω(P/N) and ω(P)N/N ≤ ω(P/N). �

Lemma 2.4. Let p be a prime and P a p-group. Let M be a subgroup of P and N a
normal subgroup of P. Then, for any nonnegative integer i, we have:

(i) M ∩ ωi(P) ≤ ωi(M);
(ii) ωi(P)N/N ≤ ωi(P/N).

In particular, the Wielandt length of any subgroup of P and the Wielandt length of any
factor group of P are not greater than the Wielandt length of P.

Proof. This lemma follows from Lemma 2.3 and [9, Proposition 2.4]. �

The following are some basic properties of the p-length of a p-soluble group.

Lemma 2.5 [6, page 689, Hilfssatz 6.4]. Let G be a p-soluble group.

(i) If N EG, then lp(G/N) ≤ lp(G).
(ii) If U ≤ G, then lp(U) ≤ lp(G).
(iii) If N1 and N2 are two normal subgroups of G, then

lp(G/(N1 ∩ N2)) = max{lp(G/N1), lp(G/N2)}.
(iv) lp(G/Φ(G)) = lp(G).

https://doi.org/10.1017/S0004972714000872 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972714000872


222 N. Su and Y. Wang [4]

Lemma 2.6. Let G be a p-soluble group with p-length at most 1 and P be a Sylow
p-subgroup of G. If NG(P) is p-nilpotent, then G is p-nilpotent.

Proof. Since lp(G) ≤ 1, G = NG(P Op′(G)) = NG(P) Op′(G). It follows that G/Op′(G) =

(NG(P) Op′(G))/Op′(G) is p-nilpotent and thus G is p-nilpotent. �

3. Proof of theorems

Proof of Theorem A. Suppose that this theorem is false and let G be a counterexample
of minimal order. Let F be the class of all p-soluble groups with p-length at most 1.
From Lemma 2.5, we know that F is a saturated formation. Let GF be the F -
residual of G and let K = GFΦ(G). Then GF � Φ(G) since G < F and F is a saturated
formation. Hence, K > Φ(G). In the following, we will derive a contradiction through
several steps.

Step 1. Op′(G) = 1.
Suppose that Op′(G) , 1. Clearly, G/Op′(G) satisfies the hypotheses of this

theorem. Hence, the minimal choice of G implies that the p-length of G/Op′(G) is
at most 1. It then follows that the p-length of G is at most 1, which contradicts the
choice of G.

Step 2. For any proper subgroup H of G, we have H ∈ F .
Let H be a proper subgroup of G and let P1 be a Sylow p-subgroup of H. Without

loss of generality, we may assume that P1 ≤ P. Since Ω(P1) ≤ Ω(P) ≤ ωn(P), by
Lemma 2.4 we have Ω(P1) ≤ ωn(P) ∩ P1 ≤ ωn(P1). Hence, H satisfies the hypotheses
of this theorem and the minimal choice of G implies that H ∈ F .

Step 3. K/Φ(G) is the unique minimal normal subgroup of G/Φ(G).
This follows from step 2 and [1, Theorem 1].

Step 4. K/Φ(G) is a p-group and GF ≤ Ω(P).
Since G is p-soluble and K/Φ(G) is a minimal normal subgroup of G/Φ(G),

K/Φ(G) is either a p-group or a p′-group. If K/Φ(G) is a p′-group, then K/Φ(G) is
p-nilpotent and K is not a p-group. It follows that K is a p-nilpotent normal subgroup
of G and Op′(K) , 1, which contradicts step 1. Hence, K/Φ(G) is a p-group.

Since Op′(G) = 1 by step 1, Φ(G) is a p-group. It follows that K is a p-group. Since
K > Φ(G), G has a maximal subgroup L such that G = KL. By step 2, L ∈ F . It follows
that GF≤Ω(P) by [1, Proposition 1].

Step 5. G has a maximal subgroup M such that G/Φ(G) = (K/Φ(G)) o (M/Φ(G)).
Moreover, M/Φ(G) is not a p′-group.

Since K/Φ(G) is a soluble minimal normal subgroup of G/Φ(G) by step 4 and
Φ(G/Φ(G)) = 1, G has a maximal subgroup M such that G/Φ(G) = (K/Φ(G)) o
(M/Φ(G)). If M/Φ(G) is a p′-group, then K/Φ(G) is the normal Sylow p-subgroup of
G/Φ(G). It then follows that G is p-closed, which contradicts the choice of G.

Step 6. Φ(G) = CM(K/Φ(G)) and thus M/Φ(G) = M/CM(K/Φ(G)) can be regarded as
a linear group over a field of characteristic p through the conjugation action of M/Φ(G)
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on K/Φ(G). If g is an element of M/Φ(G) of order p, then the minimal equation of g
is (x − 1)r = 0, where r = p, unless p is a Fermat prime and a Sylow 2-subgroup of G
is not abelian, in which case p − 1 ≤ r ≤ p.

Clearly, Φ(G) ≤ CM(K/Φ(G)). On the other hand, (CM(K/Φ(G))/Φ(G)) EG/Φ(G)
and (CM(K/Φ(G))/Φ(G)) ∩ K/Φ(G) = 1. Therefore, CM(K/Φ(G))/Φ(G) = 1 since
K/Φ(G) is the unique minimal normal subgroup of G/Φ(G) by step 3. It follows
that CM(K/Φ(G)) ≤ Φ(G) and thus Φ(G) = CM(K/Φ(G)).

Since G is p-soluble, M/Φ(G) is also p-soluble. Since G/Φ(G) = (K/Φ(G)) o
(M/Φ(G)) and K/Φ(G) is a soluble minimal normal subgroup of G/Φ(G), M/Φ(G)
acts irreducibly on K/Φ(G). Clearly, M/Φ(G) = M/CM(K/Φ(G)) acts faithfully on
K/Φ(G). It then follows from [2, Ch. A, Lemma 13.6] that Op(K/Φ(G)) = 1.

Let g be an element of M/Φ(G) of order p. By Theorem 2.1, the minimal equation
of g is (x − 1)r = 0, where r = p, unless p − 1 is a power of a prime q for which a Sylow
q-subgroup of M/Φ(G) is not abelian, in which case p − 1 ≤ r ≤ p. Suppose that p − 1
is a power of a prime q for which a Sylow q-subgroup of M/Φ(G) is not abelian. Then
p is odd and p − 1 is even. It then follows that in this case we have q = 2, p is a Fermat
prime and a Sylow 2-subgroup of G is not abelian.

Step 7. We have a contradiction.
Write K = K/Φ(G), M = M/Φ(G) and P = P/Φ(G). By step 4 and the hypotheses

of this theorem, GF ≤ Ω(P) ≤ ωn(P), where n = p − 2 if p is a Fermat prime
and a Sylow 2-subgroup of G is not abelian, and n = p − 1 otherwise. It then
follows from Lemma 2.4 that K = K/Φ(G) = (GFΦ(G))/Φ(G) ≤ (ωn(P)Φ(G))/Φ(G) ≤
ωn(P/Φ(G)) = ωn(P). Since M = M/Φ(G) is not a p′-group by step 5, we can pick an
element g of M of order p.

Since K ≤ ωn(P), we have K ≤ NP(〈g〉ωn−1(P)) by Lemma 2.2. Hence,

[K, 〈g〉ωn−1(P)] ≤ 〈g〉ωn−1(P). (3.1)

Let i be an arbitrary nonnegative integer. By Lemma 2.2, we have ωi+1(P) ≤
NP(〈g〉ωi(P)). Clearly, 〈g〉 ≤ NP(〈g〉ωi(P)). Therefore, 〈g〉ωi+1(P) ≤ NP(〈g〉ωi(P)) and
it follows that

[〈g〉ωi+1(P), 〈g〉ωi(P)] ≤ 〈g〉ωi(P). (3.2)

From (3.1) and (3.2),

[. . . [[[K, 〈g〉ωn−1(P)], 〈g〉ωn−2(P)], 〈g〉ωn−3(P)], . . . , 〈g〉ω0(P)]
≤ [. . . [[〈g〉ωn−1(P), 〈g〉ωn−2(P)], 〈g〉ωn−3(P)], . . . , 〈g〉ω0(P)]
≤ [. . . [〈g〉ωn−2(P), 〈g〉ωn−3(P)], . . . , 〈g〉ω0(P)]
...

≤ 〈g〉ω0(P) = 〈g〉. (3.3)

On the other hand, since K E P,

[. . . [[[K, 〈g〉ωn−1(P)], 〈g〉ωn−2(P)], 〈g〉ωn−3(P)], . . . , 〈g〉ω0(P)] ≤ K. (3.4)
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Combining (3.3) and (3.4), we know that for any element k ∈ K,

[. . . [[[k, g], g], g], . . . , g︸            ︷︷            ︸
n

]

∈ [. . . [[[K, 〈g〉], 〈g〉], 〈g〉], . . . , 〈g〉︸                      ︷︷                      ︸
n

]

≤ [. . . [[[K, 〈g〉ωn−1(P)], 〈g〉ωn−2(P)], 〈g〉ωn−3(P)], . . . , 〈g〉ω0(P)]

≤ 〈g〉 ∩ K ≤ M ∩ K = 1. (3.5)

If we regard g as a linear transformation over a field of characteristic p, through the
conjugation action of g on K, then from (3.5) and [7, Ch. IX, Lemma 1.8] we have
(g − 1)n = 0, where n = p − 2 if p is a Fermat prime and a Sylow 2-subgroup of G is
not abelian, and n = p − 1 otherwise. This contradicts step 6. �

Proof of Theorem B. Suppose that this theorem is false and let G be a counterexample
of minimal order. From the minimal choice of G, it is easy to see that Op′(G) = 1.

We claim that G is p-soluble and thus by [4, Ch. 6, Theorem 3.2] we have
CG(Op(G)) ≤ Op(G). Indeed, since G is not p-nilpotent, by Frobenius’ p-nilpotence
theorem, P has a nontrivial subgroup S such that NG(S ) is not p-nilpotent. On the
other hand, NG(P) is p-nilpotent by hypothesis. Therefore, we can find a nontrivial
proper subgroup Y of P such that NG(Y) is not p-nilpotent but, for every p-subgroup
T of G with Y < T , NG(T ) is p-nilpotent. Write A = NG(Y). Suppose that A < G
and let P1 be a Sylow p-subgroup of A. Without loss of generality, we may assume
that P1 ≤ P. Since Y < P, NP(Y) > Y . It follows that Y < P1 and thus NG(P1) is
p-nilpotent. Hence, NA(P1) = A ∩ NG(P1) is p-nilpotent. By Lemma 2.4, Ω(P1) ≤
P1 ∩ Ω(P) ≤ P1 ∩ ωp−1(P) ≤ ωp−1(P1). It then follows from the minimal choice of G
that A is p-nilpotent, which contradicts the choice of Y . Hence, A = NG(Y) = G and Y
is a nontrivial normal p-subgroup of G. Now, by the choice of Y , we can see that for
any p-subgroup B/Y of P/Y , NG/Y (B/Y) = (NG(B))/Y is p-nilpotent. It follows that
G/Y is p-nilpotent by Frobenius’ p-nilpotence theorem and thus G is p-soluble.

Clearly, G is not a p-group. Let q be a prime divisor of the order of G such that
q , p. Since G is p-soluble, G has a Sylow q-subgroup Q such that PQ is a subgroup
of G by [4, Ch. 6,Theorem 3.5]. Let K = PQ and let H/Op(K) be a minimal normal
subgroup of K/Op(K). Then H E K and H/Op(K) is an abelian q-group. Let L = PH.
Then L is a (p, q)-group whose Sylow q-subgroup is abelian. If p is a Fermat prime,
then p , 2 and thus a Sylow 2-subgroup of L is abelian. Clearly, P is a Sylow p-
subgroup of L and Ω(P) ≤ ωp−1(P) by assumption. Therefore, by Theorem A, the
p-length of L is at most 1. Since NL(P) = NG(P) ∩ L is p-nilpotent, L is p-nilpotent by
Lemma 2.6. On the other hand, we have Op(G) ≤ Op(L) since P ≤ L. It follows that
Op′(L) ≤ CG(Op(L)) ≤ CG(Op(G)) ≤ Op(G) and thus Op′(L) = 1. But then L must be
a p-group since L is p-nilpotent. This contradicts the fact that L is a (p, q)-group and
the proof is complete. �
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Proof of Theorem C. Suppose that this theorem is false and let G be a counterexample
of minimal order. By Theorem A, we may assume that wl(P) − (p − 3) > 1 when
p is a Fermat prime and a Sylow 2-subgroup of G is not abelian, and assume that
wl(P) − (p − 2) > 1 when p is not a Fermat prime or a Sylow 2-subgroup of G is
abelian.

We argue that the p-length of any proper factor group of G is less then the p-
length of G. In particular, since lp(G/Φ(G)) = lp(G) and lp(G/Op′(G)) = lp(G), we
have Φ(G) = Op′(G) = 1. Suppose that this is not true and let L be a nontrivial normal
subgroup of G such that lp(G/L) = lp(G). By Lemma 2.4, wl(PL/L) = wl(P/(P ∩ L)) ≤
wl(P). First assume that p is a Fermat prime and a Sylow 2-subgroup of G is not
abelian. If a Sylow 2-subgroup of G/L is not abelian, then the minimal choice of G
implies that lp(G) = lp(G/L) ≤ max{1,wl(PL/L) − (p − 3)} ≤ max{1,wl(P) − (p − 3)},
which is a contradiction. If a Sylow 2-subgroup of G/L is abelian, then the
minimal choice of G implies that lp(G) = lp(G/L) ≤ max{1,wl(PL/L) − (p − 2)} ≤
max{1,wl(PL/L) − (p − 3)} ≤ max{1,wl(P) − (p − 3)}, which is a contradiction. Now
assume that p is a Fermat prime or a Sylow 2-subgroup of G is abelian. Then
either p is a Fermat prime or a Sylow 2-subgroup of G/L is abelian and thus the
minimal choice of G implies that lp(G) = lp(G/L) ≤ max{1,wl(PL/L) − (p − 2)} ≤
max{1,wl(P) − (p − 2)}, which is again a contradiction.

Let N be a minimal normal subgroup G. Then N ≤ Op(G) since G is p-soluble and
Op′(G) = 1. Suppose that G has another minimal normal subgroup, say N1. Without
loss of generality, we may assume that lp(G/N) ≥ lp(G/N1). Then by Lemma 2.5
lp(G) = lp(G/(N ∩ N1)) = max{lp(G/N), lp(G/N1)} = lp(G/N), which contradicts the
conclusion of the above paragraph. Hence, N is the unique minimal normal subgroup
of G.

Since Φ(G) = 1, Op(G) is a direct product of minimal normal subgroups of G. It
follows that N = Op(G) and thus CG(N) = N by [4, Ch. 6, Theorem 3.2]. Also, from
Φ(G) = 1, we know that G has a maximal subgroup M such that G = [N]M.

Let P1 = M ∩ P. Then N ∩ P1 ≤ N ∩ M = 1 and thus P1 � P/N. We now prove that
ω(P) ∩ P1 = 1. Indeed, suppose that ω(P) ∩ P1 , 1 and pick an element x ∈ ω(P) ∩ P1
of order p. Let y be any element of N. Since x ∈ ω(P), 〈x〉〈y〉 is a subgroup of P.
Clearly, 〈x〉〈y〉 is abelian since |〈x〉〈y〉| ≤ |〈x〉| |〈y〉| = p2. Hence, [x, y] = 1. It follows
that x ∈ CG(N) ∩ P1 ≤ N ∩ P1 = 1, which is a contradiction.

Since ω(P) ∩ P1 = 1, wl(P1) = wl((P1ω(P))/ω(P)). By Lemma 2.4, we have
wl((P1ω(P))/ω(P)) ≤ wl((P/ω(P)). Hence, wl(P1) ≤ wl((P/ω(P)) = wl(P) − 1.

We are now ready to derive a contradiction. Since Op′(G) = 1, we have N =

Op(G) = Op′,p(G) and thus lp(G/N) = lp(G) − 1. First assume that p is a Fermat prime
and a Sylow 2-subgroup of G is not abelian. Then p , 2 and a Sylow 2-subgroup
of G/N is not abelian. From the minimal choice of G, (lp(G) − 1) = lp(G/N) ≤
max{1,wl(P/N) − (p − 3)}. On the other hand, since wl(P/N) = wl(P1) ≤ wl(P) − 1,
and wl(P) − (p − 3) > 1 by the assumptions in the first paragraph of the proof, we
have max{1,wl(P/N) − (p − 3)} ≤ max{1,wl(P) − (p − 3)} − 1. It then follows that
(lp(G) − 1) ≤ (max{1,wl(P) − (p − 3)} − 1) and thus lp(G) ≤ wl(P) − (p − 3), which
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contradicts the choice of G. Similarly, we can derive a contradiction when p is not
a Fermat prime or a Sylow 2-subgroup of G is abelian. The proof of this theorem is
complete. �
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