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A LOWER BOUND FOR THE PERMANENT 
ON A SPECIAL CLASS OF MATRICES 

BY 
D. J. HARTFIEL 

ABSTRACT. Let Un(f) denote the class of all nxn (0, l)-matrices 
with precisely r-ones, r > 3 , in each row and column. Then 

min (per ,4) ^ ( r - l ) !+« ( r -2 ) ! + - • •+«(2!)+/i+l. 
AeUn(r) 

A brief discussion of the main tool of our investigation, the r-nearly decompos
able matrix [3], is now given. We define this matrix as follows: 

An nxn (0, l)-matrix A is r-nearly decomposable if A is fully indecomposable 
and possess t, t > 0 , ones in different rows and columns so that when any one of 
these l's is replaced by 0 yielding A\ A' is partly decomposable. Further if all of 
these l's are replaced by 0's yielding A", A" has precisely r-ones in each row and 
column. The following lemma concerning this matrix is of particular importance. 

LEMMA 1. Suppose U^(r) denotes the class of all fully indecomposable matrices 
with precisely r,r>3, ones in each row and column. Let Mm(r)=min^Gt7 *(r) (per A). 
Then if A is nxn and r-nearly decomposable with ]T<j aij—nr=t it follows that 
perA>Mm(r)+t(r-l)L 

Proof. The proof is essentially that of Lemma 2 in [3], making use of a stronger 
form of Theorem B implied by Hall's inequality, i.e. 

THEOREM B'. If A is an nxn fully indecomposable (0, l)-matrix with at least k 
ones in each row and column, then each 1 is on at least (k— 1) ! positive diagonals. 

This then provides the impetus for the result of the paper. 

THEOREM. If A e Un(r), r > 3 , then 

per A > ( r - l ) ! + n ( r -2 ) ! + - • -+n(2!)+n + l. 

Proof. The proof is by induction on r. For r = 3 the result is that of Hartfiel [4], 
hence suppose the theorem holds for all r,3<r<h. Now let A have h ones in each 
row and column. As m i n ^ ^ (A)(per.4) is achieved on a fully indecomposable 
matrix [5] we may assume A is fully indecomposable. Let II be any positive diag
onal in A. Replace as many ones of II as possible with 0's, say n—t in number, 
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yielding a matrix A' so that: 
Case I. If f=0, A' is fully indecomposable. 
Case II. If r>0, A' is (A—l)-nearly decomposable. 

Note that i<n is a consequence of the special form for Zt-nearly decomposable 
matrices as A>3 [3]. In either case by Lemma 1 

per ,4' > Mn(h-l)+t(h-2)l 

> p-2) !+n( /* -3) ! + - • .+n(2!)+n + l] + f(/z-2)!. 

Replace n—t—l of the removed l's on II and note that by Hall's inequality each 
of these l's is on (h—2)! positive diagonals. By replacing the remaining 1 on II 
yields (h—1)! positive diagonals. Hence 

per ,4 > per A'+(n-t-l)(h-2)l+(h-l)\ 

= (fc-l)!+n(ft-2)! + - • .+n(2!)+n + l. 
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