A LOWER BOUND FOR THE PERMANENT ON A SPECIAL CLASS OF MATRICES

BY D. J. HARTFIEL

ABSTRACT. Let $U_n(r)$ denote the class of all $n \times n$ (0, 1)-matrices with precisely r-ones, $r \ge 3$, in each row and column. Then

$$\min_{A \in U_{n}(r)} (\text{per } A) \ge (r-1)! + n(r-2)! + \dots + n(2!) + n + 1.$$

A brief discussion of the main tool of our investigation, the *r*-nearly decomposable matrix [3], is now given. We define this matrix as follows:

An $n \times n$ (0, 1)-matrix A is r-nearly decomposable if A is fully indecomposable and possess t, t > 0, ones in different rows and columns so that when any one of these 1's is replaced by 0 yielding A', A' is partly decomposable. Further if all of these 1's are replaced by 0's yielding A'', A'' has precisely r-ones in each row and column. The following lemma concerning this matrix is of particular importance.

LEMMA 1. Suppose $U_m^*(r)$ denotes the class of all fully indecomposable matrices with precisely $r, r \ge 3$, ones in each row and column. Let $M_m(r) = \min_{A \in U_m^*(r)}(\text{per }A)$. Then if A is $n \times n$ and r-nearly decomposable with $\sum_{i,j} a_{ij} - nr = t$ it follows that $\text{per }A \ge M_m(r) + t(r-1)!$.

Proof. The proof is essentially that of Lemma 2 in [3], making use of a stronger form of Theorem B implied by Hall's inequality, i.e.

THEOREM B'. If A is an $n \times n$ fully indecomposable (0, 1)-matrix with at least k ones in each row and column, then each 1 is on at least (k-1)! positive diagonals.

This then provides the impetus for the result of the paper.

THEOREM. If $A \in U_n(r)$, $r \ge 3$, then

per $A \ge (r-1)! + n(r-2)! + \cdots + n(2!) + n + 1$.

Proof. The proof is by induction on r. For r=3 the result is that of Hartfiel [4], hence suppose the theorem holds for all r, $3 \le r < h$. Now let A have h ones in each row and column. As $\min_{A \in U_n(h)}(\text{per } A)$ is achieved on a fully indecomposable matrix [5] we may assume A is fully indecomposable. Let Π be any positive diagonal in A. Replace as many ones of Π as possible with 0's, say n-t in number,

529

Key Phrases. (0, 1)-matrices, permanent, lower bounds.

Received by the editors April 21, 1972 and, in revised form, February 26, 1973. Subject Classification. Primary 1530; secondary 1548.

yielding a matrix A' so that:

Case I. If t=0, A' is fully indecomposable.

Case II. If t > 0, A' is (h-1)-nearly decomposable.

Note that t < n is a consequence of the special form for *h*-nearly decomposable matrices as $h \ge 3$ [3]. In either case by Lemma 1

per
$$A' \ge M_n(h-1) + t(h-2)!$$

 $\ge [(h-2)! + n(h-3)! + \dots + n(2!) + n+1] + t(h-2)!$

Replace n-t-1 of the removed 1's on Π and note that by Hall's inequality each of these 1's is on (h-2)! positive diagonals. By replacing the remaining 1 on Π yields (h-1)! positive diagonals. Hence

per
$$A \ge per A' + (n-t-1)(h-2)! + (h-1)!$$

= $(h-1)! + n(h-2)! + \dots + n(2!) + n + 1$.

References

1. P. M. Gibson, A lower bound for the permanent of a (0, 1)-matrix, Proc. of the Amer. Math. Soc. 33, (1972), 245–246.

2. M. Hall, Jr., Distinct representations of subsets, Bull. Amer. Math. Soc. 54 (1948), 922-926.

3. D. J. Hartfiel and J. W. Crosby, A lower bound for the permanent on $U_n(r, r)$, Journal of Combinatorial Theory 12 (1972), 283-288.

4. D. J. Hartfiel, A simplified form for nearly reducible and nearly decomposable matrices, Proc. of the Amer. Math. Soc. 24 (1970), 388-393.

5. R. Sinkhorn, Concerning a conjecture of Marshall Hall, Proc. of the Amer. Math. Soc. 21 (1969), 197-201.

DEPARTMENT OF MATHEMATICS, TEXAS A&M UNIVERSITY, COLLEGE STATION, TEXAS 77843

530