A LOWER BOUND FOR THE PERMANENT ON A SPECIAL CLASS OF MATRICES

BY
D. J. HARTFIEL

Abstract. Let $U_{n}(r)$ denote the class of all $n \times n(0,1)$-matrices with precisely r-ones, $r \geq 3$, in each row and column. Then

$$
\min _{A_{\in} U_{n}(r)}(\operatorname{per} A) \geq(r-1)!+n(r-2)!+\cdots+n(2!)+n+1
$$

A brief discussion of the main tool of our investigation, the r-nearly decomposable matrix [3], is now given. We define this matrix as follows:

An $n \times n(0,1)$-matrix A is r-nearly decomposable if A is fully indecomposable and possess $t, t>0$, ones in different rows and columns so that when any one of these 1 's is replaced by 0 yielding A^{\prime}, A^{\prime} is partly decomposable. Further if all of these 1 's are replaced by 0 's yielding $A^{\prime \prime}, A^{\prime \prime}$ has precisely r-ones in each row and column. The following lemma concerning this matrix is of particular importance.

Lemma 1. Suppose $U_{m}^{*}(r)$ denotes the class of all fully indecomposable matrices with precisely $r, r \geq 3$, ones in each row and column. Let $M_{m}(r)=\min _{A_{\epsilon} U_{m}{ }^{*}(r)}(\operatorname{per} A)$. Then if A is $n \times n$ and r-nearly decomposable with $\sum_{i, j} a_{i j}-n r=t$ it follows that per $A \geq M_{m}(r)+t(r-1)!$.

Proof. The proof is essentially that of Lemma 2 in [3], making use of a stronger form of Theorem B implied by Hall's inequality, i.e.

Theorem B^{\prime}. If A is an $n \times n$ fully indecomposable (0,1)-matrix with at least k ones in each row and column, then each 1 is on at least $(k-1)$! positive diagonals.

This then provides the impetus for the result of the paper.
Theorem. If $A \in U_{n}(r), r \geq 3$, then

$$
\text { per } A \geq(r-1)!+n(r-2)!+\cdots+n(2!)+n+1
$$

Proof. The proof is by induction on r. For $r=3$ the result is that of Hartfiel [4], hence suppose the theorem holds for all $r, 3 \leq r<h$. Now let A have h ones in each row and column. As $\min _{A_{\in} U_{n}(h)}$ (per A) is achieved on a fully indecomposable matrix [5] we may assume A is fully indecomposable. Let Π be any positive diagonal in A. Replace as many ones of Π as possible with 0 's, say $n-t$ in number,

[^0]yielding a matrix A^{\prime} so that:
Case I. If $t=0, A^{\prime}$ is fully indecomposable.
Case II. If $t>0, A^{\prime}$ is ($h-1$)-nearly decomposable.
Note that $t<n$ is a consequence of the special form for h-nearly decomposable matrices as $h \geq 3$ [3]. In either case by Lemma 1
\[

$$
\begin{aligned}
\operatorname{per} A^{\prime} & \geq M_{n}(h-1)+t(h-2)! \\
& \geq[(h-2)!+n(h-3)!+\cdots+n(2!)+n+1]+t(h-2)!.
\end{aligned}
$$
\]

Replace $n-t-1$ of the removed 1's on Π and note that by Hall's inequality each of these 1 's is on ($h-2$)! positive diagonals. By replacing the remaining 1 on Π yields ($h-1$)! positive diagonals. Hence

$$
\begin{aligned}
\operatorname{per} A & \geq \operatorname{per} A^{\prime}+(n-t-1)(h-2)!+(h-1)! \\
& =(h-1)!+n(h-2)!+\cdots+n(2!)+n+1 .
\end{aligned}
$$

References

1. P. M. Gibson, A lower bound for the permanent of a $(0,1)$-matrix, Proc. of the Amer. Math. Soc. 33, (1972), 245-246.
2. M. Hall, Jr., Distinct representations of subsets, Bull. Amer. Math. Soc. 54 (1948), 922-926.
3. D. J. Hartfiel and J. W. Crosby, A lower bound for the permanent on $U_{n}(r, r)$, Journal of Combinatorial Theory 12 (1972), 283-288.
4. D. J. Hartfiel, A simplified form for nearly reducible and nearly decomposable matrices, Proc. of the Amer. Math. Soc. 24 (1970), 388-393.
5. R. Sinkhorn, Concerning a conjecture of Marshall Hall, Proc. of the Amer. Math. Soc. 21 (1969), 197-201.

[^0]: Received by the editors April 21, 1972 and, in revised form, February 26, 1973.
 Subject Classification. Primary 1530; secondary 1548.
 Key Phrases. (0, 1)-matrices, permanent, lower bounds.

