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In this two-part study, we investigate the motion of rigid, active objects in shear Stokes
flow, focusing on bodies that induce rapid rotation as part of their activity. In Part 2, we
derive and analyse governing equations for rapidly spinning complex-shaped particles
– general helicoidal objects with chirality. Using the multiscale framework that we
develop in Part 1 (Dalwadi et al., J. Fluid Mech., vol. 979, 2024, A1), we systematically
derive emergent equations of motion for the angular and translational dynamics of these
chiral spinning objects. We show that the emergent dynamics due to rapid rotation
can be described by effective generalised Jeffery’s equations, which differ from the
classic versions via the inclusion of additional terms that account for chirality and other
asymmetries. Furthermore, we use our analytic results to characterise and quantify the
explicit effect of rotation on the effective hydrodynamic shape of the chiral objects,
expanding significantly the scope of Jeffery’s seminal study.

Key words: micro-organism dynamics, Stokesian dynamics

1. Introduction

The complex dynamics of objects in fluid flow is known to depend strongly on an object’s
shape, with the early study of Jeffery (1922) capturing explicitly the behaviour of passive
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spheroidal particles in shear Stokes flow. Later extensions by Bretherton (1962) and
Brenner (1964a) widen the range of passive objects to which Jeffery’s approach applies,
with geometry playing a fundamental role in determining the dynamics.

In this two-part study, we consider the emergent dynamics of rigid active objects.
Inspired by the locomotion of flagellated bacterial swimmers (Marcos et al. 2012), we
consider swimmers whose activity consists of rapid rotation while propelling themselves
through the surrounding fluid. In Part 1 (Dalwadi et al. 2023), we developed a multiscale
framework to analyse rapidly rotating particles in Stokes flow, and applied it to investigate
spheroidal objects in shear flow, which follow Jeffery’s equations. Here, in Part 2, we
broaden our analysis to general helicoidal objects (described in detail below), including
chiral particles, whose passive dynamics are governed by generalised versions of Jeffery’s
equations (Ishimoto 2020a,b). The dynamics of chiral bodies is generally more intricate
than for achiral bodies since chiral objects induce additional hydrodynamic interactions.
The importance of chiral effects has been identified and utilised in theoretical and
experimental studies across many different areas, including the drift-induced separation
of chiral objects (Marcos et al. 2009; Eichhorn 2010; Aristov, Eichhorn & Bechinger
2013; Ro, Yi & Kim 2016), chirality-affected rheotaxis in bacterial and artificial swimmers
(Marcos et al. 2012; Mathijssen et al. 2019; Jing et al. 2020; Khatri & Burada 2022; Zöttl
et al. 2022; Zheng et al. 2023), the migration of chiral DNA-like objects (Chen & Zhang
2011), and the preferential rotation of chiral dipoles (Kramel et al. 2016).

Certain geometric symmetries generate specific simplifications to the hydrodynamic
resistance tensor associated with the object in Stokes flow. However, while the
hydrodynamic resistance tensor depends strongly on an object’s geometry, it does
not define the shape uniquely. That is, there exist objects with the same simplified
hydrodynamic resistance tensor but without the associated geometric symmetries. Sharing
the same form of the hydrodynamic resistance tensor defines a hydrodynamic symmetry.
Importantly, this means that there is a difference between the hydrodynamic symmetry of
an object – the properties of its dynamics in flow – and its geometric features.

In Part 2 of this two-part study, we consider swimmers that possess helicoidal
hydrodynamic symmetry about a swimmer-fixed axis, and we refer to objects that satisfy
this type of symmetry as helicoidal objects. This symmetry, introduced by Brenner
(1964a,b) and recounted recently by Ishimoto (2020a), generalises the geometric notion of
rotational symmetry in the context of fluid mechanics. Specifically, helicoidal symmetry
means that the hydrodynamic resistance tensor associated with the object is invariant under
rotations by ±β about a swimmer-fixed axis for some fixed β �∈ {0,π, 2π/3} (with the
excluded cases noted to be degenerate by Brenner 1964a).

The distinction between hydrodynamic and geometric symmetry is important because
it is not straightforward to characterise geometrically the properties of an object with
hydrodynamic symmetry. For example, objects that have n-fold rotational symmetry for
some n � 4 are hydrodynamically helicoidal (Brenner 1964b; Ishimoto 2020b), but objects
with geometric helical symmetry (e.g. a simple helix of finite length) are not helicoidal in
general. Of particular note, while axisymmetric objects follow Jeffery’s equations as stated
by Bretherton (1962), not all objects governed by Jeffery’s equations are axisymmetric.
In light of this, we characterise the particles described by the analysis of Part 1 of this
two-part study (i.e. those that follow Jeffery’s equations) as ‘Jeffery bodies’. We emphasise
that this definition includes simple spheroids.

The general active helicoidal objects that we consider in this part are generalised
versions of these Jeffery bodies. As identified in Ishimoto (2020b), the dynamics of
a passive helicoidal particle in shear flow is governed by generalised Jeffery orbits
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Generalised Jeffery’s equations for fast-spinning helicoids

comprising six characteristic parameters, in contrast to only one for Jeffery bodies (the
Bretherton parameter B). When we introduce the governing dynamical system for active
particles later, we discuss the role of these six parameters, along with subcases of interest
and correspondences with geometric symmetries of the object. A detailed discussion of
chirality, general helicoidal objects, and their associated contributions to the governing
equations of motion for passive objects can be found in Ishimoto (2020a).

In our study, we specifically allow the axis of the self-propelled spinning to deviate
from the axis of symmetry, as is the case for a wiggling bacterium (Hyon et al. 2012;
Thawani & Tirumkudulu 2018) and a wobbling magnetised helix (Man & Lauga 2013).
In these contexts, the time scale of activity-driven spinning is typically much faster than
that of reorientation by an imposed flow field. Motivated by these separated time scales,
we analyse the dynamics using the asymptotic method of multiple scales (Hinch 1991;
Bender & Orszag 1999), as in Part 1 and several recent works (Gaffney et al. 2022; Ma,
Pujara & Thiffeault 2022; Walker et al. 2022a). In particular, we derive effective governing
equations for the emergent dynamics, accounting systematically for the complex nonlinear
interaction between rapid rotation and the slower effects of the flow.

Hence, in this second part of our two-part study, we consider the dynamics of a
three-dimensional, self-propelled chiral object with helicoidal symmetry, undergoing
rapid spinning due to its own activity, and interacting with an externally imposed
three-dimensional shear flow. In § 2, we present the general governing equations for the
system, including additional terms not present in Part 1 that account for chirality and other
asymmetries of the object. In § 3, we set up the machinery for our multiple scales analysis,
then in §§ 4 and 5, we perform the analysis for both rotation and translation, respectively,
systematically deriving effective governing equations that capture explicitly the effects of
rapid spinning on the overall dynamics. As one may expect, the effective dynamics that
we derive for general helicoidal particles in Part 2 are significantly richer than those that
we derive for simple spheroidal particles in Part 1. Hence we summarise the key physical
results and implications of the emergent dynamics that we derive through our analysis in
a non-technical manner in § 6. Finally, we conclude with a discussion of our study in § 7.

2. Governing equations

Our physical set-up in Part 2 is similar to that in Part 1, but now with a more complex
swimmer geometry. That is, we now consider a general helicoidal swimmer, as discussed
in § 1, in the presence of a far-field shear flow. This will result in additional hydrodynamic
effects due to object chirality and other asymmetries. We scale time with inverse shear
rate, and space with a characteristic swimmer length, working in dimensionless quantities
henceforth. Specifically, we consider the motion of a rigid, self-propelled helicoidal object
in a shear flow, which has swimming velocity V and angular velocity Ω in a quiescent
fluid. As before, these propulsion and rotation vectors are fixed in direction and magnitude
in a swimmer-fixed basis, but the orientation of this swimmer basis will vary rapidly in
the laboratory frame through its dependence on Ω .

We define the swimmer-fixed axis of helicoidal symmetry by ê1. Therefore, we may
take ê2 such that the self-generated angular velocity Ω is in a plane spanned by ê1
and ê2, where Ω makes an angle α with ê1. Therefore, we may write Ω = Ω‖ê1 +
Ω⊥ê2, with Ω‖ and Ω⊥ being the constant components of angular velocity that are
parallel and perpendicular, respectively, to the axis of helicoidal symmetry. This generates
the relationship tanα = Ω⊥/Ω‖. We then define ê3 = ê1 × ê2. In this swimmer-fixed
basis, we write the self-generated propulsion V = V1ê1 + V2ê2 + V3ê3. The position of
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u = ye3

e3 ê3

ê1
ê2

e1 e2

X

VΩ⊥

Ω‖

Figure 1. A schematic of the notation and the physical set-up that we consider in Part 2. We investigate
the dynamics of a chiral, helicoidal swimmer with axis of symmetry ê1. The swimmer has self-generated
translational and rotational velocities V = V1ê1 + V2ê2 + V3ê3 and Ω = Ω‖ê1 +Ω⊥ê2, respectively, and
these interact with a background shear flow u = ye3.

the particle is given by X = Xe1 + Ye2 + Ze3 with respect to the orthonormal basis
{e1, e2, e3} of the laboratory frame. These vectors are illustrated in figure 1.

Finally, we impose the far-field flow. Specifically, we are interested in the motion of the
particle in the presence of a far-field shear Stokes flow with velocity field u(x, y, z) = ye3,
with coordinates x, y, z in the laboratory frame. The flow interacts with the particle; we
derive the resulting governing equations of motion for the particle in Appendix A, and
present the resulting equations below. The dynamics for the orientation of the swimmer
frame is given in terms of the Euler angles (θ, ψ, φ), also defined formally in Appendix A.

The rotational dynamics is given by

dθ
dt

= Ω⊥ cosψ + h1(θ, φ; B,C), (2.1a)

dψ
dt

= Ω‖ −Ω⊥
cos θ sinψ

sin θ
+ h2(θ, φ; B,C,D), (2.1b)

dφ
dt

= Ω⊥
sinψ
sin θ

+ h3(θ, φ; B,C), (2.1c)

where the functions hi = fi + gi (i = 1, 2, 3) capture the effects of the Stokes flow
interacting with the swimmer. The fi encode the rotational effects of the achiral aspects
of the swimmer (and are the same as in Part 1). These functions are

f1(θ, φ; B) := −B
2

cos θ sin θ sin 2φ, (2.2a)

f2(θ, φ; B) := B
2

cos θ cos 2φ, (2.2b)

f3(φ; B) := 1
2 (1 − B cos 2φ) , (2.2c)

where B is the shape-capturing Bretherton parameter (Bretherton 1962), which typically
satisfies |B| < 1 for all but the most elongated of bodies (Bretherton 1962; Singh, Koch &
Stroock 2013).
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Generalised Jeffery’s equations for fast-spinning helicoids

Parameter Type of drift generated Geometric cause

B Rotational Achiral ‘aspect ratio’
C Rotational component off symmetry axis Chiral effects
D Rotational component along symmetry axis Chiral effects
β Translational Chiral effects
γ Translational component off symmetry axis Fore–aft asymmetry
δ Translational component along symmetry axis Fore–aft asymmetry

Table 1. Summary of the six parameters that characterise objects with hydrodynamic helicoidal symmetry.

The gi encode the rotational effects of the chiral aspects of the swimmer, and were
therefore not present in the spheroidal analysis of Part 1. These chiral functions are

g1(θ, φ; C) := −C
2

sin θ cos 2φ, (2.3a)

g2(θ, φ; C,D) := −C
2

cos2 θ sin 2φ − D
2

sin2 θ sin 2φ, (2.3b)

g3(θ, φ; C) := C
2

cos θ sin 2φ. (2.3c)

Here, C and D are chirality parameters, where C is sometimes referred to as the Ishimoto
parameter (Ohmura et al. 2021). They represent rotational drift due to moments of
chirality along the axis of helicoidal symmetry, as summarised in table 1. If the particle
is spheroidal, then C = D = 0 and the governing equations for the rotational dynamics
reduce to those in Part 1. For brevity, when referring to fi and gi, we will often suppress
the explicit parameter dependence on B, C and D unless specifically relevant. The typical
ranges of C and D are not well explored in the literature for different swimmers, with the
notable exception of experimental measurements for bacterial swimmers, giving C ≈ 0.01
(Jing et al. 2020; Ronteix et al. 2022; Zöttl et al. 2022). Given this, for reference we
approximate plausible ranges of these parameters for a simple bacterial model using
resistive force theory in Appendix B, which suggest |C| ≈ 0.01 and |D| ≈ 0.5. Since ψ
decouples from the system (2.1)–(2.3) for passive swimmers (i.e. for Ω‖ = Ω⊥ = 0), and
C appears to be small, one might assume that the effects of chirality are unimportant to
Jeffery’s orbits. We will show that this is not the case in general for the active swimmers
that we consider. Therefore, we retain both C and D in our analysis, and we will see that
this is important to capture comprehensively the nature of the emergent dynamics.

We now consider the governing equations for X (t), the position of the swimmer in
the laboratory frame. While the equivalent equations in Part 1 were fairly intuitive and
straightforward to state, this was due to the intrinsic symmetry of spheroidal particles,
which removed several of the more general contributions to translation. Since we now
consider a more general class of objects, the translational dynamics in Part 2 feature
additional contributions. We derive the resulting governing equations of motion in
Appendix A, which are

dX
dt

= V + Ye3 − β
(
ê2êT

3 − ê3êT
2
)

E∗ê1 + γE∗ê1 + (δ − γ )
(
êT

1 E∗ê1
)

ê1. (2.4)

We emphasise that V and êi depend on the orientation of the object through the Euler
angles (θ, ψ, φ), which evolve via (2.1)–(2.3). The additional terms in (2.4) not present in
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Part 1 involve the rate of strain tensor E∗, and three additional degrees of freedom encoded
through the shape parameters β, γ and δ.

These shape parameters can be interpreted as measures of translational drift induced by
the coupling between the shear-induced strain and asymmetries in the object shape. As
summarised in table 1, β represents a measure of drift due to chirality of the object, and
γ , δ represent measures of drift due to fore–aft asymmetry of the object. These additional
translational terms arise in a similar manner to the additional terms (2.3) in the rotational
dynamics. If the particle is spheroidal, then β = γ = δ = 0 and the governing equations
for the translational dynamics reduce to those in Part 1. In Appendix B, we estimate typical
ranges of the shape parameters β, γ and δ using resistive force theory for a simple model
bacterium swimmer.

The full dynamics comprising (2.1)–(2.4) governs the motion of any hydrodynamically
helicoidal object in shear flow, by definition. That is, as discussed above, helicoidal
objects are defined as objects that follow this dynamics, rather than by any necessary
geometric properties. However, as we discuss below, there are important sufficient
geometric conditions that give rise to hydrodynamic helicoidicity. In the hydrodynamic
sense, the behaviour of helicoidal objects in shear flow is therefore fully characterised
by the six parameters B,C,D, β, γ, δ, summarised in table 1. This general class of
shapes contains several subclasses of hydrodynamic symmetries, discussed extensively
in Ishimoto (2020a). These subclasses include shapes that possess additional geometric
symmetries, and are characterised mathematically by particular combinations of the six
shape parameters vanishing.

We illustrate an example of a general hydrodynamically helicoidal body in figure 2(a),
recalling that this includes (but is not limited to) objects possessing n-fold rotational
symmetry along an axis for some integer n � 4. In particular, this allows the object to
be chiral and to be free of any fore–aft symmetry constraints.

In figure 2(b), we illustrate four main hydrodynamic symmetry subcases of interest,
giving examples of geometric symmetries that generate the specific subcases. An
object that is geometrically symmetric with respect to a rotation of π around an axis
perpendicular to the helicoidal symmetry axis has C = D = γ = δ = 0; we describe
an object satisfying these parameter constraints as possessing homochiral hydrodynamic
symmetry, following the terminology employed in Ishimoto (2020a). A homochiral object
does not experience any chirality-induced rotational drift. That is, from the governing
equations (2.1)–(2.4), the effects of chirality in the dynamics of homochiral objects will
manifest only through the drift velocity terms in the translational dynamics (2.4). Thus the
rotational dynamics will remain as classic Jeffery orbits, while the translational dynamics
will differ.

An object that is geometrically symmetric with respect to reflection in a plane normal to
the axis of helicoidal symmetry has β = γ = δ = 0; we describe an object satisfying these
parameter constraints as possessing heterochiral hydrodynamic symmetry. A heterochiral
object does not experience any chirality-induced translational drift. In particular, such an
object always satisfies γ = δ = 0. In contrast to homochiral objects, the effect of chirality
in the dynamics of heterochiral objects will appear in the rotational drift terms in the
rotational dynamics (2.1)–(2.3), resulting in chiral Jeffery orbits. These, in turn, will also
influence the translational dynamics (2.4), which is coupled to the evolution of the object
orientation. Given the geometric symmetries that generate homochiral or heterochiral
objects, we describe an object in either subclass as possessing hydrodynamic fore–aft
symmetry.
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Generalised Jeffery’s equations for fast-spinning helicoids

Helicoidal symmetry

B, C, D, β, γ, δ

Heterochiral

β = γ = δ = 0

Homochiral

C = D = γ = δ = 0

Achiral

C = D = β = 0

Jeffery body

C = D = β = γ = δ = 0e.g. n-fold symmetry around ê1 with n ≥ 4

e.g. symmetry by
rotation around ê2

e.g. symmetry by reflection
through (ê2, ê3)

e.g. body of revolution e.g. spheroid

Non-helicoidal

e.g. no rotational symmetry

ê1
ê2

ê3

(b)(a)

(c)

Figure 2. Examples of the class of shapes considered in Part 2. (a) The bodies that we investigate possess
‘helicoidal’ symmetry, which allows us to characterise their dynamics in shear flow with six parameters,
B,C,D, β, γ, δ. (b) We distinguish the specific subcases that we discuss in the main text: homochirality,
heterochirality, achirality and Jeffery bodies, with this last class of objects following the simpler dynamics
investigated in Part 1. Each category of shape is illustrated with an example particle possessing additional
geometrical symmetries. (c) For comparison, we provide an example of a shape that does not possess helicoidal
symmetry and therefore is not captured by our analysis.

An object that is geometrically symmetric with respect to continuous rotation around
the helicoidal axis (i.e. a body of revolution) has C = D = β = 0; we describe an object
satisfying these parameter constraints as possessing achiral hydrodynamic symmetry.
Similar to the homochiral case, an achiral object does not experience any chirality-induced
rotational drift. However, an achiral object will experience a different translational drift to
a homochiral object in general.

Finally, any object with at least two of the geometric symmetries described above (e.g.
a spheroid) has C = D = β = γ = δ = 0; as noted in the Introduction, we describe an
object satisfying these parameter constraints as a Jeffery body. We considered the simpler
dynamics of these highly symmetric objects in Part 1.

More generally, in this study we investigate the emergent dynamics of the nonlinear,
autonomous dynamical system defined by (2.1)–(2.4) for general helicoidal objects in
shear flow. In the same manner as in Part 1, we consider the regime where the swimmer
rotation rate is much larger than the external shear rate. This means that |Ω| = |Ω‖ê1 +
Ω⊥ê2| is large. Taking Ω‖ > 0 without loss of generality, we consider the distinguished
limit where Ω⊥ = O(Ω‖) with Ω‖ � 1 (which will give the same information as taking
|Ω| � 1 with α = O(1)), and all other parameters are of O(1). This asymptotic limit is
distinguished in the sense that it is a general case from which the subcases |Ω⊥| � Ω‖
and Ω‖ � |Ω⊥| can be distilled as regular asymptotic sublimits of the results we derive.

3. Setting up the multiple scales analysis

We analyse the system (2.1)–(2.4) in the limit of rapid spinning. We animate the full
dynamics of this system for various scenarios in supplementary movies 1–5 available at
https://doi.org/10.1017/jfm.2023.924. We consider the distinguished limit Ω⊥ = O(Ω‖)
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with Ω‖ � 1 (treating Ω‖ > 0 without loss of generality). Given this, it is helpful to
introduce the notation ω = O(1) such that

Ω⊥ = ωΩ‖, (3.1)

and to formally consider the single asymptotic limit Ω‖ � 1.
Our approach is similar to that in Part 1; we analyse the system (2.1)–(2.4) using the

method of multiple scales in the limit of large Ω‖, with the goal of deriving effective
equations that govern the emergent behaviour. Moreover, we will see that the leading-order
system is equivalent to that of Part 1, so we are able to exploit the multiscale framework
that we derived therein. The set-up for the multiple scales analysis is therefore equivalent
to that in Part 1, and we repeat it here for convenience. We reintroduce T , the fast time
scale, via

T = (
Ω2

⊥ +Ω2
‖
)1/2t = λΩ‖t, (3.2)

where we use
λ :=

√
1 + ω2 (3.3)

for notational convenience, and we refer to the original time scale t as the slow time scale.
Treating the fast and slow time scales as independent and using (3.2), the time derivative
becomes

d
dt

	→ λΩ‖
∂

∂T
+ ∂

∂t
. (3.4)

Under the time derivative mapping (3.4), the rotational dynamics system (2.1) is
transformed to

Ω‖λ
∂θ

∂T
+ ∂θ

∂t
= Ω‖ω cosψ + h1(θ, φ), (3.5a)

Ω‖λ
∂ψ

∂T
+ ∂ψ

∂t
= Ω‖

(
1 − ω

cos θ sinψ
sin θ

)
+ h2(θ, φ), (3.5b)

Ω‖λ
∂φ

∂T
+ ∂φ

∂t
= Ω‖ω

sinψ
sin θ

+ h3(θ, φ), (3.5c)

and the translational dynamics system (2.4) is transformed to

λΩ‖
∂X
∂T

+ ∂X
∂t

= V + Ye3 − β
(
ê2êT

3 − ê3êT
2
)

E∗ê1 + (δ − γ )
(
êT

1 E∗ê1
)

ê1 + γE∗ê1.

(3.6)

We expand each dependent variable as an asymptotic series in inverse powers of Ω‖,
writing

ξ(T, t) ∼ ξ0(T, t)+ 1
Ω‖

ξ1(T, t) as Ω‖ → ∞, for ξ ∈ {φ, θ, ψ,X, Y, Z}. (3.7)

Since the leading-order (fast) terms in (3.5) and (3.6) are O(Ω‖), but the new chiral and
asymmetric terms are all of O(1), these new terms do not appear in the leading-order
analysis. This means that the leading-order analysis and the adjoint solution used to
derive the solvability conditions at next order are equivalent to those in Part 1, and we
can therefore use directly the equivalent results therein. Consequently, we are fairly brief
with the leading-order analysis and the derivation of the solvability conditions in the full
analysis below, directing the interested reader to Part 1.
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Generalised Jeffery’s equations for fast-spinning helicoids

4. Deriving the emergent angular dynamics

4.1. Leading-order analysis
Using the asymptotic expansions (3.7) in the transformed governing equations (3.5), we
obtain the leading-order (i.e. O(Ω‖)) system

λ
∂θ0

∂T
= ω cosψ0, (4.1a)

λ
∂ψ0

∂T
= 1 − ω

cos θ0 sinψ0

sin θ0
, (4.1b)

λ
∂φ0

∂T
= ω

sinψ0

sin θ0
. (4.1c)

We show in § 4.1 of Part 1 that the solution to the nonlinear system (4.1) is

λ cos θ0 = cos ϑ̄ − ω sin ϑ̄ cos(T + Ψ̄ ), (4.2a)

λ sin θ0 sinψ0 = ω cos ϑ̄ + sin ϑ̄ cos(T + Ψ̄ ), (4.2b)

tanφ0 = ω cos ϕ̄ sin(T + Ψ̄ )+ sin ϕ̄(ω cos ϑ̄ cos(T + Ψ̄ )+ sin ϑ̄)
cos ϕ̄(ω cos ϑ̄ cos(T + Ψ̄ )+ sin ϑ̄)− ω sin ϕ̄ sin(T + Ψ̄ )

, (4.2c)

where ϑ̄ = ϑ̄(t), Ψ̄ = Ψ̄ (t) and ϕ̄ = ϕ̄(t) are the three slow-time functions of integration
that remain undetermined from our leading-order analysis. The goal of the next-order
analysis in § 4.2 is to derive the governing equations satisfied by ϑ̄ , Ψ̄ and ϕ̄. As in Part 1,
one can think of ϑ̄ as controlling some emergent amplitude of oscillation, Ψ̄ as controlling
some emergent phase of oscillation, and ϕ̄ as the emergent drift in yawing. We will also
show later that ϑ̄ can be associated with θ , Ψ̄ with ψ , and ϕ̄ with φ.

Before proceeding, it will be helpful later to note the additional relationships

sin θ0 cosψ0 = − sin ϑ̄ sin(T + Ψ̄ ), (4.2d)

λ2 sin2 θ0 = (ω cos ϑ̄ cos(T + Ψ̄ )+ sin ϑ̄)2 + ω2 sin2(T + Ψ̄ ), (4.2e)

where the former follows from differentiating (4.2a) with respect to T and imposing (4.1a),
and the latter follows from rearranging (4.2a).

4.2. Next-order system
Our remaining goal is to determine the governing equations satisfied by the slow-time
functions ϑ̄(t), Ψ̄ (t) and ϕ̄(t). To do this, we must determine the solvability conditions
required for the first-order correction (i.e. O(1)) terms in (3.5) after posing the asymptotic
expansions (3.7). These O(1) terms are

λ
∂θ1

∂T
+ ωψ1 sinψ0 = h1(θ0, φ0)− ∂θ0

∂t
, (4.3a)

λ
∂ψ1

∂T
− ωθ1

sinψ0

sin2 θ0
+ ωψ1

cos θ0 cosψ0

sin θ0
= h2(θ0, φ0)− ∂ψ0

∂t
, (4.3b)

λ
∂φ1

∂T
+ ωθ1

cos θ0 sinψ0

sin2 θ0
− ωψ1

cosψ0

sin θ0
= h3(θ0, φ0)− ∂φ0

∂t
, (4.3c)

along with 2π-periodicity in T . The system (4.3) constitutes a non-autonomous linear
coupled three-dimensional system for (θ1, ψ1, φ1) with an inhomogeneous forcing in
terms of the leading-order solution.
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To derive the required solvability conditions, we use the method of multiple scales for
systems (see, for example, pp. 127–128 of Dalwadi (2014) or p. 22 of Dalwadi et al.
(2018)). As detailed in § 4.2 of Part 1, this entails taking the dot product of the vector
solution to the homogeneous adjoint version of (4.3) with the vector right-hand side of
(4.3), and averaging over one fast-time oscillation. We calculate the adjoint solution in
§ 4.3 and Appendix D of Part 1; using this to apply the procedure outlined above yields
the three solvability conditions

−λ sin ϑ̄
dϑ̄
dt

= λB̂
2

sin2 ϑ̄ cos ϑ̄ sin 2ϕ̄

+ 〈g1(ω cos θ0 sinψ0 − sin θ0)+ g2ω sin θ0 cosψ0〉 , (4.4a)

λ sin2 ϑ̄
dΨ̄
dt

= λB̂
2

sin2 ϑ̄ cos ϑ̄ cos 2ϕ̄

+ 〈g1ω cosψ0 + g2 sin θ0 (sin θ0 − ω cos θ0 sinψ0)〉 , (4.4b)

cos ϑ̄
dΨ̄
dt

+ dϕ̄
dt

= 1
2
(1 − B̂ sin2 ϑ̄ cos 2ϕ̄)+ 〈g2 cos θ0 + g3〉 , (4.4c)

where we have used the results from §§ 4.2 and 4.3 of Part 1 to evaluate all the non-chiral
terms (i.e. all terms not involving gi), including the use of the effective Bretherton
parameter that we derived in Part 1:

B̂ := (2 − ω2)B
2(1 + ω2)

. (4.5)

Additionally, we use the notation 〈 · 〉 to denote the average of its argument over one
fast-time oscillation, explicitly defining

〈y〉 = 1
2π

∫ 2π

0
y dT. (4.6)

Our remaining task is to evaluate the outstanding averages in the three solvability
conditions (4.4), each of which involves the chiral contributions gi defined in (2.3).
We have explicit representations of the terms involving the trigonometric functions of
θ0 and ψ0 through the leading-order solutions (4.2). The terms involving sin 2φ0 and
cos 2φ0, which arise from the gi defined in (2.2), require additional calculation. To derive
expressions for these double-angle quantities, we first note

λ sin θ0 sinφ0 = ω cos ϕ̄ sin σ + sin ϕ̄(ω cos ϑ̄ cos σ + sin ϑ̄), (4.7a)

λ sin θ0 cosφ0 = cos ϕ̄(ω cos ϑ̄ cos σ + sin ϑ̄)− ω sin ϕ̄ sin σ, (4.7b)

using the shorthand σ = T + Ψ̄ . The expressions (4.7) are calculated via the
identities tanφ0 = (λ sin θ0 sinφ0)/(λ sin θ0 cosφ0), and λ2 sin2 θ0 = (λ sin θ0 sinφ0)

2 +
(λ sin θ0 cosφ0)

2, the left-hand sides of which are defined in (4.2c) and (4.2e). Then, from
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Generalised Jeffery’s equations for fast-spinning helicoids

the expressions of (4.7), appropriate double-angle formulae imply that

λ2 sin2 θ0 cos 2φ0 = C(σ, t) cos 2ϕ̄ − S(σ, t) sin 2ϕ̄, (4.8a)

λ2 sin2 θ0 sin 2φ0 = S(σ, t) cos 2ϕ̄ + C(σ, t) sin 2ϕ̄, (4.8b)

C(σ, t) := (ω cos ϑ̄ cos σ + sin ϑ̄)2 − ω2 sin2 σ, (4.8c)

S(σ, t) := 2ω sin σ(ω cos ϑ̄ cos σ + sin ϑ̄). (4.8d)

We can now simplify the remaining fast-time averages in the right-hand side of (4.4). We
start by exploiting the parity of various expressions. Specifically, we use the evenness of
cos θ0, sin θ0 sinψ0, sin2 θ0 and C around σ = π (from (4.2a), (4.2b), (4.2e) and (4.8c),
respectively), and the oddness of sin θ0 cosψ0 and S around σ = π (from (4.2d) and
(4.8d), respectively). This allows us to write the fast-time averages in the right-hand side
of (4.4) as

〈g1(ω cos θ0 sinψ0 − sin θ0)+ g2ω sin θ0 cosψ0〉

= − C
2λ2 cos 2ϕ̄

〈
C

(
ω cos θ0 sinψ0

sin θ0
− 1

)
+ Sω cosψ0

sin θ0

〉

+ C − D
2λ2 cos 2ϕ̄ 〈Sω sin θ0 cosψ0〉 , (4.9a)

〈g1ω cosψ0 + g2 sin θ0(sin θ0 − ω cos θ0 sinψ0)〉

= C
2λ2 sin 2ϕ̄

〈
C

(
ω cos θ0 sinψ0

sin θ0
− 1

)
+ Sω cosψ0

sin θ0

〉

+ D − C
2λ2 sin 2ϕ̄〈C(ω cos θ0 sin θ0 sinψ0 − sin2 θ0)〉, (4.9b)

〈g2 cos θ0 + g3〉 = C − D
2λ2 sin 2ϕ̄ 〈C cos θ0〉 . (4.9c)

Using the leading-order solutions (4.2) with the definitions of C and S in (4.8c)–(4.8d), we
may write the terms within the averages on the right-hand sides of (4.9) explicitly as

C

(
ω cos θ0 sinψ0

sin θ0
− 1

)
+ Sω cosψ0

sin θ0
= −(1 + ω2) sin ϑ̄ (sin ϑ̄ + ω cos ϑ̄ cos σ),

(4.10a)

Sω sin θ0 cosψ0 = −2ω2 sin ϑ̄ sin2 σ (sin ϑ̄ + ω cos ϑ̄ cos σ), (4.10b)

C(ω cos θ0 sin θ0 sinψ0 − sin2 θ0)

= sin ϑ̄ (sin ϑ̄ + ω cos ϑ̄ cos σ)(ω2 sin2 σ − (sin ϑ̄ + ω cos ϑ̄ cos σ)2), (4.10c)

C cos θ0 = cos ϑ̄ − ω sin ϑ̄ cos σ
λ

((sin ϑ̄ + ω cos ϑ̄ cos σ)2 − ω2 sin2 σ). (4.10d)
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We can now calculate explicitly the averages of the right-hand sides of (4.10) over one
fast-time oscillation, to deduce that

〈
C

(
ω cos θ0 sinψ0

sin θ0
− 1

)
+ Sω cosψ0

sin θ0

〉
= −(1 + ω2) sin2 ϑ̄, (4.11a)

〈Sω sin θ0 cosψ0〉 = −ω2 sin2 ϑ̄, (4.11b)

〈C(ω cos θ0 sin θ0 sinψ0 − sin2 θ0)〉 = −sin2 ϑ̄

2
(2ω2 cos2 ϑ̄ + (2 − ω2) sin2 ϑ̄), (4.11c)

〈C cos θ0〉 = 2 − 3ω2

2λ
cos ϑ̄ sin2 ϑ̄. (4.11d)

Substituting (4.11) into (4.9), we deduce the following expressions for the averages of the
chiral terms:

〈g1(ω cos θ0 sinψ0 − sin θ0)+ g2ω sin θ0 cosψ0〉 = C + ω2D
2λ2 cos 2ϕ̄ sin2 ϑ̄, (4.12a)

〈g1ω cosψ0 + g2 sin θ0 (sin θ0 − ω cos θ0 sinψ0)〉

= − 1
2λ2 sin 2ϕ̄ sin2 ϑ̄

(
(C + ω2D) cos2 ϑ̄ + 3ω2C + (2 − ω2)D

2
sin2 ϑ̄

)
, (4.12b)

〈g2 cos θ0 + g3〉 = (C − D)(2 − 3ω2)

4λ2 sin 2ϕ̄ cos ϑ̄ sin2 ϑ̄. (4.12c)

Finally, to obtain the slow-time governing equations for ϑ̄ , Ψ̄ and ϕ̄ that we have been
seeking, we substitute the explicit averages (4.12) into the solvability conditions (4.4), and
rearrange to obtain the reduced system

dϑ̄
dt

= − B̂
2

sin ϑ̄ cos ϑ̄ sin 2ϕ̄ − Ĉ
2

sin ϑ̄ cos 2ϕ̄, (4.13a)

dΨ̄
dt

= B̂
2

cos ϑ̄ cos 2ϕ̄ − Ĉ
2

cos2 ϑ̄ sin 2ϕ̄ − D̂
2

sin2 ϑ̄ sin 2ϕ̄, (4.13b)

dϕ̄
dt

= 1
2
(1 − B̂ cos 2ϕ̄)+ Ĉ

2
cos ϑ̄ sin 2ϕ̄, (4.13c)

where we define the effective chiral coefficients

Ĉ := C + ω2D
(1 + ω2)3/2

, D̂ := 3ω2C + (2 − ω2)D
2(1 + ω2)3/2

. (4.14a,b)

We illustrate these effective parameters in terms of ω in figure 3.

4.3. Summary
By comparison with the original angular dynamical system, defined in (2.1)–(2.3), we see
that the emergent dynamics governed by (4.13) can be rewritten in terms of the combined
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Generalised Jeffery’s equations for fast-spinning helicoids
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ω
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C/D = 1/3
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0.5
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, 
γ̂
/
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Figure 3. The effective parameters B̂, Ĉ, D̂, β̂, γ̂ , δ̂ as functions of ω, normalised by their intrinsic equivalents.
(a) B̂ and β̂ are functions only of ω, and exhibit the same dependence on ω following normalisation.
(b,c) The remaining effective parameters are functions of three parameters. All are coupled to ω; the
orientational shape parameters are also coupled to C and D, while the translational shape parameters are also
coupled to γ and δ instead. We show selected curves for different parameter values. Several of the effective
coefficients display non-trivial zeros as functions of ω. This suggests that specific activity-induced spinning
can effectively eliminate certain parameters, and hence the associated physical interactions of an object with
the flow.

achiral and chiral functions hi = fi + gi as

dϑ̄
dt

= h1(ϑ̄, ϕ̄; B̂, Ĉ),
dΨ̄
dt

= h2(ϑ̄, ϕ̄; B̂, Ĉ, D̂),
dϕ̄
dt

= h3(ϑ̄, ϕ̄; B̂, Ĉ), (4.15a–c)

where the effective Bretherton parameter B̂ is defined in (4.5), and the effective chiral
coefficients Ĉ and D̂ are defined in (4.14a,b).

Therefore, similar to Part 1, the emergent dynamics for rapidly spinning chiral particles
are governed by a system that has the same functional form as the original dynamical
system without rapid spinning, but with modified coefficients (4.14a,b) that account for
the effect of the spinning. As before, we can identify each slow-time function with an
underlying variable: ϑ̄ with θ , Ψ̄ withψ , and φ with ϕ̄. Since the slow terms in the original
dynamical system represent the generalised Jeffery’s equations for chiral particles, we can
say that rapidly spinning chiral particles behave as particles with an effective chirality, as
quantified through the effective coefficients (4.14a,b).

We explore the effect of rotation on the orientational dynamics in figure 4 and
supplementary movies 1–4. In figure 4, we illustrate trajectories in the (φ, θ)-plane and
set D = 0 for simplicity. In figures 4(a–c), we fix the Bretherton parameter B = 0.7
and vary the chirality parameter C in order to highlight the qualitative changes that
chirality can induce. In figure 4(a), we set C = 0 and present standard Jeffery orbits for
homochiral particles for the purpose of comparison, which are periodic as |B| < 1. Since
this sublimit is a regular limit of the achiral analysis of Part 1, the trajectories shown in
these plots are identical to those explored in Part 1. In figure 4(b), we increase the chirality
parameter to C = 0.7, illustrating the trajectories of chiral objects. Here, the chirality
breaks the periodicity of the slow-time generalised Jeffery trajectories for smaller values
of ω, instead inducing a drift towards the pole θ = 0. However, this periodicity-breaking
effect appears to weaken for larger values of ω, when the effective chirality Ĉ of the
object is reduced following (4.14a,b). In figure 4(c), we show trajectories for a strongly
chiral object, increasing the chirality parameter to C = 1.5. Here, the chirality induced
periodicity-breaking effect is stronger, with the notable appearance of attractive and
repulsive points away from the poles at θ = 0,π, and persists for larger values of ω before
eventually leading to approximately periodic trajectories as ω increases further.
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π
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Figure 4. Exploring the orientational dynamics in the (φ, θ)-plane for various values of B, C and ω, with
sample, rapidly oscillating full dynamics shown in blue for ω /= 0, and the corresponding averaged dynamics
shown in red: (a) (B,C) = (0.7, 0), (b) (B,C) = (0.7, 0.7), (c) (B,C) = (0.7, 1.5), (d) (B,C) = (0, 0.7), and
(e) (B,C) = (0, 1.5). We use D = 0 and (θ, φ) = (π/2,−π) at initial time throughout. For the blue lines, we
also setΩ‖ = 10 andΩ⊥ = 10ω. Dynamic versions of the full dynamics of the highlighted trajectories in (b–e)
are given in supplementary movies 1–4.
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10
(a)

(b)

(c)

ω = 0 ω = 1 ω = 2 ω → ∞ω = �2

0C

–10
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0C

–10

10

0C

B B
–10 0 10 –10 0 10

B B
–10 0 10 –10 0 10

B B
–10 0 10 –10 0 10

ω = �3

Figure 5. Schematic showing the qualitative nature of the orientational dynamics within the parameter space
(B,C), for different values of ω. The darker regions within each ellipse indicate that trajectories drift towards
a pole (θ = 0 for the yellow region, θ = π for the blue region). Outside the ellipses, the pole solutions become
repulsive points and non-trivial attractors exist. The lighter regions external to each ellipse indicate that these
non-trivial attractors are in the northern (yellow) and southern (blue) hemispheres, respectively. The thicker
red lines (solid and dashed) on the axes indicate periodic trajectories. Dashed lines indicate the existence of
orbits that are not centred around one of the poles at θ = 0,π. In the critical cases ω = √

2 and ω → ∞, all
trajectories are orbits, so there exist only red regions. There is a distinction between orbits centred around a
pole (darker red) and not centred around a pole (lighter red). Finally, the influence of the third shape parameter
D is shown: (a) D = 0, (b) D = 0.3, and (c) D = −0.3.

In figures 4(d,e), we consider the effects of chirality on an object with vanishing
Bretherton parameter, setting B = 0. In figure 4(d), we take C = 0.7, observing periodic
trajectories whose behaviour is significantly more oscillatory in the θ variable than in the
classical Jeffery orbits of figure 4(a). Further, θ = π/2 is no longer a steady solution,
which can also be seen by considering directly the contribution of the chiral function g1
of (2.3a) in the governing equation (2.1a). As ω increases, we see a general reduction in
these oscillations towards those of a sphere (with B = C = 0), as predicted by our explicit
result for the effective chirality Ĉ in (4.14a,b). In figure 4(e), we consider a strongly chiral
object by taking C = 1.5. In this case, the strongly chiral effects induce periodic orbits
that, curiously, do not encircle the pole for smaller values of ω, instead orbiting around
non-trivial fixed points in the (φ, θ)-plane. However, as ω increases and decreases Ĉ, these
orbits collapse, and the trajectories begin to approach those seen in figure 4(d) for smaller
values of ω, as expected. The existence of periodic orbits that do not encircle the pole for
larger values of C is due to the pole becoming a repulsive fixed point when B2 + C2 > 1 in
the case of a passive object (Ishimoto 2020a,b), with non-trivial attractors emerging as a
result of the bifurcation. In figure 5, we provide a visual characterisation of the qualitative
behaviour of the solution space for the orientational dynamics in terms of the effective
parameters B̂ and Ĉ.

Given these observations, it is of interest to note the limiting cases ω → 0 and |ω| →
∞. In the limit ω → 0, the effective chiral parameters remain the same, i.e. Ĉ → C and
D̂ → D. That is, when spinning is rapid only around the axis of helicoidal symmetry,
the effective shape of the chiral swimmer is unchanged; the rapid rotation does not impact
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significantly the emergent angular dynamics. On the other hand, in the limit |ω| → ∞, the
effective chiral parameters vanish, i.e. Ĉ → 0 and D̂ → 0. That is, when rapid spinning
only around an axis perpendicular to the axis of helicoidal symmetry, the rapid rotation
causes the chiral swimmer to lose the effect of its chirality and for its orientation to
evolve as though it were an achiral particle. This is because the coefficients C and D
can be thought of as moments of chirality along the axis of helicoidal symmetry, and rapid
rotation around an axis perpendicular to this will ‘spread out’ the chirality on average,
reducing the effective moment to zero.

Additionally, we see that a chiral particle with C = 0 but D /= 0 (or D = 0 but C /= 0)
can result in Ĉ /= 0 and D̂ /= 0. That is, in certain cases with chiral particles, rapid spinning
can generate effective terms that were not present in the original equations. Moreover,
rapid spinning can either enhance or diminish the effects of chirality, depending on the
specific values of C and D, and the relative rotation ratio ω.

A helpful way to interpret the effective chirality parameters Ĉ and D̂, defined in
(4.14a,b), is in terms of their relative sizes with respect to

√
C2 + D2, which can be

considered a measure of the overall chirality of the object. To study this, it is helpful
to introduce the parameter ζ , defined as the principal argument of the complex number

exp(iζ ) = C + iD
|C + iD| . (4.16)

Therefore, the introduction of ζ collapses the two-dimensional parameter space (C,D)
onto a single parameter via the complex unit circle. Then, utilising the relationship tanα =
ω, where α is the angle between the rotational and helicoidal axes, we can rewrite (4.14a,b)
as

Ĉ
|C + iD| = cosα(cos2 α cos ζ + sin2 α sin ζ ), (4.17a)

D̂
|C + iD| = cosα

2
(3 sin2 α cos ζ + (2 cos2 α − sin2 α) sin ζ ), (4.17b)

which means that we can illustrate the left-hand sides of (4.17) in terms of just two
parameters: α and ζ (see figures 6a,b). Through explicit calculation, it can also be shown
that

Ĉ2 + D̂2 � C2 + D2, (4.18)

which is illustrated in figure 6(c). Interpreting
√

C2 + D2 as a measure of the overall
chirality of the object, we can deduce that rotation never increases the overall effective
chirality. In fact, in general, rotation reduces the overall chirality, only leaving the overall
chirality unchanged for α = 0. While this reduction is a general property for the overall
chirality, it is notable that (4.14a,b) implies that rotation can cause specific individual
chirality parameters to increase. That is, rotation can cause |Ĉ| > |C| or |D̂| > |D|, but the
constraint (4.18) means that these cannot occur at the same time. Since C and D represent
different aspects of chirality, we can interpret this as rotation allowing different aspects
of chirality to be overemphasised or underemphasised, even though rotation reduces the
overall chirality of the object.
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Figure 6. Representations of the scaled effective chiral coefficients: (a) Ĉ/
√

C2 + D2 ∈ [−1, 1],

(b) D̂/
√

C2 + D2 ∈ [−1, 1], (c)
√
(Ĉ2 + D̂2)/(C2 + D2) ∈ [0, 1]. We define these quantities in (4.14a,b) and

(4.17). Notably, the magnitude of each quantity is bounded above by 1, so we may conclude that the effect of
rapid rotation is to reduce the effective overall chirality of an object.

5. Deriving the emergent translational dynamics

Using the asymptotic expansions (3.7) in the transformed governing equations (3.6), we
obtain the trivial leading-order (i.e. O(Ω‖)) system

∂X 0

∂T
= 0, (5.1)

which tells us that X 0 = X 0(t).
At next order (i.e. O(1)), we obtain the system

λ
∂X 1

∂T
+ dX 0

dt
= V + Y0e3 − β

(
ê2êT

3 − ê3êT
2
)

E∗ê1 + γE∗ê1 + (δ − γ )
(
êT

1 E∗ê1
)

ê1,

(5.2)

with 2π-periodicity in T , recalling that V = V1ê1 + V2ê2 + V3ê3. The solvability
condition that will give our emergent dynamics is obtained simply by averaging (5.2) over
T ∈ (0, 2π). Performing this averaging and imposing periodicity in T , (5.2) becomes

dX 0

dt
= 〈

V + Y0e3 − β
(
ê2êT

3 − ê3êT
2
)

E∗ê1 + γE∗ê1 + (δ − γ )
(
êT

1 E∗ê1
)

ê1
〉
. (5.3)

Some care needs to be taken in evaluating the right-hand side of (5.3), since the
swimmer-frame basis vectors êi are dependent on T through their dependence on the Euler
angles, with the explicit dependence given in (A1). Importantly, since the leading-order
analysis is the same between Parts 1 and 2, and the first two terms on the right-hand side
of (5.3) are present in Part 1, we can use our results of § 4.5 of Part 1 to state immediately
that

〈V + Y0e3〉 = V̂ ẽ1(ϑ̄, ϕ̄)+ Y0e3, (5.4)

where

V̂ := V1 + ωV2√
1 + ω2

, (5.5)

and ẽ1(ϑ̄, ϕ̄) can be considered equivalent to the (hatted) basis vector ê1 in (A1), but with
argument (θ, φ) replaced by (ϑ̄, ϕ̄).
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To calculate the remaining averages on the right-hand side of (5.3), we start by writing
them in terms of the laboratory basis, using the swimmer-to-laboratory transformation
(A1) and the definition of E∗ (A5a,b). This yields

(
ê2êT

3 − ê3êT
2
)
E∗ê1 = 1

2

([
s2
θc2φ

]
e1 + [cθ sθ sφ]e2 + [cθ sθcφ]e3

)
, (5.6a)

E∗ê1 = −1
2 (sθcφe2 − sθ sφe3), (5.6b)(

êT
1 E∗ê1

)
ê1 = −1

2

([
cθ s2

θ s2φ
]
e1 + [

s3
θ s2φsφ

]
e2 − [

s3
θ s2φcφ

]
e3

)
, (5.6c)

where we have used shorthand notation with cθ , sθ , cφ , sφ denoting cos θ0, sin θ0, cosφ0,
sinφ0, and so on. We can then calculate the averages of (5.6) using the expressions (4.2)
and (4.7)–(4.8) that we derived previously, to deduce that

〈(
ê2êT

3 − ê3êT
2
)
E∗ê1

〉 = 2 − ω2

4λ2

([
s2
ϑ̄

c2ϕ̄
]
e1 + [cϑ̄sϑ̄sϕ̄]e2 + [cϑ̄sϑ̄cϕ̄]e3

)

= 2 − ω2

2λ2

(
ẽ2ẽT

3 − ẽ3ẽT
2
)
E∗ẽ1, (5.7a)

〈E∗ê1〉 = − 1
2λ
(sϑ̄cϕ̄e2 − sϑ̄sϕ̄e3) = E∗ẽ1

λ
, (5.7b)

〈(
êT

1 E∗ê1
)
ê1

〉 = − 1
4λ3

[
(2 − 3ω2)

{[
cϑ̄s2

ϑ̄
s2ϕ̄

]
e1 + [

s3
ϑ̄

s2ϕ̄sϕ̄
]
e2

− [
s3
ϑ̄

s2ϕ̄cϕ̄
]
e3

} + 2ω2(sϑ̄cϕ̄e2 − sϑ̄sϕ̄e3)
]

= 2 − 3ω2

2λ3

(
ẽT

1 E∗ẽ1
)
ẽ1 + ω2

λ3 E∗ẽ1, (5.7c)

where ẽi = ẽi(ϑ̄, ϕ̄) can be considered equivalent to their êi (hatted) versions in (5.6) with
arguments (θ0, φ0) replaced by (ϑ̄, ϕ̄).

Finally, substituting (5.4) and (5.7) into (5.3), we obtain our effective equation for the
emergent translational dynamics:

dX 0

dt
= V̂ ẽ1 + Y0e3 − β̂

(
ẽ2ẽT

3 − ẽ3ẽT
2
)

E∗ẽ1 + γ̂E∗ẽ1 + (δ̂ − γ̂ )
(
ẽT

1 E∗ẽ1
)
ẽ1, (5.8)

emphasising that ẽi are functions of the slow-time variables ϑ̄ and ϕ̄, and that we have
defined the effective coefficients

β̂ = (2 − ω2)β

2(1 + ω2)
, γ̂ = γ + ω2δ

(1 + ω2)3/2
, δ̂ = 3ω2γ + (2 − ω2)δ

2(1 + ω2)3/2
, (5.9a–c)

and we illustrate these effective coefficients as functions of ω in figure 3. Therefore, we
see that the effective translational equation (5.8) has the same functional form as the
original equation (2.4), but with dependence on the fast-varying Euler angles switched
to dependence on the slow-time functions that we derived in § 4, and modified coefficients
(5.9a–c) that account systematically for the effect of the fast spinning. Therefore, we
can say that rapidly spinning chiral particles are translated as particles with an effective
chiral shape, as quantified through the effective shape coefficients defined in (5.9a–c).
The excellent agreement between the complex full translational dynamics and the
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Figure 7. Illustration of the agreement between the full spinning translational dynamics and the emergent
system that we derive. (a) The predictions of the emergent dynamics are shown as a red curve, while the full
dynamics is shown as a black line with attached ribbon, coloured according to the spin angle ψ of the object.
Differences between the dynamics are barely visible at the resolution of this plot. (b) A portion of the trajectory
in (a), showing the small (expected) discrepancy between the full and emergent solutions. Here, we have taken
Ω‖ = Ω⊥ = 100, B = 0.8, C = −0.3, D = −0.5, β = 0.01, γ = 0.3, δ = −3, V1 = 1 and V2 = V3 = 0.5.

emergent dynamics predicted by (5.8) is illustrated on an example in figure 7, and we
explore further the effect of varying the intrinsic shape parameters in figure 8.

Finally, we consider the limiting cases ω → 0 and |ω| → ∞. In the limit ω → 0, the
effective coefficients are unchanged (i.e. β̂ → β, γ̂ → γ , δ̂ → δ). That is, when the axis
of rapid spinning coincides with the axis of helicoidal symmetry, the effective shape of the
chiral swimmer is unchanged; the rapid rotation does not impact significantly the emergent
translational dynamics. In contrast, in the limit |ω| → ∞ the effective coefficients are
changed, with β̂ → −β/2 and γ̂ , δ̂ → 0. We recall that the results of § 4 state that the
effective chirality coefficients also vanish in the same limit (i.e. Ĉ, D̂ → 0 as |ω| → ∞),
and that passive homochiral objects satisfy C = D = γ = δ = 0 (see figure 2). Therefore,
we may conclude that when rapid spinning occurs around an axis perpendicular to the axis
of helicoidal symmetry, a general active helicoidal swimmer will behave as though it is a
passive homochiral swimmer. This can be interpreted intuitively by noting that a rapidly
rotating swimmer with rotation axis perpendicular to its helicoidal axis can be thought of
as exhibiting a geometric rotational symmetry of π around its rotation axis.

6. Results and conclusions

We investigated the emergent dynamics for a class of rapidly rotating active chiral particles
with helicoidal symmetry, governed by the system (2.1)–(2.4). We considered the problem
where rotation is fast compared to external shear rate, with the rotation axis pointing in
a general direction, fixed in the swimmer frame. Formally, we analysed the distinguished
asymptotic limit Ω‖,Ω⊥ � 1 with ω = Ω⊥/Ω‖ = O(1), noting that these quantities are
related to the angle of the rotation axis from the symmetry axis α via tanα = ω. From our
analysis in §§ 4 and 5, we found that, somewhat remarkably, the effect of rapid rotation
can be incorporated readily into generalised Jeffery’s equations with effective coefficients
(4.15a–c), (5.8), as long as the emergent dynamics is defined in terms of appropriately
transformed variables. This means that rapid rotation modifies the emergent dynamics
only through changes in the effective shape parameters. That is, an active, rapidly
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Figure 8. Exploring the influence of the effective geometric parameters β̂, γ̂ , δ̂ and Ĉ on the emergent
translational dynamics. In each panel, we vary each effective parameter independently from (β̂, γ̂ , δ̂, Ĉ) =
(0, 0, 0, 0), highlighting the distinct role that each parameter plays in determining the emergent translational
dynamics. In each column, we show three-dimensional trajectories and traces of laboratory-frame coordinates
over time. Throughout, we use initial conditions X = 0 and (θ, φ, ψ) = (π/3,π/6, 2π/3).

spinning object exhibits the effective hydrodynamic shape of a (generally) differently
shaped, non-spinning object. Moreover, our results characterise and quantify the specific
hydrodynamic relationship between passive and rapidly spinning objects through explicit
calculation of these effective parameters, each in terms of relevant original parameters and
as a nonlinear function of ω = tanα.

Our analysis allows us to interpret physically the effect of rapid rotation on the emergent
trajectories. As we discuss in more detail below, the effect of rotation off the helicoidal
axis (Ω⊥) is more important to the emergent dynamics than rotation on the helicoidal axis
(Ω‖). Moreover, the broad effect of increasing α, the angle between the axes of rotation
and symmetry, is to reduce the overall effective chirality of the effective hydrodynamic
shape. Importantly, however, moving the rotation axis away from the symmetry axis
can overemphasise and underemphasise different aspects of chirality. This includes chiral
aspects that do not affect significantly the dynamics of passive chiral objects in flow; as
described below, our results show that rapid rotation can cause these aspects to become
much more important for active helicoidal particles in flow.
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Generalised Jeffery’s equations for fast-spinning helicoids

For the spheroidal objects of Part 1, there is only one quantity, the Bretherton parameter
B, that characterises hydrodynamic interactions with the object. In contrast, as summarised
in table 1, there are six shape parameters that specify the hydrodynamic interaction for
a general helicoidal shape (Ishimoto 2020a). Three of these – B, C and D – arise in
the orientational dynamics, and the other three – β, γ and δ – arise in the translational
dynamics. As illustrated in figure 2, for a hydrodynamically achiral particle, we have
C = D = β = 0, and for a particle with hydrodynamic fore–aft symmetry (i.e. either
homochiral or heterochiral), we have γ = δ = 0. We note that spheroids satisfy both of
these constraints. Through our multiscale analysis, we have derived explicit forms for the
effective versions of these parameters in (4.5), (4.14a,b) and (5.9a–c) (denoted with hats),
which quantify and account systematically for the effects of rapid rotation in the system.

Notably, the presence of chirality and fore–aft asymmetry does not change explicitly
the effective Bretherton parameter B̂, defined in (4.5), from its equivalent expression in
Part 1. However, the inclusion of these additional effects does impact upon the overall
orientational dynamics of the emergent system (4.15a–c), since they introduce additional
terms involving Ĉ and D̂ (defined in (4.14a,b)) into the overall system. These two chirality
parameters are the effective versions of C and D, respectively. Notably, each of Ĉ and
D̂ depends on both C and D, and we show that Ĉ2 + D̂2 � C2 + D2 in § 4.2.1. By
interpreting C2 + D2 as a measure of the overall hydrodynamic chirality of an object for
its orientational dynamics, the effect of rotation is therefore to reduce the overall effective
chirality of the object.

Interestingly, however, rotation can cause Ĉ > C or D̂ > D (though, from the constraint
above, not both at the same time). Since C and D reflect the moment of chirality along the
helicoidal axis, this means that rapid rotation can enhance certain hydrodynamic aspects
of chirality while reducing the overall hydrodynamic chirality of the object. Moreover,
we note that the object ‘spin’ ψ(t) essentially decouples from the remaining variables
in the full passive system (obtained by setting Ω‖ = Ω⊥ = 0 in (2.1)). Since D appears
only in (2.1b), the equation for ψ , this parameter is generally not important for the overall
(θ, φ) dynamics of the system, often the key observable dynamical outputs. However,
our analytic results in (4.14a,b) show that rotation can cause D to affect significantly the
effective coefficient Ĉ, which is important for the overall slow-time dynamics. This means
that D can be very important for the dynamics of rotating bodies, but unimportant for
passive bodies. This effect could also explain why resistive force theory calculations give
values for C slightly smaller than experimental estimates (Jing et al. 2020; Zöttl et al.
2022). That is, values of C calculated theoretically for simple bacterium models can be
fairly small, in contrast to D (see e.g. estimates using resistive force theory calculations
in Appendix B). However, since the effective Ishimoto parameter Ĉ can be enhanced by
D in the presence of rotation, the (observed) effective Ishimoto parameter Ĉ for spinning
objects can be larger than for its passive equivalent C.

An interesting implication of our results is that there are specific rotation rates and
relationships between chirality parameters that cause both effective chirality parameters to
vanish. Specifically, from (4.14a,b), we see that a rotation axis satisfying tan2 α = 2/3 with
chirality parameters satisfying 3C + 2D = 0 will result in Ĉ = D̂ = 0. This will result in
the rotating object behaving hydrodynamically as an achiral object. While this requirement
may be overly prescriptive to be observed in nature, it may be feasible to achieve for
designed artificial swimmers. We note that this procedure is likely to involve a challenging
optimisation process over the space of swimmer shapes, since the problem of finding a
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shape that satisfies specific coefficients is an inverse problem. This is in contrast to the
less complex ‘forward’ problem of calculating the shape coefficients from a given shape. It
would be interesting in the future to solve the inverse problem of calculating object shapes
that satisfy these constraints. Swimmers with these properties would behave as chiral
objects when passive, and as achiral objects when rotating rapidly with tan2 α = 2/3. In
addition, since a critical rotation axis satisfying tan2 α = 2 causes the effective Bretherton
parameter B̂ to vanish (so that the object is hydrodynamically equivalent to a sphere if it is
achiral), it is not possible in general to prescribe a single critical rotation axis that causes
B̂, Ĉ and D̂ to vanish simultaneously.

The implications of our emergent translational dynamics (5.8) have direct equivalence
with the interpretation given above. This is because the effective shape parameters for
translational dynamics in (5.9a–c) are analogous to their orientational counterparts in (4.5)
and (4.14a,b). That is, the functional dependence on the rotation angle α = arctanω of the
effective shape parameter β̂ in (5.9a–c) is the same as that of the effective Bretherton
parameter B̂ in (4.5). Similarly, γ̂ and δ̂ in (5.9a–c) have the same functional dependence
on α as Ĉ and D̂, respectively, in (4.14a,b). Therefore, all of our conclusions above for
B̂, Ĉ and D̂ in the orientational dynamics also hold for β̂, γ̂ and δ̂, respectively, in
the translational dynamics. Perhaps interestingly, as noted above, β arises from chiral
effects, and γ , δ can arise from a lack of fore–aft symmetry of the object. Therefore,
the implications for B̂, the effective Bretherton parameter for rotation (here for chiral
particles, and in Part 1 for spheroidal particles), can be extended to the effective translation
coefficient β̂. Similarly, the implications for the effective chirality coefficients for rotation
Ĉ and D̂ can be extended to the effective translation coefficients γ̂ and δ̂. Therefore, by
direct analogy with the results highlighted above and in Part 1, specific rotation rates and
parameter dependencies can remove hydrodynamic chiral and fore–aft asymmetry effects
in the effective translational dynamics.

7. Discussion

This study is the second in a two-part series, in which we have explored the emergent
dynamics of three-dimensional, rapidly spinning, helicoidal objects in shear Stokes flow.
In Part 2, we have explored the behaviours of completely general helicoidal objects,
generalising our results from the spheroidal swimmer shape that we imposed in Part 1.
We have used the method of multiple scales for systems to systematically derive effective
governing equations for the object dynamics. We have found that when written in terms of
appropriately transformed variables, the emergent equations are the generalised Jeffery’s
equations for passive chiral objects derived in Ishimoto (2020a), with appropriately
modified hydrodynamic coefficients that account for the effects of rotation.

Our multiscale approach was vital in calculating these modified parameters explicitly.
We used the method of multiple scales for systems (e.g. see pp. 127–128 of Dalwadi
(2014) or p. 22 of Dalwadi et al. (2018)) to derive systematically the appropriate emergent
equations, which involved solving a three-dimensional nonlinear leading-order system,
and a non-self-adjoint problem at next order. The analytic derivation of the effective
parameters allowed us to interrogate the general effect of rapid rotation on the emergent
dynamics of helicoidal objects in shear flow. We showed that rotation along the helicoidal
axis had little effect on the emergent dynamics. However, rotation off this axis had a more
significant effect. Broadly, off-axis rotation reduces the overall magnitude of the effective
parameters for both achiral and chiral objects. More specifically, the general effect of
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increasing off-axis rotation is to bring the effective aspect ratio of objects closer to unity
through the reduction in magnitude of the effective Bretherton parameter B̂. For chiral
objects, the general effect of increasing off-axis rotation is to reduce the overall effect of
chirality.

A curious aspect of our analysis is the nature of the equivalence between the effective
equations that we derive and the generalised Jeffery’s equations for inert particles.
Specifically, this equivalence is explicitly evident only when the slow-time variables that
arise from our analysis are written in terms of suitably transformed variables. Although the
appropriate definitions for these slow-time variables are related to the ‘average’ position
of the object, their specific choice is not immediately apparent when they first arise in
the analysis. The choice that we make in using specifically ϑ̄(t), Ψ̄ (t) and ϕ̄(t) in (4.2)
appears to be justified only once we finally derive the emergent equations (4.15a–c). This
is in contrast to recent applications of multiscale analysis to two-dimensional swimming
problems (Walker et al. 2022a,b), where the equivalence between slow- and fast-time
variables is more apparent from the start.

A natural question to ask is whether our results can be extended to consider several
swimmers. In general, the consideration of multiple swimmers would be significantly more
challenging, due partly to the difficulties in calculating explicit hydrodynamic tensors that
account for the orientation of several swimmers simultaneously. A specific sublimit in
which it may be possible to adapt our results is the limit of dilute suspensions, where
swimmers are well separated and swimmer–swimmer interactions are rare. In this case, it
may be possible to extend our results to estimate probability distributions for organism
orientation as a function of local shear rate, though this remains a subject for future
work. Additionally, it may be possible to generate effective equations by applying our
methodology to point-particle models for the alignment of particles via hydrodynamic
interactions (Katuri et al. 2022).

To conclude, over this two-part study, we have investigated the behaviours of rapidly
spinning, three-dimensional, helicoidal objects in shear flow. We have shown that the
emergent orientational and translational dynamics can be described by the dynamics
of passive, differently shaped objects in appropriately transformed variables. Moreover,
we have calculated analytic representations of the effective parameters that encode the
effective hydrodynamic shape of these objects. In other words, our systematic analysis
has highlighted that the angular behaviours of such spinning objects can be described by
generalisations of Jeffery’s orbits for effective passive objects, so that this study serves to
complement the works of Bretherton (1962), Brenner (1964b) and Ishimoto (2020a,b) by
broadening further the scope of Jeffery’s classical study of objects in slow flow (Jeffery
1922).

Supplementary material. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.924.
Minimal computer code for exploring the dynamics, as well as the scripts used to generate the figures in
this study, are available at https://github.com/Clementmoreau/spinningswimmers.
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Appendix A. Deriving the equations of motion

In this appendix, we derive the equations of motion for a self-propelled helicoidal
swimmer in a simple shear, introduced in § 2.

A.1. Kinematics
We take the origin of the swimmer frame X = Xe1 + Ye2 + Ze3 to be the centre of
hydrodynamic mobility of the swimmer. Therefore, X lies on ê1 (Kim & Karrila 1991).
To specify the angular dynamics, we introduce the Euler angles, for which we use the xyx
convention, with φ ∈ [0, 2π), θ ∈ [0,π] and ψ ∈ [0, 2π), noting that we interpret φ and
ψ modulo 2π. In terms of the swimmer-fixed and laboratory frames, the transformation
between basis vectors is given by

⎛
⎝ê1

ê2
ê3

⎞
⎠ =

⎛
⎝ cθ sφsθ −cφsθ

sψsθ cφcψ − sφcθ sψ sφcψ + cφcθ sψ
cψsθ −cφsψ − sφcθcψ −sφsψ + cφcθcψ

⎞
⎠

⎛
⎝e1

e2
e3

⎞
⎠ , (A1)

as illustrated in Appendix A of Part 1, with cθ , sθ denoting cos θ , sin θ , and similarly for
other angles.

Further, the Euler angle transformation also gives the relation between the angular
velocity of the swimmer frame in the presence of flow, denoted Ω f , and the time
derivatives of the Euler angles via

Ω f = φ̇e1 + θ̇e′
2 + ψ̇ ê1 =

∑
Ω̂ f

p êp, (A2)

which simplifies to

⎛
⎝ θ̇ψ̇
φ̇

⎞
⎠ =

⎛
⎝0 cψ −sψ

1 −sψcθ /sθ −cψcθ /sθ
0 sψ/sθ cψ/sθ

⎞
⎠

⎛
⎜⎝
Ω̂

f
1

Ω̂
f

2
Ω̂

f
3

⎞
⎟⎠ . (A3)

Writing x = xe1 + ye2 + ze3 for the position of a general point in the domain, we consider
the shear flow

u(x) = ye3 = Ye3 + (y − Y)e3, (A4)

where we have decomposed the flow into its contribution at the origin of the swimmer
frame, defining V ∗ = Ye3, and a disturbance (y − Y)e3 relative to this. The associated
rate of strain and fluid angular velocity are given by

E∗ = 1
2

(∇u + (∇u)T
) = 1

2

(
e2eT

3 + e3eT
2
)
, Ω∗ = 1

2∇ ∧ u = 1
2 e1. (A5a,b)
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A.2. Mechanics
The grand mobility tensor formulation of Kim & Karrila (1991), with no external flow and
viscosity non-dimensionalised to unity, gives the general relations⎛

⎝−V
−Ω
S∗

⎞
⎠ =

⎛
⎝a b̃ g̃

b c h̃
g h m

⎞
⎠

⎛
⎝F

T
0

⎞
⎠ . (A6)

The block entries of the grand mobility tensor relate the force F and torque T generated by
the self-propulsion mechanism to the velocity, angular velocity and stresslet of the particle
in a quiescent field, which we denote by V , Ω and S∗, respectively.

Furthermore, noting that F and T are assumed to be invariant on imposing the external
shear flow, we have the analogous relation⎛

⎝V ∗ − V f

Ω∗ − Ω f

S f

⎞
⎠ =

⎛
⎝a b̃ g̃

b c h̃
g h m

⎞
⎠

⎛
⎝ F

T
E∗

⎞
⎠ , (A7)

where we recall that V ∗ = Ye3 is the undisturbed velocity of the external flow at the origin
of the swimmer frame, Ω∗ and E∗ are given by (A5a,b), and V f , Ω f and S f are the
velocity, angular velocity and stresslet of the particle in the shear flow, respectively.

Using (A6) to eliminate F and T from (A7), we can rewrite the force F and torque T in
terms of the swimming velocities V and Ω to obtain the translational velocity expressions

V f = V + Ye3 − g̃E∗, (g̃E∗)i = g̃ipqE∗
pq, g̃iqp = g̃ipq, (A8a,b)

and the rotational velocity expressions

Ω f = Ω + Ω∗ − h̃E∗, (h̃E∗)i = h̃ipqE∗
pq, h̃iqp = h̃ipq. (A9a,b)

The expressions for g̃E∗ and h̃E∗ are derived in Ishimoto (2020a,b) for helicoidal objects.
Using these expressions, we deduce that

V f = V + Ye3 − β
(
ê2êT

3 − ê3êT
2
)

E∗ê1 + γE∗ê1 + (δ − γ )
(
êT

1 E∗ê1
)

ê1, (A10)

where β is a shape parameter corresponding to chiral effects (which vanishes for an achiral
particle), and γ , δ are shape parameters corresponding to fore–aft asymmetry effects
(which vanish for a particle with hydrodynamic fore–aft symmetry), and

Ω f = Ω + Ω∗ − B
(
ê2êT

3 − ê3êT
2
)

E∗ê1 + CE∗ê1 + (D − C)
(
êT

1 E∗ê1
)

ê1, (A11)

where B and C are the Bretherton and Ishimoto parameters, and D is an additional shape
parameter generated by the chirality of the object.

Substituting (A11) into (A3) and using the frame transformation (A1) yields the angular
dynamics given in (2.1)–(2.3). Recalling that dX/dt = V f and using (A10) yields the
translational dynamics given in (2.4).

Appendix B. Estimation of shape parameters for a model bacterium

In this appendix, we estimate values of the shape parameters B, C, D, β, γ and δ for a
simple model bacterium used in a previous study (Ishimoto 2020a). This simple model
consists of a rigid spheroidal cell body (with semi-axes c, a, a) and helicoidal flagellum

979 A2-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

92
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.924


M.P. Dalwadi, C. Moreau, E.A. Gaffney, B.J. Walker and K. Ishimoto

1.0 0.012 0

–0.5

–1.0

–1.5

–2.0

–1

–2

–3

–4

–5

0

0.010

0.008

0.006

0.004

0.002

0

0.5

–0.5

–1.0

0 0.5

0.4

0.3

0.2

0.1

0

–0.005

–0.010

–0.015

–0.020

0

0 2 4 6 8 10 2 4 6 8 10 0 2 4 6 8 10

0 2 4 6 8 10 2 4 6 8 10 0 2 4 6 8 10

Effective aspect ratio, c̃ Effective aspect ratio, c̃ Effective aspect ratio, c̃

B C D

β γ δ

L = 0

L = 2

L = 4

L = 6

L = 8

L = 10

2b2a
ê1
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Figure 9. (a) Schematic of a model bacterium with a spheroidal cell body and a helical flagellum. The cell
body is a rigid spheroid with semi-axes c, a, a, and the flagellum is a simple circular rigid helix with pitch λ,
amplitude b and length L. The axis of the helix is ê1, the director vector of the swimmer. (b–g) The values of
shape parameters, B, C, D, β, γ , δ for the model bacterium described in (a). These parameters are calculated
from resistive force theory, using different cell body aspect ratios c/a ∈ {0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3} and
flagellar lengths L. The horizontal axis represents the effective aspect ratio c̃, obtained from the values of B.
The remaining parameters are the same as those used in Ishimoto (2020a), and a = 1, λ = 2.5 and b = 0.25.
The lines represent different values of c. On each line, we use the symbols described in each legend to plot the
values corresponding to L = 0, 2, 4, 6, 8, 10.

shown schematically in figure 9(a). This left-handed simple helix has uniform circular
cross-section, with radius b and pitch λ. The flagellum axis and the semi-axis c coincide
with ê1, the axis of helicoidal symmetry.

We calculate the average values of hydrodynamic resistance around the ê1 axis using
resistive force theory and the exact expression for a rigid spheroid. Analytic expressions for
these quantities are provided in Appendix B of Ishimoto (2020a). We compute the shape
parameters from their exact forms, represented by the components in the resistance matrix
(Ishimoto 2020b). The shape parameters B, C, D, β, γ , δ defined here correspond to −β2,
β3, β1, −α2, α3, α1, respectively, in Ishimoto (2020b). We plot these shape parameters in
figures 9(b–g) via the blue lines, with symbols denoting specific values of L.

We vary the aspect ratio of the cell body c/a and the flagellar length L along the
ê1 axis. Additionally, we fix a = 1, λ = 2.5 and b = 0.25. We use the cell body aspect
ratios c/a ∈ {0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3} and flagellar lengths L from 0 to 100. The
horizontal axis denotes the effective aspect ratio c̃ obtained from the values of B through
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the relationship c̃ = √
1 + B/

√
1 − B. For different values of c, we plot the values with

L = 0, 2, 4, 6, 8, 10 using specific symbols.
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