
DEGENERATE DYNAMICAL SYSTEMS AND THE DISAPPEARANCE OF (K.A.M.-TYPE) 
INTEGRALS OF MOTION 

H. VARVOGLIS 
ASTRONOMY DEPARTMENT, UNIVERSITY OF THESSALONIKI, GREECE. 

I. ABSTRACT 
The problem of constructing the stochasticity criterion of a degen­

erate near-integrable dynamical system is considered. We show that in 
certain cases the above criterion can be found as the limit of the cor­
responding stochasticity criteria of a family of non-degenerate systems, 
whose limit is the degenerate one. 

II. INTRODUCTION 
The knowledge of the stable or unstable nature of the trajectories 

in a certain region of a dynamical system's phase space is of paramount 
importance in many cases of interest in Celestial Mechanics. More specif­
ically regions of stability are suitable for applications of the theory 
of the KAM-type integrals of motion (mainly for long time predictions for 
the evolution of the system) while regions of instability are suitable 
for a statistical approach (based on the assumed ergodicity of the cor­
responding trajectories). In the latter case the unstable nature of the 
trajectories has been used to explain various phenomena, as the Kirkwood 
gaps in the asteroid belt (e.g., see Berry 1978, Hadjidemetriou and Ichti-
aroglou 1983)., particle acceleration by waves (e.g. Fukuyama et al. 1977) 
etc. 

It is by now generally accepted that not only dynamical systems dif­
fering solely in the numerical value of a parameter can show either stable 
or unstable behavior as described above, but that even the same system may 
show different stability characteristics in different regions of phase 
space. The existence of a criterion (usually called "stochasticity cri­
terion") that can give the phase space regions of stability and instabil­
ity (regions of order and chaos respectively) of a certain perturbed in-
tegrable dynamical system as a function of the strength of the perturbation 
is of obvious importance. It has been shown (Chirikov 1969, 1979) that 
in the case of a non-degenerate two dimensional Hamiltonian system of the 
form (Arnold 1978) 

H = H 0 ( i 1 , i 2 ) + e H 1 ( i 1 , i 2 , e 1 e 2 ) ( i ) 

such a criterion can be constructed by a simple reasoning where by non-
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degenerate we mean that the frequencies of the "unperturbed" (H=H ) 
Hamiltonian function depend on the actions, that is 

32H, 

3li3lj 
^ 0 or 

3ZH, 9H„ 

3Ii3lj 

3H, 

31. 

*• 0 (2) 

31. 
3 

Many of the systems of interest, however, are degenerate, as it is 
for instance the case with the well known Henon and Heiles (1965) and 
Contopoulos-Barbanis (Barbanis 1966) potentials. To find a stochasticity 
criterion in the case of a degenerate system seems to be a more involved 
problem. It is the purpose of this work to show, using a specific example, 
that the correct stochasticity criterion of a degenerate dynamical system 
can be found in certain cases by considering the limit of the correspond­
ing criteria of a family of non-degenerate systems. 

III. THE EXAMPLE CASE 

Consider the Hamiltonian system 

H =H +eH =1 +vl2+ | 5
2I2

2-e ? V ^ 1 ! ^ ^sin(-iQ f Q
2
) (3) 

which has the following properties: 

i) 

ii) 

iii) 

for e=0 it is completely integrable, so that it does not show 
stochastic behavior at all. 
for e>0 but e<ec(v

s': ,£) it behaves like an integrable one (the 
KAM-type integral of motion exists in most of phase space). 
for e>ec(v

ft,C) there are regions in phase space where the system 
shows large scale chaotic behaviour arid the corresponding trajectories 
are intrinsically unstable. The value of ec is, as noted above, 
a function of vis 

rotation number of 
non-degeneracy of the system, 

9H0 _ 3H0 
31, ~ ' U2" 31, 

and £, where v*=v+E;i2 is the inverse of the 
and the parameter % gives the degree of H 

If £=0 we have 

ur 
if £>0 the degeneracy is 

Ll ~ ""2 
and the dynamical system is degenerate: 
removed. 
When £-1 the stochasticity criterion for equ. (3) has been found 

(Smith and Kaufman 1978) to be 

J ft{(2I1)
l/2} ^ _ i - (4) 

n" 1 16£?
2 

where n* is the inte.ger nearest to v''c. When 5=0 on the other hand 
the stochasticity criterion is (Fukuyama et al. 1977, Hsu 1982) 
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{J (2I1)
l/2} 

_J5 i > _L_ (5) 
(2I//2 ^ ta£ 

where n is the integer nearest to v again. 

Despite the fact that the chaos sets on in a different way when 
£=1 or £=0, the similarity in the form of equs. (H) and (5) leads one 
to investigate whether these equations could be obtained as special cases 
of a more general relation. To do so at first we apply the usual arguments 
(e.g., Greene 1980) and we estimate the strength of the perturbation that 
causes the "overlap" of the primary islands with rotation number 1 and 

1 . 
• ;..•,y in the case £-1, where it is known that the "stochasticity" (the 

dissolution of the invariant curves) begins indeed with the interaction 
of the n* and n»'s+l resonances. This "overlap" takes place when (Varvoglis 
and Papadopoulos 1982a) 

|£iV{(2i1)V2}!{gT + .2x- u^ i^ j |}y% _^ (6) 

Therefore a trajectory shows stochastic behavior if equ. (6) is satisfied 
at any of the trajectory points. Equ. (6) reduces to equ. (4) if the term 

•̂ y— Jn''«{(2Î )J'2 } is ignored compared to — ^ J ar>d thus the Smith and 

Kaufman result is recovered. 

If the chaotic behavior sets on in the degenerate case in the same 
way as in the non-degenerate one, the stochasticity criterion of equ. (3) 
for £=0 would be the limit for £->-0 of the equ. (6) 

|Jn{(2I1)V2}j^{(2l1)V2}|
 1 7 \ 1 

' ™~~ -X ii-,- t'a) 
C2IX)V2 ^ ta£ 

)r 2 

|J {(2I1)
V2} 

' n 1 

2 
Notice that for 2I.^>n equ. (7a) reduces to 

(2I1)
1/2 * 4 n E 

(7b) 

which is identical to equ. (5). Now it is known (Fukuyama et al 1977, 
Karney 197 8) that the dissolution of the invariant curves in the degenerate 
case begins with the interaction of secondary islands, so that the process 
of taking the limit of equ. (6) cannot be justified. In the special case 
v=n+0.5, however, it has been shown (Hsu 1982) that the cause of the in­
variant curve dissolution is indeed the interaction of the n and n+1 
islands, and therefore, at least in this case, the limit of equ. (6) is 
justified. 

It is worth to stress at this point that in the degenerate case the 
stochasticity criterion turns out to be unique, despite the fact that for 
various values of the quantity 6=|v-n| the stochasticity sets on following 
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different paths. This fact has been recognized in the literature (Karney 
1978) and advances the conjecture that perhaps equ. (6) is valid in the 
whole interval. O^C^l, irrespectively of the value of 6 (that is 
even for 6 i- -r ) ; this conjecture has to be tested numerically to eva­
luate its usefulness. 

In the case of small ^ and large v it has been shown that the 
above conjecture gives results in agreement with numerical calculations 
(Varvoglis and Papadopoulos 1982a). In the small v regime we have the 
interesting situation that equ. (7a) does not fully agree with equ. (5) 
(old result). Namely, both equs. (5) and (7a) imply that for v < v

0 the 
stochastic region in the action space has an upper bound and for V > V Q 

it has an upper and a lower bound, but equ. (5) gives v = 1.5 while 
equ. (7a) gives vn=2.5. This qualitative difference in behavior can 
be attributed to the fact that for v<vn the origin (of the surface of 
section) is an unstable periodic orbit, while for v>v it is a stable 
one, where v is equal to 2.5 (Abe et al. 19 80, Hsu 1982, Varvoglis 
and Papadopoulos 1982b); this result is in agreement with equ. (7a). 

IV. SUMMARY 

The above discussion can be summarized as follows: If a certain de­
generate dynamical system can be defined as the limit of a monoparametric 
family of non-degenerate systems, then it is possible under certain con­
ditions to find its stochasticity criterion as the corresponding limit 
of the more easily found stochasticity criteria of the non-degenerate 
systems. In the case of the system of equ. (3) this process not only 
leads to the (already known) correct answer, but also gives some new 
information for the behavior of the system in question. 
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