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Morphology of clean and surfactant-laden
droplets in homogeneous isotropic turbulence
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We perform direct numerical simulations of surfactant-laden droplets in homogeneous
isotropic turbulence with Taylor Reynolds number Reλ ≈ 180. The droplets are modelled
using the volume-of-fluid method, and the soluble surfactant is transported using an
advection–diffusion equation. Effects of surfactant on the droplet and local flow statistics
are well approximated using a lower, averaged value of surface tension, thus allowing
us to extend the framework developed by Hinze (AIChE J., vol. 1, no. 3, 1955, pp.
289–295) and Kolmogorov (Dokl. Akad. Navk. SSSR, vol. 66, 1949, pp. 825–828)
for surfactant-free bubbles to surfactant-laden droplets. We find that surfactant-induced
tangential stresses play a minor role in this set-up, thus allowing us to extend the
Kolmogorov–Hinze framework to surfactant-laden droplets. The Kolmogorov–Hinze scale
dH is indeed found to be a pivotal length scale in the droplets’ dynamics, separating the
coalescence-dominated (droplets smaller than dH) and the breakage-dominated (droplets
larger than dH) regimes in the droplet size distribution. We find that droplets smaller than
dH have a rather compact, regular, spheroid-like shape, whereas droplets larger than dH
have long, convoluted, filamentous shapes with a diameter equal to dH . This results in
very different scaling laws for the interfacial area of the droplet. The normalized area,
A/d2

H , of droplets smaller than dH is proportional to (d/dH)
2, while the area of droplets

larger than dH is proportional to (d/dH)
3, where d is the droplet characteristic size. We

further characterize the large filamentous droplets by computing the number of handles
(loops of the dispersed phase extending into the carrier phase) and voids (regions of the
carrier fluid completely enclosed by the dispersed phase) for each droplet. The number
of handles per unit length of filament scales inversely with surface tension. The number
of voids is proportional to the droplet size and independent of surface tension. Handles
are indeed an unstable feature of the interface and are destroyed by the restoring effect of
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surface tension, whereas voids can move freely in the interior of the droplets, unaffected
by surface tension.

Key words: breakup/coalescence, multiphase flow

1. Introduction

Droplet-laden turbulent flows are ubiquitous in nature and industry (Jähne & Haußecker
1998; Karsa 1999; Schramm, Stasiuk & Marangoni 2003; Kralova & Sjöblom 2009;
Dickinson 2010). A few examples include the capture of atmospheric CO2 at the surface
of seas and oceans, which is mediated by the entrainment of air bubbles by breaking waves
(Merlivat & Memery 1983; Deane & Stokes 2002; Pereira et al. 2018), or the dynamics of
liquid jets and sprays that is of fundamental interest for combustion, cooling, irrigation and
firefighting (Mugele & Evans 1951; Faeth, Hsiang & Wu 1995; Herrmann 2011; Canu et al.
2018; Kooij et al. 2018). These flows rarely involve pure fluids: instead, they often include
small amounts of impurities that may act as surface-active agents (surfactants). Surfactants
are compounds that assemble at the fluid interface and modify the local surface tension.
Even small amounts of surfactant can drastically change the flow behaviour, making their
presence crucial in many practical scenarios (Koshy, Das & Kumar 1988; Dobbs 1989;
Sjoblom 2005; Takagi & Matsumoto 2011).

The interface between the carrier phase and the dispersed phase, i.e. the droplets, serves
as a conduit for various physical and chemical exchanges, such as heat, vapour (Scapin,
Costa & Brandt 2020; Onofre Ramos et al. 2022), solutes and aerosols (de Leeuw et al.
2011). The rate of these exchanges is determined by the product of the interfacial flux
and the interfacial area, emphasizing the pivotal role of interfacial characteristics. There
has been considerable effort to estimate these exchanges via empirical correlations (Akita
& Yoshida 1974; Kelly & Kazimi 1982; Delhaye & Bricard 1994) or via population
balance equations relying on the droplet size distribution and on droplet breakage and
coalescence models (Luo & Svendsen 1996; Babinsky & Sojka 2002; Andersson &
Andersson 2006a,b; Martínez-Bazán et al. 2010; Chan et al. 2018; Chan, Johnson &
Moin 2021; Gaylo, Hendrickson & Yue 2023). Hence, in this study we aim to answer
the question, ‘what is the interfacial area of surfactant-laden droplets in turbulence?’
Indeed, we measure the interfacial area of each droplet and discover the presence of two
universal regimes: the interfacial area of small droplets is proportional to the square of
their characteristic size, whereas, for large droplets, it is proportional to the cube of their
characteristic size. The information on the individual interfacial area, combined with the
droplet size distribution, provides an estimate of the total interfacial area available. The
two different regimes are directly linked to the shape of the droplets: small droplets are
spheroid-like or ellipsoid-like, whereas large droplets take long, filamentous shapes. We
find that the length scale separating these two regimes is the Kolmogorov–Hinze scale,
defined as the maximum size of a droplet that is not broken apart by turbulent fluctuations;
droplet breakage becomes prevalent for droplets larger than the Kolmogorov–Hinze scale.
The concept of the Kolmogorov–Hinze scale originates from the works of Kolmogorov
(1949) and Hinze (1955), who applied Kolmogorov’s (1941) assumptions to droplets in
turbulence. Some recent studies, however, have disputed the theoretical framework upon
which Hinze’s theory is based and, hence, the relevance of the Kolmogorov–Hinze scale:
Qi et al. (2022) showed that droplets interact with eddies of a range of length scales,
rather than solely with eddies of a size similar to the droplet, and Vela-Martín & Avila
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Morphology of clean and surfactant-laden droplets

(2022) showed that droplet breakup does, in fact, occur below the Kolmogorov–Hinze
scale. Motivated by these studies, we ask, ‘does the Kolmogorov–Hinze framework hold
in surfactant-laden flows?’ As we shall see, the answer is yes. That is, our numerical
simulations show that the Kolmogorov–Hinze scale can be used as a key parameter to
describe the morphology of surfactant-laden droplets in turbulence, and that the values
obtained using Hinze’s original formulation (Hinze 1955) are in good agreement with a
more recent formulation, which uses the work done by the interface to define a length
scale for the droplet phase (Crialesi-Esposito, Chibbaro & Brandt 2023). Furthermore,
we show that Hinze’s theory can be extended to surfactant-laden droplets, provided that
a suitable value of the surface tension is selected. In our set-up, surfactant effects on
the morphology of the droplets can indeed be well approximated using an averaged
value of the surface tension, thereby maintaining the simplicity and efficacy of the
Kolmogorov–Hinze framework.

Beyond an average reduction in surface tension, surfactants introduce more intricate
dynamics into the flow: a surfactant is an additional phase that is transported by the
local flow and by motion and deformation of the interface, and that reduces the value
of surface tension according to its local concentration. This can lead to an inhomogeneous
value of surface tension over the interface of the droplets, giving rise to Marangoni
stresses, i.e. stresses that act tangentially to the interface and originate from surface tension
gradients. Marangoni stresses have been shown to be crucial in hindering and preventing
coalescence (Dai & Leal 2008; Soligo, Roccon & Soldati 2019b), reducing the rising
velocity of bubbles (Takagi & Matsumoto 2011; Elghobashi 2019), and in the build-up
of bubble layers in wall-bounded flows (Lu & Tryggvason 2008; Takagi & Matsumoto
2011; Tryggvason & Lu 2015; Lu, Muradoglu & Tryggvason 2017; Ahmed et al. 2020). An
increase in the drag coefficient has been reported when adding surfactant to wall-bounded
bubbly flows (Takagi, Ogasawara & Matsumoto 2008; Takagi et al. 2009; Verschoof
et al. 2016): surfactant reduces the size of the droplets and causes a lower drag reduction
compared with surfactant-free cases. Our study examines a statistically stationary,
homogeneous and isotropic multiphase flow at a moderate Reynolds number (see figure 1).
This type of flow does not allow for the build-up of large-scale surfactant gradients
commonly found in up-flow and down-flow set-ups, where the velocity difference between
the carrier and the dispersed phase generates and maintains a surfactant gradient along the
interface of the droplets or bubbles (Takagi et al. 2008; Lu et al. 2017). For this reason,
we expect the effect of Marangoni stresses to be localized. In this study, we ask, ‘what
is the effect of Marangoni stresses on droplet morphology in homogeneous homogeneous
isotropic isotropic turbulence?’ As we shall show, surfactant effects on droplet morphology
in our set-up can be summarized as an average surface tension reduction, and the effect
of Marangoni stresses can only be appreciated by analysing the local flow dynamics at the
interface.

To investigate the complex dynamics of clean and surfactant-laden droplets in
turbulence, we use direct numerical simulations. In recent years there has been a consistent
growth in the number of numerical studies on multiphase turbulence, supported as well by
the increased availability and capability of high-performance computing infrastructures.
Multiphase turbulence is characterized by a wide range of scales, from the smallest,
molecular-size interfacial scale, to the smallest flow scales – the Kolmogorov length
scale – and up to the large-scale structures of the flow. The separation of scales usually
spans over about eight to ten orders of magnitude, while direct numerical simulations
on leading-edge high-performance computing systems can simulate about four orders
of magnitude (Soligo, Roccon & Soldati 2021). The common choice is to simulate the
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dH dH

(a) (b)

Figure 1. Snapshots of the simulated domain in the cases (a) S05 and (b) S20 showing the interface of the
droplets; the scale bar shows the Kolmogorov–Hinze scale for each case.

larger scales of the multiphase flow, from the large-scale structures down to about the
Kolmogorov length scale, and introduce models for the smaller-scale physics (Tryggvason
et al. 2010, 2013; Soligo et al. 2021). Several authors have devoted their attention to
the development of models for the unresolved scales to be used in direct numerical
simulations and large eddy simulations. In their original works Kolmogorov (1949) and
Hinze (1955) identified the maximum size of a non-breaking droplet in turbulence.
Experimental measurements (Garrett, Li & Farmer 2000; Deane & Stokes 2002) later
showed the existence of two different regimes in the droplet size distribution, separated
by the Kolmogorov–Hinze scale. These works laid the foundations for the understanding
of the dynamics of the droplets and for the development of sub-grid-scale models for the
interfacial dynamics (Herrmann 2013; Xiao, Dianat & McGuirk 2014; Evrard, Denner
& van Wachem 2019). The power-law scaling exponents for the two regimes measured
in experiments have been confirmed as well by numerical simulations: −10/3 for the
breakage-dominated regime (Perlekar et al. 2012; Skartlien, Sollum & Schumann 2013;
Deike, Melville & Popinet 2016; Mukherjee et al. 2019; Rosti et al. 2019b; Soligo, Roccon
& Soldati 2019a; Crialesi-Esposito et al. 2023) and −3/2 for the coalescence-dominated
regime (Rivière et al. 2021; Crialesi-Esposito et al. 2023). The droplet size distribution and
the population balance equation for the droplets are fundamental tools in the modelling of
droplets of similar size to the grid resolution and smaller. Perlekar et al. (2012) correlated
the instantaneous Weber number of droplets to their deformation, showing that large
Weber numbers correspond to strongly deformed droplets. They simulated emulsions at
increasing volume fractions and proved the validity of the Kolmogorov–Hinze scale at low
volume fractions; they reported deviations from the Kolmogorov–Hinze theory for more
concentrated emulsions, possibly due to the effect of coalescence, which was neglected
in the original works by Kolmogorov and Hinze. Vela-Martín & Avila (2022) showed
that drop breakage is a memoryless process, i.e. the relaxation time of the droplet is
much lower than its expected lifetime. In the same work, they debated the validity of
the Kolmogorov–Hinze scale as an absolute threshold between breaking and non-breaking
droplets, arguing that all droplets will eventually break apart, provided there is enough
time for breakage. It was shown also that, in the absence of coalescence, the breakage rate
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depends on the Weber number alone. Gaylo et al. (2023) investigated the fragmentation
of bubbles in statistically stationary homogeneous isotropic turbulence and characterized
several fundamental time scales of the bubbles: the relaxation time, the expected lifetime
and the time needed for the largest bubble to break down to the Kolmogorov–Hinze scale.
It is now well known that the presence of a dispersed phase strongly modifies the dynamics
of the flow at all scales: the interface extracts energy at the large flow scales and re-injects
it into the flow at much smaller scales, competing with the classic turbulent energy cascade
(Mukherjee et al. 2019; Perlekar 2019). This effect is reflected in a deviation from the k−5/3

power-law scaling of the turbulent kinetic energy spectrum. When there is a considerable
slip velocity between the droplet or bubble and the carrier fluid, a completely different
scaling of the energy spectrum, k−3, has been reported in numerical simulations (Roghair
et al. 2011; Pandey, Ramadugu & Perlekar 2020; Paul et al. 2022) and experiments
(Mercado et al. 2010; Prakash et al. 2016).

As part of our analysis of droplet morphology, we measure the Euler characteristic of
the droplet interfaces. Similarly to the number of droplets in a flow, the Euler characteristic
of an interface is an integer-valued topological invariant, and any change in its value
requires a splitting or merging of interfaces. Despite its physical significance, the Euler
characteristic has only recently been applied to multiphase flows: Dumouchel, Thiesset &
Ménard (2022) linked the Euler characteristic to the Gaussian curvature of the droplets and
used it to parametrize the morphology of liquid droplets undergoing breakup. The Euler
characteristic is commonly used in characterizing the sintering of metal powders (DeHoff,
Aigeltinger & Craig 1972; Mendoza et al. 2006), classifying lung tissues (Boehm et al.
2008) and correcting MRI scans of the human brain (Yotter et al. 2011). In this paper
we use the Euler characteristic to count the number of voids and handles on the droplets,
demonstrating that the large droplets are made up of extremely interconnected filaments.

The paper is structured as follows. We introduce the numerical method and the
computational set-up adopted for the simulations in § 2. Our findings are reported in § 3,
where we first focus on the morphology of the dispersed phase, and then on the statistics
of the local flow around the droplets. Finally, § 4 summarizes the main results presented
in the present work.

2. Numerical model

We solve a system of equations including the momentum (2.1) and mass (2.2)
conservation, the volume of fluid (2.3) and surfactant (2.4) transport equations to simulate
the dynamics of an ensemble of breaking, coalescing and deforming finite-size droplets in
homogenous isotropic turbulence. The two phases, the carrier fluid and the dispersed phase
(i.e. the droplets), have the same density ρ and dynamic viscosity μ. Thus, the governing
equations are

ρ
∂u
∂t

+ ρu · ∇u = −∇p + ∇ · [μ(∇u + ∇uT)] + ∇ · (τcfσ )+ fs, (2.1)

∇ · u = 0, (2.2)

∂φ

∂t
+ ∇ · (uH) = 0, (2.3)

∂ψ

∂t
+ u · ∇ψ = ∇ · (Mψ∇μψ). (2.4)

Here fs is the spectral forcing used to sustain turbulence. We use the one-fluid approach,
whereby the fluid velocity u and pressure p are defined in both phases and continuous
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across the interface; the volume-of-fluid variable φ is used to define the instantaneous
position of the interface. The volume of fluid can be understood as a colour function
characterizing the local concentration of the dispersed phase: it is equal to φ = 0 in
the carrier phase and to φ = 1 in the droplet phase. The volume-of-fluid method is an
interface capturing method (Prosperetti & Tryggvason 2009) where the concentration
of each phase is transported using (2.3) and the interface is implicitly defined as the
φ = 0.5 level. The effect of the interface on the flow is accounted for in the momentum
equation via the surface tension forces: the Korteweg tensor τc = I − n ⊗ n (Korteweg
1901) accounts for the position and shape of the interface, and the surface tension equation
of state fσ defines the local value of surface tension. In the definition of the Korteweg
tensor, I is the identity matrix and n = −∇φ/‖∇φ‖ is the unit-length, outward-pointing
normal to the interface. The local surfactant concentration ψ ∈ [0, 1] is expressed as a
fraction of the maximum surfactant concentration, which is usually determined by steric
hindrance between surfactant molecules. Hence, ψ is dimensionless in this formulation.
To account for the effect of surfactant on surface tension, we use a modified Langmuir
equation of state (Muradoglu & Tryggvason 2008, 2014; Soligo et al. 2019b) fσ =
max[σmin, σ0(1 + βs log(1 − ψ))], where σ0 is the reference surface tension of a clean
(i.e. surfactant-free interface), σmin the minimum surface tension and βs the elasticity
number. In the original formulation by Bazhlekov, Anderson & Meijer (2006), Pawar
& Stebe (1996), the Langmuir equation of state provides a good fit at low to moderate
surfactant concentration values; however, it fails to account for surfactant saturation
dynamics at higher concentrations. Experimental measurements (reviewed by Chang &
Franses 1995) showed that, beyond a critical concentration of surfactant, surface tension
no longer changes for increasing surfactant concentrations. Hence, to qualitatively account
for surfactant saturation dynamics at the interface, we limit the surface tension to be greater
than σmin at all points on the interface. In (2.1), surface tension forces act perpendicular
and tangential to the interface: a capillary component (normal to the interface) and a
tangential component – Marangoni stresses – proportional to the surface tension gradient.
The tangential component is characteristic of surfactant-laden flows, where surface tension
changes along the interface according to the local surfactant concentration.

The volume of fluid φ is transported using a simple advection equation (2.3). The
multi-dimensional tangent of hyperbola for interface capturing (MTHINC) method (Ii
et al. 2012) is used to reconstruct the local volume-of-fluid value φ starting from the
cell-local indicator function H. The transport equation for the cell-local indicator H is
integrated over a control volume, yielding (2.3) (Ii et al. 2012; Rosti, De Vita & Brandt
2019a; Rosti et al. 2019b). To compute the surfactant chemical potential, we first calculate
a signed-distance function s and a smoothed colour function φ̂. A re-distancing equation
is solved to compute the signed-distance function over the pseudo-time τ ,

∂s
∂τ

= sgn(s0)(1 − ‖∇s‖), (2.5)

where sgn is the sign function and the initial guess s0 is found as s0 = (2φ − 1)0.75Δ
(Albadawi et al. 2013); this choice guarantees that the zero level of the signed-distance
function always corresponds to the interface (Russo & Smereka 2000; De Vita et al. 2019).
The signed-distance function is updated at every time iteration as the volume of fluid is
advected. Next, we compute the smoothed colour function as φ̂ = tanh(s/3Δ), which is
bounded in −1 ≤ φ̂ ≤ 1 and where the smoothing width is set to three times the grid
spacing Δ.
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An advection–diffusion equation (2.4) is solved to track the surfactant concentration ψ
in the entire domain. We use a soluble surfactant: surfactant preferentially collects at the
interface between the two fluids, but at the same time, it also dissolves in limited amounts
in the bulk of the phases. We use a one-fluid formulation for the surfactant, in which the
variable ψ defines the surfactant concentration in the entire domain (i.e. in the bulk and at
the interface). The adsorption (accumulation of surfactant from the bulk to the interface),
desorption (release of surfactant from the interface to the bulk) and diffusion dynamics
of the surfactant phase are determined by the chemical potential of the surfactant. The
chemical potential is made, in order, of three contributions: a free energy of mixing term,
an adsorption term and a bulk-penalty term (Engblom et al. 2013; Yun, Li & Kim 2014;
Soligo et al. 2019b),

μψ = α ln
ψ

1 − ψ
− β

(1 − φ̂2)2

2
+ γ

φ̂2

2
. (2.6)

The first term, the free energy of mixing term, favours a uniform surfactant distribution
throughout the entire domain and plays the part of diffusion, with the coefficient α
controlling the magnitude of the diffusive process. The adsorption term (second term)
is a negative contribution to the free energy of the system because the accumulation of
surfactant at the interface reduces the total energy of the surfactant configuration. The
coefficient β controls the adsorption dynamics. The last term, the bulk-penalty term, is
representative of the cost of free surfactant, i.e. of surfactant dissolved in the bulk of
the phases rather than adsorbed at the interface, and the coefficient γ determines the
energy cost of surfactant dissolved in the bulk phases. The adsorption term is maximum
in magnitude at the interface (φ̂ = 0), indicating a decrease in the energy of the system,
while the bulk-penalty term is maximum in the bulk of the phases (φ̂ = ±1) indicating
an increase in the energy. The logarithmic formulation of the free energy of mixing
term mandates for a non-constant mobility parameter Mψ = mψ(1 − ψ) (Engblom et al.
2013), with m being a numerical coefficient controlling the magnitude of the diffusive-like
surfactant dynamics. This choice of the mobility parameter ensures the boundedness of the
surfactant concentration, ψ ∈ [0, 1].

Finally, we couple the volume-of-fluid method for simulating the interfacial dynamics
with a phase-field-based method to track the concentration of a soluble surfactant. The
volume-of-fluid method guarantees exact mass conservation of each phase and allows for
a sharper interface compared with other diffuse-interface methods. We rely on a method
to simulate surfactant dynamics that has been successfully adopted in the past to simulate
flows with surfactant-laden interfaces (Engblom et al. 2013; Yun et al. 2014; Soligo
et al. 2019a,b; Soligo, Roccon & Soldati 2020a,b) using a phase-field method to model
interfacial dynamics. In particular, we employ a volume-of-fluid method to simulate the
dynamics of the dispersed and carrier phases, and we use a smoothed colour function,
φ̂, to couple the interfacial dynamics (based on the volume of fluid) with the surfactant
dynamics (based on a phase-field method). The smoothed volume of fluid field accounts
for the interfacial dynamics while at the same time providing the diffuse-interface basis
onto which the surfactant model is built. We thus combine the aforementioned strengths of
the volume-of-fluid method with the advantages of a formulation of the surfactant phase
that accounts for adsorption, desorption and diffusion in a thermodynamically consistent
framework.
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2.1. Computational method
The system of equations is discretized on a uniform Cartesian grid. The computational
grid is staggered: pressure, density, viscosity, volume of fluid and surfactant concentration
are defined at the cell centres, and the fluid velocities are stored at the cell faces.
Spatial derivatives are approximated using a second-order finite difference scheme, and
time advancement is performed via a second-order, explicit Adams–Bashforth scheme.
A fractional-step method (Kim & Moin 1985) is adopted to advance the mass and
momentum conservation equations in time, with the resulting Poisson equation for the
pressure solved via a fast pressure solver. The volume of fluid is transported using a
directional splitting method combined with an upwind scheme (Ii et al. 2012; Rosti
et al. 2019a). The same scheme is used for the advective term in the surfactant transport
equation.

The surfactant is resolved on a refined grid to capture the steep concentration gradients
at the interface and to keep a sharp interfacial profile. The smoothing width of the colour
function φ̂ should be large enough to accurately discretize the surfactant profile across
the interface, and at the same time, it should be small enough to keep the surfactant
profile sharp. Using a refined grid thus allows us to capture the modelled interfacial
dynamics while maintaining a thin interfacial surfactant layer. The finer computational
grid used for the surfactant transport is still a staggered, uniform, Cartesian grid; linear
interpolation is used to interpolate variables from/to the standard grid (for the velocity,
pressure, density, viscosity and volume of fluid) to/from the fine grid (for the surfactant
concentration). The surfactant transport is carried on the fine grid, with the velocity and
smoothed volume-of-fluid fields interpolated to the fine grid. Surface tension forces are
instead at first computed on the fine grid and then applied to the momentum conservation
equation. Tests have been performed with different grid refinement factors: the pressure
jump across the interface, the surfactant concentration value at the interface and the
total surfactant concentration show minimal changes compared with the reference case
(i.e. unitary refinement factor). For the sake of comparison among the different cases, the
smoothing width was kept constant in all cases, while in our numerical simulations, the
smoothing width is adapted to the refinement factor, thus allowing for smaller values of
the smoothing width and for a thinner surfactant interfacial layer.

We use the in-house code Fujin to perform all the numerical simulations presented
here. The code has been used and validated in the past on a variety of different flow
configurations (Rosti et al. 2019b; Olivieri et al. 2020; Brizzolara et al. 2021; Cannon
et al. 2021; Mazzino & Rosti 2021; Rosti & Takagi 2021; Abdelgawad, Cannon & Rosti
2023; Rosti, Perlekar & Mitra 2023). Further validation cases are available on the group’s
website, https://groups.oist.jp/cffu/code. Specific validation tests for the surfactant model
and its implementation are reported in Appendix B.

2.2. Computational set-up
We perform direct numerical simulations in a cubic box of size L with periodic boundary
conditions in all spatial directions. Homogenous isotropic turbulence is sustained using the
force fs in (2.1). We use the spectral forcing scheme proposed by Eswaran & Pope (1988),
whereby the flow is forced in a shell of Fourier modes 2π/La ≤ |k| ≤ 2π/Lb, and the
force on each mode evolves randomly in time (Uhlenbeck & Ornstein 1930) with variance
ρσ 2

L and relaxation time TL. Hence, UL ≡ σ
2/3
L T1/3

L (L/2π)1/3 is the characteristic velocity
scale of the forcing. We set the forcing Reynolds number ReL ≡ ρULL/(2πμ) = 41.6
to give a turbulence intensity that is tractable on our numerical grid. We choose the
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Morphology of clean and surfactant-laden droplets

Case – 〈φ〉 〈ψ〉 We η/L λ/L Reλ 〈σ 〉I/σ0 Wee dH/L dHσ /L

SP 0 0 — 8.39 × 10−04 0.0220 178 — — — —
0.1 0 10 8.49 × 10−04 0.0224 180 1 9.91 0.0560 0.0565
0.1 0 20 8.55 × 10−04 0.0228 184 1 20.0 0.0373 0.0392
0.1 0 40 8.58 × 10−04 0.0231 188 1 39.3 0.0252 0.0290
0.1 0.1 5 8.48 × 10−04 0.0226 183 0.40 12.7 0.0489 0.0370
0.1 0.1 10 8.71 × 10−04 0.0242 199 0.40 25.8 0.0338 0.0317
0.1 0.1 20 8.85 × 10−04 0.0247 201 0.41 49.5 0.0232 0.0241

Table 1. List of simulations performed. Here 〈·〉 denotes an average over the domain volume and 〈·〉I
denotes an average over the interface. All simulations have been carried out at constant volume fraction
〈φ〉; an additional reference case (single phase, 〈φ〉 = 0) is performed. We investigate four different Weber
numbers (We) and two different values of the mean surfactant concentration 〈ψ〉. The measured values of the
Kolmogorov length scale η, the Taylor micro-scale λ, Taylor Reynolds number Reλ, average surface tension
〈σ 〉I , effective Weber number Wee and Kolmogorov–Hinze diameters dH and dHσ are reported. The largest and
smallest values of each parameter are shown in bold.

dimensionless relaxation time T∗
L ≡ 2πTLUL/L = 2.08 to give variations at the time scale

of the large eddy turnover time. To prevent droplets from spanning the entire periodic
domain, we set the forcing at a length scale smaller than L (Mukherjee et al. 2019;
Crialesi-Esposito et al. 2023). Hence, the minimum and maximum wavelengths of forcing
are set to Lb = L/3 and La = L/2, respectively.

The computational domain is discretized using an equispaced Cartesian grid with
N = 500 grid points in all directions; to better resolve the sharp surfactant gradients at
the interface and keep a sharper surfactant profile across the interface, the surfactant
transport equation is resolved on a twice-refined grid, with Nψ = 1000 grid points in
all directions. A refinement factor of 2 for the surfactant concentration grid has been
selected as it significantly improves the surfactant profile’s sharpness at the interface while
keeping the computational cost within reasonable limits. With this refinement factor, the
computational cost increases by roughly ∼ 25 % and the storage requirements by ∼ 116 %.

We report in table 1 the chosen parameters for all cases reported in this paper. We
use one single-phase reference case (〈φ〉 = 0), three cases with clean droplets (〈ψ〉 = 0)
and three cases with surfactant-laden droplets (〈ψ〉 = 0.1). The droplet-laden flows were
initialized using fluid velocity and pressure from the single-phase reference case once it
had reached a statistically steady state. A single spherical droplet of radius R � 0.288L
(corresponding to 〈φ〉 = 0.1) was initialized at the centre of the computational box. Due
to the action of the surrounding turbulent flow, the droplet deforms and breaks apart into
smaller droplets. For our surfactant-laden cases, the surfactant is initially distributed in the
domain following the equilibrium profile with ψ = 0.1 in the bulk phase, computed by
zeroing the gradient of the chemical potential. We focus on a highly soluble surfactant and
set the coefficients of the surfactant chemical potential to α = 0.0242u′

0
2, β = 0.0121u′

0
2

and γ = 0.0121u′
0

2, and the numerical coefficient of the mobility parameter to m =
0.0307Lb/u′

0. For the flows with droplets, we fix the reference surface tension σ0, allowing
us to define a reference Weber number We ≡ ρu′

0
2Lb/σ0 based on the single-phase

root-mean-square velocity u′
0 and the minimum wavelength of the forcing Lb. We select a

moderate-strength surfactant with elasticity number βs = 5 and a relatively high surfactant
saturation concentration, yielding a low minimum surface tension, σmin = 0.1σ0.
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I. Cannon, G. Soligo and M.E. Rosti

To verify the grid independence of the present results, we performed two additional
simulations on a more refined grid, Nf = 2N = 1000 grid points: a single-phase (same
parameters as case SP) case and a surfactant-free multiphase case (same parameters as case
C10). Results on the fine grid, Nf = 1000, are reported in the following and summarized
here. The scale-by-scale energy budget confirms that the standard grid, N = 500, is
sufficient to capture all relevant turbulence scales. For the multiphase case, we do not
report any relevant differences between the statistics of the fine grid and the standard
grid cases; we do observe the presence of smaller droplets in the fine grid case, as
expected due to the increased resolution. Clearly, when adopting a more refined grid in
the numerical simulation of multiphase flows, we do expect differences in the morphology
of the dispersed phase, as smaller droplets and interfacial features (for instance, ligaments
and sheets) can be resolved. This impacts the droplet size distribution and the simulation
of interface breaking and merging. Interface breaking is a relatively fast phenomenon that
can be well approximated using a continuum formulation (Eggers 1995, 1997; Soligo et al.
2019a). It has been shown that grid resolution has a minor effect on the simulation of
interface breaking (Herrmann 2011; Lu & Tryggvason 2018, 2019). Interface merging, on
the other hand, is dependent on the grid resolution: the final stages of interface merging
depend on physics acting at scales as small as the molecular scale (MacKay & Mason
1963; Aarts, Schmidt & Lekkerkerker 2004; Chen et al. 2004; Aarts et al. 2005; Kamp,
Villwock & Kraume 2017; Sreehari et al. 2019). These small scales are not resolved in
continuum simulations of multiphase flows and interface merging occurs whenever the
interface–interface distance becomes smaller than the grid spacing. Since coalescence
occurs based on an artificial length scale, it has been named numerical coalescence. As
interface merging involves physics down to the molecular scale, a complete simulation
of coalescence cannot be attained solely by grid refinement (Scardovelli & Zaleski 1999;
Tryggvason et al. 2013; Soligo et al. 2019a, 2021). Numerical coalescence is still an open
issue and several approaches and models have been put forward to improve the simulation
of interface merging; see Soligo et al. (2021) for a general review. In our case, we do
not employ any models for interface merging, and as shown in figures 3–6 and 8, grid
resolution effects are seen only for statistics on the smallest droplets.

3. Results

In table 1 we report integral quantities from all cases studied. Length scales of the
turbulent flow are the Kolmogorov scale η ≡ (μ/ρ)3/4ε1/4 and the Taylor micro-scale
λ ≡ √

15μ/(ρε)u′, where u′ is the root-mean-square velocity of the flow and ε is the mean
dissipation rate. The Taylor Reynolds number Reλ ≡ ρu′λ/μ is 178 in the single-phase
case, and as was previously observed by Rosti et al. (2019b) and Crialesi-Esposito et al.
(2022), Reλ increases slightly when droplets are present. The surface tension averaged
over the interface 〈σ 〉I is the same as the reference surface tension σ0 in the cases with
clean droplets. However, it is reduced by more than half in the presence of surfactant. This
motivates us to define an effective Weber number, Wee ≡ ρu′2Lb/〈σ 〉I , to better compare
the different cases.

The Kolmogorov–Hinze diameter dH ≡ 0.725〈σ 〉3/5
I ρ−3/5ε−2/5 is an estimate of the

diameter of the largest droplet that does not break up. It is made by balancing surface
tension with turbulent velocity fluctuations, using an empirical constant of 0.725 (Hinze
1955). We also use a more recent formulation of the Kolmogorov–Hinze diameter from
Crialesi-Esposito et al. (2023); at large scales, droplets predominantly break up and the
interface takes energy from the flow (negative work), whereas at smaller scales, droplets
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Morphology of clean and surfactant-laden droplets

predominantly coalesce and the interface returns energy to the flow (positive work). The
length scale at which the work done by the interface is zero is defined as dHσ . The two
estimates of the Kolmogorov–Hinze diameter are in fairly good agreement in the cases
with and without surfactant.

Figure 2(a) shows the kinetic energy spectra of the turbulent flows. In all cases, the most
energetic modes are in the range 2 ≤ kL/(2π) ≤ 3, where turbulent forcing is applied. The
single-phase case shows the k−5/3 scaling predicted by Kolmogorov (1941), persisting for
over a decade of wavenumbers. As it has been previously reported by Perlekar (2019),
Rosti et al. (2019b) and Crialesi-Esposito et al. (2022), the cases with droplets show a
slight reduction in energy at small wavenumbers and an increase at large wavenumbers. We
also see from figure 2 that the Kolmogorov–Hinze scale is well within the inertial range.
Hence, we can assume that self-similarity applies to the turbulent velocity fluctuations
that dictate droplet deformation and breakup, investigated in the following subsection.
The turbulent kinetic energy spectrum computed on the fine grid (Nf = 1000, shown
with empty markers) superposes onto that computed on the standard grid and further
extends into the small scales, thus indicating that the standard grid is sufficiently refined
to simulate turbulence accurately. Our simulations are in a statistically steady state, and
so the fluid kinetic energy contained in each wavenumber is constant in time, and the
energy flux through each wavenumber k is constant and equal to the energy injection rate
ε. This is expressed by the equation F(k)+Π(k)+ D(k)+Σ(k) = ε, where the terms
on the left-hand side are the energy flux due to forcing, advection, viscous dissipation
and surface tension, respectively. We calculate these terms using the method given in the
supplementary information of Abdelgawad et al. (2023) (see also chapter 6 of Pope 2000).
Namely, we take a three-dimensional Fourier transform of each term in the Navier–Stokes
equation (2.1), multiply by the fluid velocity and integrate over the region bounded by a
sphere of radius k in wavenumber space. For dissipation, we choose the region inside the
sphere; for the other terms, we choose the region outside the sphere. This way, as k → ∞,
D = ε and F = Π = Σ = 0. Figure 2(b) shows the energy balance for the single-phase
flow and a droplet-laden flow. The single-phase case shows the canonical Richardson
cascade; energy is injected by forcing at the large scales and carried to smaller scales
by advection, where it is dissipated by viscosity. In the droplet-laden case, surface tension
also carries energy to smaller scales. Minor differences can be appreciated between the
standard grid cases (solid lines) and the fine grid cases (semi-transparent lines). For the
single-phase case, all the energy is almost completely transferred into dissipation and a
plateau in the viscous dissipation is reached at large wavenumbers. A similar result is also
observed for the multiphase case, where a fraction of the energy remains stored at small
scales in the surface tension term for both grid resolutions.

3.1. Droplet statistics
The inset of figure 3(a) shows the average number of droplets N in our simulations.
To identify and count each droplet, we use a stack-based, six-way flood fill on the
computational cells characterized by φ ≥ 0.5; the algorithm is a direct extension to
three-dimensional space of the two-dimensional four-way flood fill algorithm (Newman
& Sproull 1979). The number of droplets has been counted over several instantaneous
snapshots and averaged in time once the simulation has reached a statistically steady
state, i.e. once the Taylor–Reynolds number and the number of droplets fluctuate about a
constant mean value. We note that clean and surfactant-laden cases at similar values of the
effective Weber number, i.e. S05 and C10, S10 and C20, S20 and C40, have approximately
the same average number of droplets. This result suggests that the effect of surfactant
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Figure 2. (a) Turbulent kinetic energy spectrum E for cases SP and C10, made dimensionless using the domain
size L and the root-mean-square velocity u′ of each case. Vertical dashed lines show the wavenumber of the
Kolmogorov–Hinze scale kH ≡ 2π/dH for all the cases with droplets. The solid grey line above reports the
Kolmogorov scaling k−5/3. Data from simulations performed on a fine grid, Nf = 1000, are reported with
empty markers. (b) Scale-by-scale energy balance for cases SP and C10. Energy flux due to forcing F , viscous
dissipation D, advection Π and surface tension Σ are plotted using dot-dashed, dotted, dashed and solid lines,
respectively; semi-transparent lines identify the data from the simulations performed on a fine grid. Vertical
dashed lines mark kHσ ≡ 2π/dHσ , the wavenumber at which Σ is maximum for every droplet case.
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Figure 3. (a) The PDF of the droplet diameters d, with the dashed and solid lines showing scalings previously
found in the coalescence and breakup regimes (Deane & Stokes 2002), respectively; data from the simulation
performed on a fine grid, Nf = 1000, are reported with empty markers. The inset reports the total number of
droplets N in each case, with error bars showing the root-mean-square variation in time. The dotted line is
a fit N = 434Wee. In (b) we calculate the mean and standard deviation of the surfactant concentration ψ on
the interface of each drop; we then average these values over the ensemble of drops of the same size. The
right-hand axis shows the normalized interfacial surface tension resulting from the presence of surfactant.

on the dispersed phase manifests mainly as an average surface tension reduction, with
negligible effects from Marangoni stresses. As previously found by Rosti et al. (2019b) in
shear turbulence, we see that the number of droplets is proportional to the Weber number,
in our case with a factor N = 434Wee.

The average number of droplets N is of the order 104. This large sample size allows us to
make accurate statistics of the droplets, even when binned by their equivalent diameter d.
We define the equivalent diameter of a droplet

d ≡ (6V/π)1/3, (3.1)
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Morphology of clean and surfactant-laden droplets

as the diameter of a sphere with volume V , where V is the volume of said droplet. The
droplet size distribution for all cases is shown in figure 3(a). We observe a collapse of
all the curves when the droplet size d is normalized by the Kolmogorov–Hinze scale
in each case. Note that the Kolmogorov–Hinze scale separates two different regimes:
the coalescence-dominated regime for d/dH < 1 and the breakage-dominated regime for
d/dH > 1. The Kolmogorov–Hinze scale (Hinze 1955) is defined as the largest droplet
that resists breakage due to turbulent fluctuations. The coalescence-dominated regime
characterizes droplets smaller than the Kolmogorov–Hinze scale; breakage is highly
unlikely for these droplets, which instead are in a state of constant coalescence. On
the other hand, droplets larger than the Kolmogorov–Hinze scale are prone to breaking
apart. The droplet size distribution shows a clear power-law behaviour in the breakage-
and coalescence-dominated regimes. Considering the rate of breakage, exponents for the
two regimes have been obtained: −3/2 for the coalescence-dominated regime (Riviere
et al. 2022) and −10/3 for the breakage-dominated regime (Garrett et al. 2000). Deane
& Stokes (2002) measured the bubble size distribution in breaking waves and found
good agreement between the experimental measurements and the analytical scalings.
Several previous computational works confirmed the same −10/3 power-law exponent
in the breakage-dominated regime (Skartlien et al. 2013; Deike et al. 2016; Mukherjee
et al. 2019; Rosti et al. 2019b; Soligo et al. 2019a; Crialesi-Esposito et al. 2023), while
fewer works have captured the −3/2 power-law exponent for the coalescence-dominated
regime (Rivière et al. 2021; Crialesi-Esposito et al. 2023). Our results in figure 3(a)
show a size distribution that is compatible with the breakage-dominated regime scaling,
−10/3. However, the available data in the breakage-dominated regime spans at most one
decade; hence inferring an accurate power-law scaling here is challenging. For the low Wee
cases, we see some deviation from the −3/2 scaling just below the Kolmogorov–Hinze
scale. However, further into the coalescence-dominated regime, around d/dH ≈ 10−1,
all cases follow the −3/2 scaling. Furthermore, we show that the macroscopic effect of
surfactant on the droplet size distribution is well captured by considering a lower, average
surface tension value when computing the Kolmogorov–Hinze scale. A similar result was
previously obtained for surfactant-laden flows (Skartlien et al. 2013; Soligo et al. 2019a),
although for the breakage-dominated regime alone. Here, we extend the result to droplets
smaller than the Kolmogorov–Hinze scale. We also report the droplet size distribution data
for the case C10 on a more refined grid (empty markers); a good agreement is observed
with data from the same case on the standard grid. Clearly, on the more refined grid, we
are able to capture smaller droplets; hence, the droplet size distribution extends slightly
further to smaller diameters.

Figure 3(b) shows the dependence of surfactant concentration ψ on the equivalent
droplet diameter d. For these values and error bars, the average surfactant concentration
and its standard deviation were computed at the interface of each droplet, and then
averaged over all the droplets of size d. This way, the error bars capture not the variation of
ψ between droplets, but the average variation on each droplet, which governs Marangoni
stresses. We see that the average surfactant concentration at the interface is higher than
the initial concentration in the bulk phase (ψ = 0.1), as from (2.6) it is energetically
favourable for the surfactant to assemble on the interface. We observe a trend in the
average surface tension value at the interface for increasing values of the Weber number:
as the total amount of interfacial area increases (the total number of droplets is roughly
proportional to the Weber number), the average surfactant concentration at the interface
reduces. For the surfactant parameters considered in this study, there is little dependence
of the mean surfactant concentration at the interface on the size of the droplets. The
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average surfactant concentration for all droplet sizes is about ψ ≈ 0.115, with a slightly
lower value for the smallest droplets. This results in an average reduction of the surface
tension to approximately 40 % of its clean value. We note that a surface tension reduction
of around one-half is typical of real-world surfactant-laden interfaces, such as Tween 80
and NaCl in water (Qazi et al. 2020). Error bars show the mean standard deviation of
surfactant concentration on a droplet with equivalent diameter d. The standard deviation
on the droplets has instead a mild dependence on the characteristic size of the droplet,
showing about a twofold increase between the smallest and the largest droplets (i.e. over
a ∼ 100× increase in the droplet equivalent diameter). The variation in surface tension is
approximately 15 % of the mean surfactant concentration at the interface, corresponding
to about 8 % change in surface tension on each droplet.

Next, we look at the shape of the droplets, which provides an indication of the
competition between surface tension and turbulence: a droplet in a quiescent fluid takes
a spherical shape and any deviation from this shape is to be attributed to the flow. We
evaluate the shape of the droplets using two dimensionless parameters: the aspect ratio√

I1/I3 and the sphericity d/dA.
The aspect ratio is computed as the ratio between the smallest and the largest eigenvalues

of the moment of inertia tensor, respectively I1 and I3, with I1 ≤ I2 ≤ I3. The moment of
inertia tensor is computed as

I ≡
∫

V
ρ(‖r‖2I − r ⊗ r) dV, (3.2)

where r is the vector from the droplet centre of mass to a point inside the droplet and
V is the volume of the considered droplet. The aspect ratio uses a similar definition of
the bubble deformation parameter defined in Bunner & Tryggvason (2003), although in
their original work, the bubble deformation was defined as the square root of the largest
over the smallest eigenvalue and a slightly different formulation of the moment of inertia
tensor was used. Here, we choose to define the aspect ratio as the inverse of the bubble
deformation found in Bunner & Tryggvason (2003), such that the values of the aspect ratio
are bounded between 0 (e.g. infinitely long and thin filament or sheet) and 1 (e.g. sphere or
cube). To exclude grid resolution effects when calculating aspect ratios, we consider only
droplets with a volume of more than 100 grid cells.

The sphericity is defined as the ratio of the volume-equivalent diameter over the
surface-equivalent diameter; d/dA. We use a different definition of sphericity from that
found in the literature (Wadell 1935), such that it is bounded between 0 and 1. The
surface-equivalent diameter is defined as the diameter of a sphere having the same surface
area A of the considered droplet: dA ≡ √

A/π. Sphericity is equal to unity for a sphere (the
shape with minimal surface area for a given volume) and reduces as the droplet deforms
from the spherical shape. The area A of each droplet is computed by counting the number
of computational cells crossed by the interface and projecting a face of the computational
cell onto the local normal n to the interface.

We choose these two parameters as they provide very different information, as illustrated
in figure 4(a), where we compute the aspect ratio and sphericity for three sample droplets.
The aspect ratio is very sensitive to droplet-scale deformations, for instance, stretching
along one of the axes, but is relatively unchanged by small-scale perturbations at the
interface. Conversely, the sphericity is less sensitive to large, droplet-scale deformations
but is very effective in revealing small-scale perturbations of the interface. Qualitatively,
the aspect ratio estimates the shape of a box that bounds the droplet. Meanwhile, the
sphericity measures the total area of the droplet interface. This is reflected in figure 4(a):
taking the spheroidal droplet as a reference (

√
I1/I3 ≈ 1 and d/dA ≈ 1), the ellipsoidal
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Figure 4. Mean droplet deformation at each equivalent diameter d normalized by the Kolmogorov–Hinze scale
dH . We plot two measures of deformation; (b) the aspect ratio of the droplets

√
I1/I3 and (c) the sphericity

d/dA. On panel (b) we shade the region 0.5 < d/dH < 2 where the aspect ratio is observed to decrease with
equivalent diameter. In both panels (b) and (c) we report data from the simulation performed on a fine grid,
Nf = 1000, with empty markers. Panel (a) above shows the values of deformation for (from left to right) a
spheroid, an ellipsoid and a bulgy droplet.

droplet shows a negligible change in the sphericity value and a ∼ 30 % reduction in the
aspect ratio. The bulgy droplet, being rather compact, has a value of the aspect ratio
relatively close to that of the spheroidal droplet (about 10 % difference) but a much smaller
value of sphericity (∼ 30 % smaller).

We report the aspect ratio
√

I1/I3 in figure 4(b) as a function of the droplet size
normalized by the Kolmogorov–Hinze scale. We observe that making the droplet size
dimensionless using the Kolmogorov–Hinze scale yields a collapse of the aspect ratio
for all cases onto a single curve. This suggests that even in the presence of surfactants,
Hinze’s (1955) assumptions hold, and droplet deformation is a universal function of
d/dH . We observe three different regimes for the aspect ratio, which can be distinguished
based on the value of d/dH . The aspect ratio of small droplets, up to approximatively
d = 0.5dH , is roughly constant and close to unity, indicating that the droplets are spherical
or only slightly elongated (i.e. compact shape). At this point, no information can yet
be inferred on local, small-scale deformations of the interface. Droplets smaller than
the Kolmogorov–Hinze scale are characterized by surface tension forces dominating
over turbulent fluctuations. The second regime, observed for 0.5dH � d � 2dH , is
characterized by a sharp reduction in the value of the aspect ratio (down to

√
I1/I3 ≈ 0.5,

a similar value of an elongated ellipsoid): droplets become more elongated with an overall
deformation that increases with their size. This result is coherent with the definition of the
Kolmogorov–Hinze scale as the size of the largest (on average) non-breaking droplets:
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at about the Kolmogorov–Hinze scale, droplets start to deform significantly. Statistics
on the sphericity will provide further information on the small-scale deformation within
this regime and will be discussed in the following paragraph. Lastly, in larger droplets,
d > 2dH , there is a recovery of the droplet aspect ratio: droplets partially recover from
their deformed state, with values of the aspect ratio nearing

√
I1/I3 ≈ 0.7. This result

indicates that droplets become less deformed overall, and some rotational symmetry is
restored. At first, this may be a counter-intuitive result, but sphericity will help to explain
this interesting behaviour. We include also data from the refined grid simulation (empty
markers) and we report that it closely follows the standard grid data.

We report the sphericity for all cases in figure 4(c). The droplet size is made
non-dimensional using the Kolmogorov–Hinze scale for each case. We observe that data
for all cases collapse on a single curve when scaled by the Kolmogorov–Hinze scale,
further confirming the validity of the Kolmogorov–Hinze scale as a fundamental length
scale. We observe two very distinct regimes, separated by the Kolmogorov–Hinze scale.
At scales smaller than the Kolmogorov–Hinze scale, droplets have a close-to-unity and
slightly decreasing sphericity, which sharply decreases above the Kolmogorov–Hinze
scale. Note that, for the smallest droplets, we have values of sphericity larger than one;
we would like to remark that these values are not admissible and are due to inaccuracies
in the computation of interface normals and area when the droplets are only a few grid
cells in volume. The sphericity for droplets smaller than the Kolmogorov–Hinze scale
is close to unity and decreases for increasing droplet sizes; this information, coupled
with the results from the droplet aspect ratio, indicates that droplets much smaller than
Kolmogorov–Hinze scale have a spheroidal shape with limited elongation and almost no
small-scale perturbations of the interface. Kolmogorov–Hinze-scale-sized droplets (but
still smaller than the Kolmogorov–Hinze scale) show a substantial reduction in the aspect
ratio and only a minor decrease in the sphericity: the shape of these droplets is similar to
an ellipsoid, as the droplet is stretched (low aspect ratio) but the sphericity is still close
to unity (indicating the absence of relevant perturbations of the interface). Conversely,
droplets slightly larger than the Kolmogorov–Hinze scale show a reduced aspect ratio and
sphericity: these droplets are not only strongly elongated (low aspect ratio), but small-scale
perturbations of the interfaces (small humps and dimples) start forming (low sphericity).
The trend in sphericity is kept also for droplets much larger than the Kolmogorov–Hinze
scale; these droplets show a recovery of the aspect ratio, indicating either the formation of
bulgy droplets (see figure 4a) or of convoluted filaments. Both of these shapes are coherent
with the two deformation parameters we investigated, i.e. relatively low aspect ratio and
low sphericity. Data from the refined grid simulation (empty markers) collapses well onto
the standard grid data, confirming grid independence of the results. Due to the higher grid
resolution, the fine grid case is able to capture smaller droplets compared with the standard
case, however, the general trend is kept.

To distinguish among the two possible shapes, bulgy droplets versus convoluted
filaments, we compute the average radius of curvature R at the interface of each droplet,
reported in figure 5. To compute the radius of curvature R, we first compute the mean
curvature κ using the divergence of the normal n to the interface:

κ = ∇ · n. (3.3)

We average the curvature κ over the droplet interface and define the radius of curvature as
the inverse of the mean curvature, R ≡ 1/κ . Note that, in (3.3) we do not use a minus
sign in the definition of the curvature, as we have an outward-pointing normal n and
we choose to assign positive values of curvature to convex surfaces, i.e. the curvature
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Morphology of clean and surfactant-laden droplets
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Figure 5. The mean radius of curvature R of the surfaces of droplets binned by their diameter d. The dashed
line shows R = d/4, the radius of curvature of a sphere with diameter d; data from the simulation performed on
a fine grid, Nf = 1000, are reported with empty markers. Inset: the same values, plotted in terms of curvature
κ = 1/R. Error bars show the standard deviation of curvature on the droplets.

is positive if the surface curves away from the normal. Also, the normal is ill-defined for
small droplets, so we only calculate the mean curvature of droplets with a volume greater
than 10 computational cells. For a surface in three dimensions, such as our interface, the
mean curvature is equal to the sum of the two principal curvatures, κ = κ1 + κ2. For a
sphere, both principal curvatures are equal to the inverse of the sphere’s radius; hence, the
mean curvature is twice this value and the radius of curvature is R = d/4. Figure 5 shows
that droplets smaller than the Kolmogorov–Hinze scale follow this scaling (grey dashed
line). This result further confirms the rather regular shape (spheroid- or ellipsoid-like) of
the small droplets. Above the Kolmogorov–Hinze scale instead, we observe a departure
from d/4: the radius of curvature becomes constant, approximately equal to half the
Kolmogorov–Hinze scale, and independent of drop size. The good agreement obtained
with data from the fine grid simulation (empty markers) indicates that the grid resolution
is more than sufficient to capture the local shape of the interface.

To understand this behaviour, we consider a cylinder of radius dH/2. On the curved
surface of the cylinder, the two principal curvatures are κ1 = 0 and κ2 = 2/dH . Neglecting
the two flat ends, the mean curvature of the cylinder is thus κ = 2/dH , i.e. the radius of
curvature of the cylinder is equal to half the Kolmogorov–Hinze scale, and is independent
of its length. This result, combined with the information obtained from the deformation
parameters in figure 4, shows that, above the Kolmogorov–Hinze scale droplets take the
shape of filaments with a diameter equal to the Kolmogorov–Hinze scale.

The inset of figure 5 shows the mean curvature κ of the droplets as a function of their
equivalent diameter d. Error bars indicate the standard deviation of the curvature, which
was calculated at the interface of each droplet and averaged over the ensemble of droplets
of similar size d. The standard deviation of the curvature of an interface is a measure of its
corrugation, and can be used to quantify Plateau–Rayleigh instabilities that lead to droplet
breakup (Rayleigh 1878; Villermaux & Bossa 2009; Kooij et al. 2018). From the inset of
figure 5, we see that droplets of all sizes show corrugation, and the standard deviation of
κ is comparable to its average value. Above the Kolmogorov–Hinze scale, we report an
increased probability of negative values of the mean curvature, indicative of dimples and
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Figure 6. Dependence of droplets’ surface area A on their equivalent diameter d. The dashed line shows the
surface area of a sphere with diameter d and the solid line shows the surface area of a filament with diameter
dH . Data from the simulation performed on a fine grid, Nf = 1000, are reported with empty markers.

saddle points in the surface of the droplet, which, for example, can be due to impinging
jets or large Plateau–Rayleigh instabilities on the interface.

To test our hypotheses on the droplet shapes above and below the Kolmogorov–Hinze
scale, we consider their surface area. Figure 6 shows the mean surface area of the
droplets at each equivalent diameter d. As we previously noted, the droplets smaller
than the Kolmogorov–Hinze scale are almost spherical in shape, and hence, we see
that their surface area grows quadratically with their characteristic size. Above the
Kolmogorov–Hinze scale, the droplet surface areas instead grow as the cube of their sizes.
As a first approximation, we can think of these droplets as long cylinders with the same
diameter dH and different lengths l. Ignoring the two end faces, the surface area of such
a cylinder is Af = πdHl and the volume is Vf = πd2

Hl/4. Substituting the volume for the
equivalent diameter (3.1) we get an expression for the length:

l = 2d3

3d2
H
. (3.4)

Plugging this into the formula for the cylinder surface area, we obtain Af = 2πd3/(3dH),
showing that a filament with variable length l and constant diameter dH has an interfacial
surface area that grows as the cube of its volume-equivalent diameter d. The interfacial
surface area of the droplets above the Kolmogorov–Hinze scale closely follows Af , as
reported in figure 6. The two scalings are also confirmed by simulation on a more refined
grid (empty markers).

From our observations of curvature and surface area, it appears that droplets above the
Kolmogorov–Hinze scale are filamentous in shape. However, their aspect ratio shows the
filaments cannot be straight, since this would produce a monotonic reduction in

√
I1/I3

with d, which we do not see in figure 4(a). Hence, a natural question is: do the filaments
form loops, or are they simply connected? figure 7 shows two droplets from case S20,
we see that both droplets are made up of convoluted filaments, and in many places, the
filaments do in fact form loops. These complex shapes are typical of large and deformable
viscous droplets in both liquid–liquid mixtures (Collins & Knudsen 1970; Andersson &
Andersson 2006b; Li et al. 2017; Xue & Katz 2019) and gas–liquid mixtures (Hinze 1955;
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Morphology of clean and surfactant-laden droplets

Villermaux 2007; Blenkinsopp & Chaplin 2010; Dumouchel & Blaisot 2014; Jain et al.
2015; Kooij et al. 2018; Chéron et al. 2022; Qi et al. 2022; Kant et al. 2023). Small
droplets (smaller than the Kolmogorov–Hinze scale) have instead a more spherical shape,
as indicated in figure 4. To answer the question quantitatively, we measure the topology of
the interface of each droplet using its Euler characteristic χ , which obeys the equation

1 − χ/2 = h − v, (3.5)

where h is the number of handles and v is the number of voids in the drop (see Appendix A
for a derivation of this equation). In the insets of figure 8(a) we show renders of example
droplets with one and two handles. Analogously to the handle on a teacup, a handle is
a loop of the dispersed phase that extends through the carrier phase. The renders in the
insets of figure 8(b) show example droplets with one and two voids. A void is a region of
the carrier phase entirely enclosed by the dispersed phase. Note that similarly to droplet
breakup and coalescence, a change in the number of handles or voids necessitates a
merging or splitting of interfaces. Using a method similar to Mendoza et al.’s (2006)
characterization of dendritic metal samples, we measure the Euler characteristic using
simplicial homology, that is, by dividing the interface into simple polygons and counting
the number of nodes n, edges e and faces f on the interface of each droplet. The Euler
characteristic of the interface is then given by the Poincaré formula (Massey 1997, p. 26)

χ = n − e + f . (3.6)

Our volume-of-fluid field φ is defined on a cubic grid and we can define the interface as
the boundaries between cells where φ − 0.5 changes sign. Hence, our interface is already
divided into square faces and χ can be calculated by counting these faces and their edges
and nodes. We also count the number of voids v on each droplet. Voids are counted by
rerunning the flood fill algorithm, looking for contiguous cells where φ < 0.5; to do so,
we use a stack-based 26-way flood fill, which is an extension to three dimensions of the
two-dimensional eight-way flood fill (Newman & Sproull 1979). Knowing χ and v for
each drop, we can use (3.5) to obtain the number of handles h.

Figure 8(a) shows how the mean number of handles per droplet depends on the
droplet size. We see that the largest droplets are very self-connected, having of the
order of 102 handles. Furthermore, the number of handles in each case collapses to a
single line when the equivalent diameter is normalized by the Kolmogorov–Hinze scale
dH . This universality occurs because surface tension is constantly acting to destroy the
handles, so the higher the surface tension, the shorter the lifetime of the handle. The
fit h = 0.04(d/dH)

3 gives the number of handles as a function of the droplet volume.
Using our earlier result that the large droplets are filaments with lengths given by (3.4), we
can convert this expression into the number of handles per unit length of the filament:
h/l = 0.06/dH . Figure 8(b) shows us, on the other hand, that the number of voids is
independent of surface tension, which is reasonable as a void inside a droplet experiences
no net surface tension force. The number of voids simply scales with the volume of the
droplet. Again we can obtain a fit, v = 500(d/L)3; substituting the equivalent diameter
for the droplet volume V (3.1) we find there are roughly v/V ≈ 950/L3 voids per unit
droplet volume in all cases. We suspect the void concentration depends on the droplet
coalescence rate and turbulence intensity (Reλ). However, we leave a proper investigation
of this dependence to future works.

Data from the fine grid simulation is reported with empty markers for both handles and
voids, and a good agreement with data computed on the standard grid is observed. When
counting the number of voids in the fine grid case, we excluded voids with a volume
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dH

Figure 7. Visualization of two droplets extracted from case S20. The left droplet has 56 handles and six voids.
The right droplet has two handles and zero voids. The length of the black bar is the Kolmogorov–Hinze scale.
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Figure 8. (a) Number of handles h per droplet. The grey line shows the fit h = 0.04(d/dH)
3. Renders show

example droplets with one and two handles (χ = 0 and χ = −2, respectively). (b) Number of voids v per
droplet. The grey line shows the fit v = 500(d/L)3. We mark the x axis to show the Kolmogorov–Hinze scale
of each case. We report data from the simulation performed on a fine grid, Nf = 1000, using empty markers.
Renders show example droplets with one and two voids (χ = 4 and χ = 6, respectively). The renders are
obtained from droplets we artificially generated for the sole purpose of demonstrating handles and voids.

smaller than eight computational cells, (i.e. one computational cell on the standard grid).
This method allows for a fair comparison of the number of voids in the fine grid and the
standard grid cases.

3.2. Flow statistics
We characterize the effects induced by the presence of clean and surfactant-laden
interfaces on the local flow statistics using the flow topology parameter (Perry & Chong
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Morphology of clean and surfactant-laden droplets
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Figure 9. Flow topology parameter sampled in different regions of the domain: inside the droplets (solid
line), in the carrier phase (dashed line) and at the interface (dotted line). The single-phase case is reported for
reference (dash-dotted line). Each panel refers to an approximate value of the effective Weber: (a) Wee ≈ 10
(cases C10 and S05), (b) Wee ≈ 20 (cases C20 and S10) and (c) Wee ≈ 40 (cases C40 and S20).

1987), which compares the local flow to three different base flows: purely rotational, pure
shear and purely extensional flow. The flow topology parameter Q is a combination of
the rate-of-strain tensor S ≡ (∇u + ∇uT)/2 and the rate-of-rotation tensor Ω ≡ (∇u −
∇uT)/2, where ∇u is the velocity gradient tensor. The quantities S2 and Ω2 are defined
as S2 = S : S and Ω2 = Ω : Ω , where ‘:’ identifies the dyadic (double-dot) product. The
flow topology parameter categorizes the local flow based on three types of base flow:
purely rotational flow (S2 = 0 andΩ2 /= 0), purely extensional flow (S2 /= 0 andΩ2 = 0),
and pure shear (S2 = Ω2).

Q = S2 −Ω2

S2 +Ω2 =

⎧⎪⎨
⎪⎩

−1 purely rotational,
0 pure shear,
+1 purely extensional.

(3.7)

We compare clean and surfactant-laden cases at similar effective Weber numbers in
figure 9, together with the single-phase case for reference. The flow topology parameter is
computed in three distinct regions: inside the droplets (φ > 0.5), in the carrier phase (φ <
0.5) and at the interface. This way, we can separate the contribution from the different
regions of the flow (Dodd & Jofre 2019; Rosti et al. 2019a; Soligo et al. 2020b), and
investigate the effect of Marangoni stresses at the interface for the surfactant-laden cases
and of flow confinement on the flowing condition inside the droplets and at the interface.

We first consider the flow topology parameter in the carrier phase. The relatively low
volume fraction of the dispersed phase reduces the overall impact of the presence of the
interface on the outer flow. The flow topology parameter for all clean and surfactant-laden
cases well collapses onto the single-phase line, indicating indeed that the presence of
a deformable interface and of Marangoni stresses does not introduce any significant
modification of the outer flow at the relatively low volume fraction considered. A similar
result was reported by Rosti et al. (2019a) for clean droplets and for volume fractions of
the dispersed phase up to 30 %. In general, the flow topology shows a predominance of a
combination of pure shear and extensional flow, with a limited rotational contribution.

The flow topology computed inside the droplets highlights the effect of flow
confinement. Surface tension has competing effects: while on the one hand, a large value
of surface tension is more effective in decoupling internal and external flow, a low value
of surface tension produces many small-size droplets that increase the flow-confinement
effect. We observe a reduction in extensional flow and an increase in pure shear for
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increasing values of the Weber number, which has been attributed to the confinement
effect of small droplets (Soligo et al. 2020b). We do not report changes in the rotational
component, which can be attributed to the lack of large-scale coalescence events (Rosti
et al. 2019a). When comparing cases at similar effective Weber numbers, we observe that
the addition of surfactant has a similar effect to a reduction in the surface tension value:
a reduction in the extensional flow and an increase in pure shear. The difference in the
flow topology between clean and surfactant-free droplets reduces as the effective Weber
number increases.

It is interesting to note that, at the interface, the addition of surfactant instead has an
opposite effect: the presence of surfactant, especially at low values of the effective Weber
number, leads to an increase of extensional flow and a decrease in rotational flow – pure
shear is unchanged. This difference results from the action of Marangoni stresses, and is
indeed more apparent at low values of the effective Weber number, i.e. at high values of
surface tension. We observe a shift towards extensional flow for increasing values of the
effective Weber number, confirming previous findings (Soligo et al. 2020b).

We now focus on flow statistics at the interface to better understand the local
surface tension effects induced by clean and surfactant-laden interfaces. We compute
the alignment of vorticity at the interface of the droplets: to quantify the direction of
vorticity, we use the cosine of the angle θ ; see the sketch in figure 10(a). This quantity
is found by taking the scalar product between the interface normal n (outward-pointing,
unit-length normal) and the unit-length vorticity vector, ω/‖ω‖. The probability density
function (PDF) of the vorticity-interface alignment is reported in figure 10(a) for all the
cases we simulated. Similarly to what was found by Mukherjee et al. (2019), the vorticity
is mostly orthogonal to the interface normal. At very large values of the surface tension,
i.e. We → 0, the interface between the droplet and the carrier phases acts similarly to a
slip wall: the high surface tension makes the interface close to undeformable but imposes
no condition on the tangential component of the flow. We thus expect that at high values
of surface tension the vorticity vector is tangential to the interface, i.e. n·ω/‖ω‖ = 0. As
the interface becomes more deformable (corresponding to a higher Weber number), this
condition is relaxed and the PDF widens. We observe that the PDF remains symmetric
for all cases; this is an expected result as positive and negative values of the alignment
correspond to flow structures at the interface rotating in the anti-clockwise and clockwise
directions, respectively, and the two are equally probable. The alignment of vorticity at the
interface also highlights the effect of surfactant and, in particular, of Marangoni stresses
tangential to the interface: the cases at a similar effective Weber number (namely Wee ≈ 10
C10 and S05; Wee ≈ 20 C20 and S10; Wee ≈ 40 C40 and S20) show notably different
distributions, suggesting that in terms of the local flow around the droplets, the effect
of surfactant cannot be approximated as only an average surface tension reduction. We
indeed note a decoupling among the various cases at approximately the same effective
Weber number, with cases C40 (Wee = 39.3) and S10 (Wee = 25.8) showing the very
same distribution in vorticity alignment. The presence of Marangoni stresses promotes the
formation of flows tangential to the interface, whose gradients contribute to the vorticity
component normal to the interface.

The alignment of the fluid velocity at the interface further corroborates the role of
Marangoni stresses in modifying the local flow velocity at the interface; figure 10(b)
shows the PDF of the scalar product between the unit-length velocity vector and the
normal to the interface. The surfactant-laden cases show a more peaked distribution at
n·u/‖u‖ ≈ 0.1, corresponding to a local fluid velocity almost tangential to the interface,
with a small outward (i.e. from the droplet phase towards the carrier phase) component.
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Morphology of clean and surfactant-laden droplets
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Figure 10. Alignment between unit-length normal to the interface n and (a) vorticity at the interface,
(b) velocity at the interface. The inset in panel (a) shows how the alignment has been computed: for a generic
vector a, we define the alignment as n·a/‖a‖, which is equal to the cosine of the angle θ in between the two
vectors.

This velocity alignment is clearer for the cases at low Weber number: the magnitude
of Marangoni stresses directly depends on the local surface tension, hence, the cases at
high Weber number are characterized by weaker Marangoni stresses. Indeed, the case S20
shows similar velocity alignment to the surfactant-free cases, being that the Marangoni
stresses are weaker compared with the other surfactant-laden cases. For the clean cases,
we observe two separate peaks in the distribution, one at n·u/‖u‖ = −1 and one at
n·u/‖u‖ ≈ 0.3. The former corresponds to an inward flow perpendicular to the interface
and the latter to a fluid velocity mainly tangential to the interface, although with a larger
normal component compared with the surfactant-laden cases. We attribute this reduction
in the probability of having flow tangential to the interface to the absence of Marangoni
stresses for the surfactant-free cases. A similar distribution is also achieved by case S20,
which is characterized by weak Marangoni stresses (due to the low reference surface
tension value), further highlighting the role of Marangoni stresses.

So far we have only considered the angle between the flow velocity at the interface and
the interface itself; we now proceed to analyse the magnitude of the flow velocity at the
interface. The flow velocity is decomposed into two components, a normal component
un ≡ u·n aligned with the outward-pointing normal to the interface n and a tangential
component ut ≡ ‖u − unn‖. The sign of the normal component is important; the interface
is advected with the flow so positive un occurs in places where the interface moves outward
in the direction of the carrier phase, and negative un occurs in places where the interface
moves inward in the direction of the dispersed phase. Due to volume conservation of the
phases, un has zero mean. On the other hand, the choice of the tangential direction in the
plane is arbitrary: it is taken as the remainder of the subtraction of the normal component
from the total velocity. For this reason, we have only positive values of the tangential
velocity ut.

In figure 11(a) the PDFs of the normal component of the velocity un show peaks at
relatively low positive un and are negatively skewed in all cases, i.e. extreme negative
values (inward fluid velocity) are more probable than extreme positive values (outward
fluid velocity). To elucidate the cause of the skewed distributions, we also show histograms
of the logarithm of the dissipation ε for case C40. The tails of these histograms can be
attributed to extreme events and, hence, to intermittency in the flow (Kaneda & Morishita
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Figure 11. (a) Normal component of the flow velocity at the interface un and (b) tangential component of the
flow velocity at the interface ut. Two-colour lines show the difference between the PDF of surfactant-laden and
clean pairs of cases with similar Wee (these data are magnified by a factor two for better reading). The inset in
panel (a) shows histograms of the logarithm of the dissipation ε inside (dashed line) and outside (solid line)
the droplets for case C40, where mε and sε are the mean and standard deviation of ln ε, respectively. The inset
in panel (b) shows the decomposition of the flow velocity along a direction normal (n) and tangential (t) to the
interface.

2012). We see that the flow outside the droplets gives slightly wider tails and, hence,
has higher intermittency than that inside the droplets (also seen by Crialesi-Esposito
et al. (2023) for fluid velocity differences inside and outside droplets). Therefore, we
attribute the increased likelihood of extreme inward velocities at the interface to increased
intermittency of the flow in the bulk phase. Returning to the main panel of figure 11(a),
we note that cases with a higher Wee show a wider distribution of un/u′. A higher
effective Weber number implies a more deformable interface with a lesser damping effect
on the normal velocity: extreme (positive and negative) events become more probable
as surface tension is reduced. The difference among surfactant-laden and clean cases at
similar effective Weber numbers is reported with two-colour lines (rescaled by a factor of
two for improved readability). We observe that the surfactant suppresses extreme events,
especially at low values of the Weber number (high surface tension), when Marangoni
stresses are greatest in magnitude. A similar turbulence suppression effect was seen by
Shen, Yue & Triantafyllou (2004) for surfactants in free shear flows, and was attributed to
the elasticity of the surfactant-laden interface.

When considering the tangential component, we observe a reversal of the trend:
surfactant, via Marangoni stresses, increases the probability of flow tangential to the
interface. Two-colour lines show the difference between surfactant-laden and clean cases
at similar Wee, with the data rescaled by a factor of two for ease of reading. It is clear
that the presence of surfactant increases the probability of finding tangential velocities in
the range u′ � ut � 2u′. All surfactant-laden cases have approximatively a similar value
of the peak of the distribution, which is slightly larger than that of the surfactant-free
cases, indicating that surfactant-laden cases have a higher probability of large values of
the tangential velocity. Interestingly, as the Weber number increases, the peak shifts to
slightly higher values, and the likelihood of large tangential velocity increases as well, as
shown by the two-colour lines. This result suggests that while increasing the flow velocity
tangential to the interface and suppressing large normal components, Marangoni stresses
also have a modulating effect on the tangential component.
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Morphology of clean and surfactant-laden droplets

4. Conclusions

In this study we perform direct numerical simulations of surfactant-laden droplets in
homogeneous isotropic turbulence. The interfacial dynamics is solved using an MTHINC
volume-of-fluid method coupled with a phase-field-based approach to simulate surfactant
dynamics. By examining droplet morphology and local flow statistics, we can shed light
on the interfacial characteristics and dynamics of these complex systems.

The Kolmogorov–Hinze length scale is a fundamental quantity in multiphase
flows laden with clean droplets or bubbles. Our numerical results confirm that the
Kolmogorov–Hinze framework can be extended to surfactant-laden droplets by using
an averaged surface tension value, thus accounting for the presence of surfactant. In
the configuration we adopted in this study, the role of Marangoni stresses is minor,
thus, the effect of surfactant can be approximated as a simple average surface tension
reduction. We indeed observe a collapse of most statistics when plotted as a function of
d/dH . We compute the droplet size distribution for all clean and surfactant-laden cases
and verify that (i) the Kolmogorov–Hinze scale effectively separates the breakage- and
coalescence-dominated regimes, and (ii) the power-law scaling for these two regimes
can be applied to surfactant-laden droplets. The combined results on the deformation
of the droplets, i.e. aspect ratio and sphericity, prove that droplets smaller than the
Kolmogorov–Hinze scale have a relatively compact and regular shape (spheroid- or
ellipsoid-like shapes), whereas droplets larger than the Kolmogorov–Hinze scale have a
coiled, filamentous shape, supporting previous observations of filamentous water drops
(Villermaux & Bossa 2009; Jackiw & Ashgriz 2021). The filamentous droplets are found
to have an average diameter that is independent of the overall droplet size d and is equal to
the Kolmogorov–Hinze scale, further evidencing the relevance of this length scale.

The very different shapes of large and small droplets have direct implications on
the total area of the interface, which is a crucial parameter in determining the overall
exchange of species, momentum and energy among the carrier and the dispersed phase.
We report the existence of two regimes, separated by the Kolmogorov–Hinze scale: the
area of droplets smaller than the Kolmogorov–Hinze scale is proportional to the square
of the characteristic size of the droplet, whereas it is proportional to the cube of the
characteristic size for droplets larger than the Kolmogorov–Hinze scale. The two different
scalings can be directly traced back to the shape of the droplets, spheroid-like below
the Kolmogorov–Hinze scale and filamentous above the Kolmogorov–Hinze scale. The
large and filamentous droplets are coiled up, as indicated by their aspect ratio. Thus, we
investigate their self-connectedness, using the Euler characteristic to count the number of
handles and voids on each droplet. To the best of our knowledge, this is the first time the
number of handles and voids on a droplet has been measured. We find that the number of
handles depends directly on the size of the droplet and its surface tension, as data from
all cases collapse on a single curve when normalized by the Kolmogorov–Hinze scale; we
also provide a scaling for the linear density of handles, h/l = 0.06/dH . Conversely, the
number of voids depends on the droplet size alone. Our interpretation is that the restoring
action of surface tension reduces the lifetime of a handle, whereas the dynamics of a
void are unaffected by surface tension. Going further, the Poincaré-Hopf theorem relates
the Euler characteristic χ of an interface to the number of topological defects in any
tangent vector field (e.g. fluid velocity, alignment of molecules, stresses) at the interface
(Maroudas-Sacks et al. 2021) – a well-known example of this for χ = 2 is the hairy ball
theorem. A future investigation may count topological defects on the surface of droplets
and relate the number to their ability to resist breakup.
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Results from the morphology of the droplets highlight the validity of the
Kolmogorov–Hinze scale for both clean and surfactant-laden flows: a rescaled value of
the surface tension, accounting for the average surface tension reduction induced by the
surfactant, can be effectively used to define the Kolmogorov–Hinze scale. This finding
suggests that the effect of surfactant on droplets in homogeneous isotropic turbulence can
be mainly summarized as a reduction in surface tension. The lack of a large-scale and
time-persisting velocity difference among the carrier and dispersed phase, as found in
up-flow and down-flow configurations (Takagi et al. 2008; Lu et al. 2017), prevents the
formation of significant, large-scale Marangoni stresses at the interface. Hence, in our
simulation set-up, Marangoni stresses play a minor, local role, with negligible effects
on the statistics of the droplets. Local flow statistics better show the effect of these
tangential stresses: Marangoni stresses modulate the flow at the interface by reducing
the velocity component normal to the interface and increasing the tangential component.
When computing the flow topology parameter at the interface, we find that Marangoni
stresses increase the elongational component and reduce rotational flow at the interface.
This result is coherent with the action of Marangoni stresses generating an elongational
type of flow with sources corresponding to low-surface-tension regions and sinks to
high-surface-tension regions. Inside the droplets, Marangoni stresses reduce elongational
flow and increase the pure shear contribution.

In conclusion, we find that a statistically homogeneous and isotropic flow allows for
a simplified treatment of the surfactant effects. Results from Hinze’s (1955) theory can
thus be applied to surfactant-laden flows, by considering the average surface tension
reduction operated by the surfactant. For both clean and surfactant-laden flows, the
Kolmogorov–Hinze scale separates two regimes characterized by very different scaling
for the surface area of the droplets: a significant increase in the surface area is observed
for droplets larger than the Kolmogorov–Hinze scale. This latter result has important
implications for environmental and industrial multiphase flows, where the interface serves
as a conduit for all species, momentum and energy transfers among the phases.
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Appendix A. Euler characteristic of a droplet interface

Here we use concepts from algebraic topology to derive (3.5), which relates the Euler
characteristic of a droplet interface to the number of voids and handles it contains. The
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Morphology of clean and surfactant-laden droplets

Euler characteristic and genus are well defined for a single surface; however, as seen in the
image in figure 8(b), our droplets can have many distinct surfaces. For a general droplet
with a number of voids v, it has an outer surface with Euler characteristic χ0, and the
voids create v distinct inner surfaces with Euler characteristics χ1, χ2, . . . χv . We define
the Euler characteristic of the droplet’s interface as the sum of the Euler characteristics of
all the surfaces,

χ =
v∑

i=0

χi. (A1)

Both the inner and outer surfaces of the droplet can have handles. For any distinct
orientable surface, the number of handles hi is its genus, and the genus is related to the
Euler characteristic by χi = 2 − 2hi (Massey 1997, p. 30). Hence, (A1) can be written and
rearranged to

χ =
v∑

i=0

(2 − 2hi) = 2(1 + v)−
v∑

i=0

2hi. (A2)

The number of handles on the drop is the sum of the handles on all surfaces of the droplet,
i.e. h = ∑v

i=0 hi, so we can write

χ = 2 + 2v − 2h. (A3)

This can be easily rearranged to obtain (3.5).

Appendix B. Validation of the surfactant model

We report in this appendix the validation tests of the proposed numerical method. Two
benchmark tests are presented and compared against existing theories, experiments and
simulations.

We verify at first the adsorption dynamics of the surfactant at the interface: we start from
a uniform surfactant concentration, equal to the surfactant concentration in the bulk ψb,
and let the surfactant adsorb onto the interface (located at x = L/2 in figure 12a). Initially,
the system is out of equilibrium and surfactant diffuses towards the interface to restore
the equilibrium; at equilibrium, the chemical potential is equal everywhere. We can thus
equate the chemical potential in the bulk (φ̂ = ±1, surfactant concentration ψb) and at the
interface (φ̂ = 0, surfactant concentration ψ0) to obtain the so-called Langmuir isotherms
(Engblom et al. 2013). For given values of the parameters of the chemical potential, α, β
and γ , the Langmuir isotherm relates the surfactant concentration at the interface ψ0 to
that in the bulk ψb, in equilibrium conditions

ψ0 = ψb

ψb + (1 − ψb) e−(β+γ )/2α . (B1)

Figure 12(a) shows the set-up we use to test our code against the Langmuir isotherm
benchmark: a flat interface is located at x = L/2, and surfactant is initially uniformly
distributed with a concentration equal to ψb. The flow is initially at rest and, due to
the absence of any forcing, stays at rest throughout the entire simulation; similarly, the
interface does not move from its initial position. At the boundaries x = 0 and x = L,
we impose a far-field value of surfactant, ψ = ψb, thus allowing surfactant to enter
the system. In the y and z directions, we impose periodic boundary conditions. This
benchmark is, in principle, a one-dimensional test (x direction). However, we perform
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Figure 12. (a) Adsorption of surfactant onto an interface at x = L/2. The right-hand axis shows the smoothed
colour function φ̂ (in red), which has a smoothing width 3Δ. The left-hand axis shows the surfactant
concentration (in blue) at four time instants during the simulation. The bulk surfactant concentration is
ψb = 0.05 and the energy cost of surfactant in the bulk is γ = 11.1α. (b) The equilibrium interfacial surfactant
concentration ψ0 for a range of ψb and γ . Lines show Langmuir isotherms, given by (B1), and markers show
the results of our simulations. The value of γ is represented by shading from light blue to dark blue.

three-dimensional numerical simulations in order to use the very same solver described
in § 2; all variables are uniform in the y and z directions. We resolve the flow and
volume-of-fluid equations on a Nx × Ny × Nz = 100 × 4 × 4 computational grid, and use
a more refined grid for the surfactant transport equations, 500 × 4 × 4. The smoothing
width of the interface is 3Δ. We use β/α = 0.741 and explore a range of values for the
energy cost in the bulk γ /α = {0.0741, 0.741, 3.70, 7.41, 11.1, 14.8}. Figure 12(b) shows
the simulated interfacial surfactant concentrations ψ0 once they had reached equilibrium
for various values ofψb. The values obtained from our numerical simulations fall on top of
the corresponding Langmuir isotherms, proving that the implemented numerical method
can correctly capture the surfactant dynamics.

The second benchmark aims to verify the surfactant transport on a moving interface and
the computation of surface tension forces by measuring the deformation of a droplet in
shear flow. Taylor (1934) quantified the deformation of a droplet in a shear flow using the
deformation parameter

D ≡ L − B
L + B

, (B2)

where L and B are the droplet’s largest and smallest principal diameters, respectively.
Figure 13(a) shows the simulation set-up that we use to reproduce Taylor’s experiment.
The effective Capillary number Cae ≡ aUμ/h〈σ 〉 describes the ratio of viscous forces
to surface tension forces in the system, where h is the domain half-height, a = 0.4h
is the initial radius of the droplet, ±U is the fluid velocity of the top and bottom
walls respectively, μ is the dynamic viscosity, which is the same for the bulk and
droplet phases, and 〈σ 〉 is the (average) surface tension at the droplet interface. As was
previously demonstrated by Soligo et al. (2020a), there are negligible differences between
the two-dimensional and three-dimensional cases in the limit of small Reynolds and
Capillary numbers, as those considered here. Hence, we chose to perform two-dimensional
numerical simulations to reduce the computational cost of the benchmark simulations. We
select a computational grid with Nx × Ny × Nz = 600 × 200 × 4 points for the flow and
volume of fluid variables, and we use a twice more refined grid to discretize the surfactant
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Figure 13. Deformation of droplets in shear flows. (a) The simulated 2-D domain (partially shown here) with
velocity boundary conditions u = U at y = 2h, u = −U at y = 0, and periodic boundary conditions at x = 0
and x = 6h. We show the location of the droplet interface for a clean and surfactant-laden case. (b) Dependence
of the steady-state deformation parameter D on the effective Capillary number Cae. Our simulation results are
shown with solid markers and values from the literature are shown with empty markers. Clean droplets are
marked in red and surfactant-laden droplets are marked in blue. The solid line is the analytical relation from
(Taylor 1934) with the confinement correction proposed by Shapira & Haber (1990).

transport equation. As we use the same three-dimensional solver introduced in § 2, we
have to use four grid points in the z direction; however, all variables are uniform in the z
direction.

We run a number of simulations with various values of Cae and three values of the
initial surfactant concentration in the bulk phase ψb ∈ {0, 0.01, 0.02}, where ψb = 0 is
the clean droplet case. In all cases, the Reynolds number of the flow Re ≡ ρUh/μ is
Re = 0.1. The droplets are initially circular and deform in the shearing flow. Figure 13(b)
shows our measured values of the deformation parameter D once they had reached a steady
state. We compare our results (solid markers) with two-dimensional droplets simulated
using the boundary integral method (Rallison 1981), experiments of three-dimensional
droplets (Guido & Simeone 1998), three-dimensional droplets simulated using the
volume-of-fluid method (Li, Renardy & Renardy 2000), three-dimensional droplets
simulated using the boundary integral method with insoluble surfactants (Bazhlekov et al.
2006), three-dimensional droplets simulated using dissipative particle dynamics (Pan,
Phan-Thien & Khoo 2014) and surfactant-laden droplets simulated using a phase-field
method (Soligo et al. 2020a). Our results are in good agreement with all of the above
and also closely follow the analytical result from Taylor (1934), with the confinement
correction proposed by Shapira & Haber (1990), i.e. for droplets and carrier fluid having
the same viscosity, the Taylor deformation parameter is equal to

D = 35
32

Cae

[
1 + CSH

3.5
2

( a
2h

)3
]
, (B3)

where CSH = 5.6996 is a numerical coefficient accounting for the confinement due to the
top and bottom boundaries (Shapira & Haber 1990).

In this appendix we have shown that the proposed numerical method can accurately
simulate the transport of surfactant over moving and deforming interfaces, as well as the
action of surfactant on surface tension.
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