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ON THE FUNDAMENTAL GROUP OF AN ALMOST-ACYCLIC
2-COMPLEX

by JAMES HOWIE
(Received 15th October 1979)

A 2-complex K is called almost-acyclic if Hy(K)=0 and H,(K) is torsion-free. This
class of complexes was introduced in a previous paper (2), and applied to a problem of
J. H. C. Whitehead concerning aspherical 2-complexes. In this note, the methods
developed in (2) are used to study the finitely-generated subgroups of the fundamental
group of an almost-acyclic 2-complex.

Now a group can occur as the fundamental group of a finite almost-acyclic 2-complex
if and only if it is an #{~group in the sense of Strebel (8, 9). Such groups have also been
studied by Magnus (5) and by Stammbach (7). The class 4 contains all knot-like groups
in the sense of Rapaport (6), in particular all knot groups.

We denote the class of all groups which occur as the fundamental groups of
almost-acyclic 2-complexes by . From our point of view, & is a more convenient
object of study than the subclass #, because the methods used involve the passage from
finite to infinite complexes via coverings. In (8) and (9), Strebel used homological
methods to study a larger class € of groups. The condition defining & may be thought
of as a topological analogue of the homological condition used to define €, and indeed
X is a subclass of €. It seems possible that the results of this paper extend to ¥4, but the
combinatorial methods used here apply only to N.

The following is our main result.

Theorem. Suppose He N, and G is a finitely-generated subgroup of H. Then there is
a finitely-generated subgroup G, of H such that G < G,, G$® is free abelian, and the
inclusion-induced map G®® — G$® has finite cokernel.

Here G* denotes the commutator quotient group G/[G, G].

Note that the rank of the free abelian group G$* can be no greater than the
torsion-free rank of G. In particular, if G** is finite, then G, is perfect. Hence this
result generalises Theorem B of (2).

A group is locally indicable if every non-trivial finitely-generated subgroup has
infinite abelianisation. Such groups are of interest in connection with the problem of
the existence of zero-divisors or non-trivial units in group rings (1). A consequence of
the above result is that a group in & is locaily indicable precisely if it has no
(non-trivial) finitely-generated perfect subgroups.

This work was done at the Forschungsinstitut fiir Mathematik der ETH, Ziirich, and
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Royal Society of London. I am grateful to the referee for several useful suggestions.
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1. Preliminaries

We first recall some definitions from (2).

Definition. A 2-complex K is almost-acyclic if H,(K)=0 and H,(K) is torsion-
free.

Definition. A cellular map f: K— L between CW-complexes is combinatorial if
it maps (the interior of) each cell of K homeomorphically onto (the interior of) a cell
of L.

Definition. A Z-cover is a connected regular covering p: K — L of CW-complexes
whose group of covering transformations is infinite cyclic.

The next result is an easy generalisation of Theorem D of (2), and we merely sketch
a proof.

Proposition 1. Suppose S is a finite, connected 2-complex, L is an almost-acyclic
2-complex, and f: S — L is a combinatorial map. Then there exists a commutative
triangle of combinatorial maps

sk
\ l“
L
such that:
(i) K is a finite, connected, almost-acyclic 2-complex;
(i) H,(f"): H,(S) = H,(K) has finite cokernel;
(iii) g is a composite of inclusion maps and Z-covers.

Sketch of Proof. Let K,= L denote the image of f. If the cokernel of H,(S)—
H,(K,) is finite, we may set K=K, and g the inclusion map K — L to obtain the
desired result. Otherwise f may be lifted over some Z-cover L,— K; to a map
fi: S = L,, say. Repeating this argument gives a sequence of Z-covers L., — K, and
lifts f,,, of f,, such that K, < L, is the image of f,, in the same way as the proof of
Theorem D in (2). As in (2), a counting argument shows that the sequence cannot
continue indefinitely. In other words, some map H,(f,): H,(S) — H,(K,) has finite
cokernel.

Remark. If H,(S) is finite in Proposition 1, then the 2-complex K will be acyclic.
Theorem D of (2) deals with the case H,(S)=0.

2. The main result
Theorem 2. Suppose He XN, and G is a finitely-generated subgroup of H. Then there

is a finitely-generated subgroup G, of H such that G< G,, G is free abelian, and the
inclusion-induced map G®* — G¢° has finite cokernel.
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Proof. We may suppose H = m,(L, z), where L is an almost-acyclic 2-complex and
z is a O-cell of L. Since G is finitely-generated, so is G®. Let r denote the torsion-free
rank of G®. Then there exists a finite generating set {g,,..., g.} for G such that
{g,"[G,G],..., g - [G, GJ} is a basis for the torsion-free part of G®, and g * [G, G]
has finite order in G® for r+1=i = n. Thus there exists a positive integer m such that
gre[G, Glfor r+1=i=n.

Let L™ denote the 1-skeleton of L. Then the inclusion-induced map n: =, (L®, z) -
(L, z) is surjective. Hence there are elements b, (1=i=n) in m,(L?, z) such that
n(b;) = g. Thus 1 maps the subgroup F of m,(L™, z) generated by b,, ..., b, onto G.
Hence there are elements w;(r+1=i=n) in [F, F] such that n(w;,)=g"=n(b").

Take S to be a wedge of complexes S; (1=i=n) and f: S— L a map chosen as
follows. For 1=i=r, S, is taken to be a subdivided circle, and f maps S; to a closed
path in L™ which represents the element b; of 7, (L™, z). The subdivision of the circle
and the map f are chosen so that each 1-cell of S; is mapped to a 1-cell of L. For
r+1=i=n, §; is chosen to be a simply-connected planar 2-complex, mapped to L in
such a way that every cell is mapped to a cell of the same dimension, and the boundary
of S; in the plane is mapped to a closed path in L® representing the element b{" - w*
of Ker n. (See van Kampen (3, Lemma 1)).

Then S is a finite 2-complex with fundamental group m,(S) free of rank r, and
f: S— L is a combinatorial map. By Proposition 1, we can express f as a composite

stLoKk—55L

Such that K is finite and almost-acyclic; H,(f") has finite cokernel; and g is a composite
of inclusion maps and Z-covers. Now let G = gg(m,(K, f'(x)) = 7, (L, x). We claim that
G < G,. We state this as a lemma, and postpone the proof for the moment.

Lemma 2.1. GcG,.

In the commutative square
Z'=Hy(S)—L-H,(X)

f.l 1u

G*——G¢

the map g4 is onto, and f4 has finite cokernel. It follows that h has finite cokernel.
Also, since K is finite and almost-acyclic, H,(K) is free abelian. Since f} has finite
cokernel, the rank of H,(K) is at most r. Thus G§® is generated by at most r elements.
In particular, if r=0 then G’ is free abelian of rank 0, so we may set G, = G,.
Suppose then that r>0. If G§® has torsion-free rank r then it is necessarily free
abelian of rank r, so again we may set G, = G,. Otherwise the torsion-free rank of Gg°
is strictly less than r.
The proof is completed by induction on r.

Proof of Lemma 2.1. It is sufficient to prove that F < gy (w,(K")) as subgroups of
(L"), We use the fact that g is a composite of Z-covers and inclusions. From this it
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follows that gy: m(KV)— (L") is injective, and there is a chain of subgroups
gx(m(KP)=FycF,c...cF =m(L")

of the free group ,(L™) such that, for 1=j=k, the subgroup F,_, is either

(i) normal in F; with infinite cyclic quotient; or

(ii) a free factor of F,

It follows from the construction of f that b; € fy(m(SP)e F, for 1=i=r, and
similarly b - w;'e F, for r+1=i=n.

Clearly F < F,. Suppose inductively that 1=j=k and Fc F,

() If F,_, <F,; with F/F,_, infinite cyclic, then w; €[F, F]c F,_, for r+1=i=n. Thus
bi*eF,_,,s0 bjeF,_, for r+1=i=n.

(i) If F;_, is a free factor of F;, then by the Kurosch subgroup theorem (4,p.17) F
has a free product decomposition F=F'=* F", where F'=FNF,_,. Hence F* =
(F)**@® (F")*. Since b;e F’ for 1=i=r and b"-w;'eF’ for r+1=i=n, it follows
that (F")* is finite of order dividing m™". But F” is a free group, so F"=1.

In either case FcF, ;. It follows by induction on j that FcF,, so G<G, as
claimed.

Corollary. Suppose H is a group in A with no non-trivial finitely-generated perfect
subgroups, and R is an integral domain. Then the group ring RH has no non-trivial
zero-divisors, and no non-trivial units.

Proof. By the theorem, it follows that every non-trivial finitely-generated subgroup
of H has infinite abelianisation. That is, H is locally indicable. Hence Higman’s results
(1, Theorems 12, 13) apply.
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