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Abstract

We consider weak and strong survival for branching random walks on multigraphs
with bounded degree. We prove that, at the strong critical value, the process dies out
locally almost surely. We relate the weak critical value to a geometric parameter of the
multigraph. For a large class of multigraphs (which enlarges the class of quasi-transitive
or regular graphs), we prove that, at the weak critical value, the process dies out globally
almost surely. Moreover, for the same class, we prove that the existence of a pure weak
phase is equivalent to nonamenability. The results are extended to branching random
walks on weighted graphs.
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1. Introduction

In recent years much study has been devoted to various stochastic processes, such as
percolation, the Ising model, contact processes, and branching random walks, on general graphs
(see, for instance, [3], [9], [10], [13], and [14], and see [11] for more references). A double
motivation underlies the search for settings other than the usual Z

d : on one hand, the need
for structures which may serve as models for inhomogeneous crystals, biological structures, or
social networks and, on the other hand, the fact that on general graphs interesting phenomena,
which are absent in Z

d , are observed. In particular, the branching random walk (BRW) has
been studied on trees (see [5], [7], [8], [12], and [14]) and on quasi-transitive graphs (see [15]).

In this paper we study the BRW on a connected multigraph X with bounded degree (see
Subsection 2.1 for the formal definition). Roughly speaking, a λ-BRW can be described by
the following rules: each particle dies after an exponential time with parameter 1 and breeds
independently on each edge at exponential intervals with parameter λ. We start with a finite
number of particles; hence, the λ-BRW can be viewed as a continuous-time random walk on
the countable state space of finite configurations η ∈ N

X. On each site x ∈ X the transitions
are

η(x) → η(x)− 1 at rate η(x), η(x) → η(x)+ 1 at rate λ
∑
y∈X

nyxη(y),

where η(x) is the number of particles at site x and nyx is the number of edges from y to x.

Received 21 December 2007; revision received 7 April 2008.
∗ Postal address: Dipartimento di Matematica e Applicazioni, Università di Milano – Bicocca, via Cozzi 53,
20125 Milano, Italy. Email address: daniela.bertacchi@unimib.it
∗∗ Postal address: Dipartimento di Matematica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano,
Italy. Email address: fabio.zucca@polimi.it

481

https://doi.org/10.1239/jap/1214950362 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1214950362


482 D. BERTACCHI AND F. ZUCCA

The BRW was originally introduced as a model for biological population dynamics (although
it has been argued that this model is far from being satisfactory (see, for instance, the discussion
in [6])) and, besides being interesting in itself, has also been studied for its relationship with
the contact process (the process which has the same transition rules of the BRW but state space
{0, 1}X). Indeed, the BRW stochastically dominates the contact process and has the property
that the sum of two λ-BRWs is still a λ-BRW.

The λ-BRW on Z
d shows only two possible behaviors (called phases): if λ ≤ 1/2d, there is

extinction almost surely; ifλ > 1/2d , for all t0 > 0, we have P(ηt (0) > 0 for some t ≥ t0) > 0,
where ηt (0) is the number of particles at 0 at time t . The main interest in studying the BRW
on trees is that a third phase appears. Indeed, we may identify the following two kinds of
survival.

(i) Weak (or global) survival: the total number of particles is positive at each time.

(ii) Strong (or local) survival: the number of particles at one site x is not eventually 0.

Let us denote by λw and λs the infimum of the values λ such that there is weak and strong
survival, respectively, with positive probability. Clearly, λw ≤ λs and we may have three
distinct phases corresponding to the following intervals for λ: [0, λw), (λw, λs), and (λs,+∞).
The middle interval may be empty; if, on the contrary, λw < λs then we say that the BRW has
a pure weak phase. In this phase the process leaves any finite subset eventually almost surely;
hence, it survives globally by drifting to infinity (see [5] for details on the convergence to the
boundary in the case of homogeneous trees).

This paper is devoted to three main issues: the identification of the critical value λw, the
behavior of the process at the critical values λ = λs and λ = λw, and the existence of the
pure weak phase. In [14] it was proved that λs is related to a particular asymptotic degree
of the graph. We extend this characterization to multigraphs (Theorem 3.1) and we relate λw
to another asymptotic degree (Theorems 3.2, 3.3, and 3.4). Moreover, we prove, by using
generating function techniques, that if λ = λs then the process dies out locally almost surely
and that, if λ = λw, on a large class of multigraphs the process dies out globally almost surely
(Theorem 3.5). The use of multigraphs is natural; indeed, given a vertex on a graph, the birth rate
is equal for all neighbors, while on a multigraph we can consider more inhomogeneous situations
(for a generalization, see Subsection 4.2). Moreover, some of our results need the requirement
that in some sense ‘there are only a finite number of types of vertices’ (see Definition 3.1).
This requirement, on the one hand, is naturally written by means of multigraphs and, on the
other hand, it identifies our main class of multigraphs which includes both quasi-transitive and
regular graphs.

As for conditions for the existence of the pure weak phase, we are led to investigate non-
amenable graphs. Indeed, usually, nonamenable graphs are graphs where certain phenomena,
absent in the amenable case, appear (see [11] for a survey). Nevertheless, a statement like
‘nonamenability of the graph is equivalent to the existence of a pure weak phase for the BRW’
has been disproved in [14]. The authors showed a nonamenable tree where the BRW has no pure
weak phase and an amenable tree where there is such a phase (note that these counterexamples
are both of bounded degree). Hence, we hope to prove a similar statement for a more restricted
class of graphs. Work in this direction has been carried out in [15, Theorem 3.1], which states the
equivalence between nonamenability and the existence of a pure weak phase for quasi-transitive
graphs. We prove the same equivalence for our main class of multigraphs (Theorem 3.6 and
Example 3.3).
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Let us give the outline of the paper. In Section 2 we introduce the main definitions and we
define some generating functions and a generalized branching process which will be useful in
the sequel. Moreover, we introduce two asymptotic degrees, Ms and Mw, which depend only
on the geometric structure of the multigraph.

Subsection 3.1 is devoted to the detailed study of λs and λw. We give a sufficient condition
for the absence of the pure weak phase, which, in particular, implies that there is no weak
phase on subexponentially growing multigraphs (Remark 3.1). We prove that on multigraphs
λs = 1/Ms (Theorem 3.1), and we show that, for a large class of multigraphs, λw = 1/Mw
(Theorem 3.2). Clearly, for this class, we have λw < λs if and only if Ms < Mw. We give two
different sufficient conditions for a multigraph to satisfy the hypothesis of Theorem 3.2. The
first condition (Theorem 3.3) is satisfied, for instance, by certain radial trees which are not quasi-
transitive; for these trees, we show that nonamenability is equivalent to the existence of the pure
weak phase (Example 3.3). As for the second condition (Theorem 3.4), we introduce a class of
morphisms (Definition 3.1) of multigraphs and we show that it preserves λw,Mw, and, in some
cases, λs (Proposition 3.1). By using these morphisms, the class of F -multigraphs is defined;
this class satisfies the hypothesis of Theorem 3.2. In Subsection 3.2 we prove that on general
multigraphs the λs-BRW dies out locally almost surely and that on F -multigraphs the λw-BRW
dies out globally almost surely (Theorem 3.5). The main result of Subsection 3.3 (Theorem 3.6)
along with Theorem 3.4 yields, for nonoriented F -multigraphs, the equivalence of the following
conditions: (i) λw < λs, (ii) Ms < Mw, and (iii) nonamenability. In Subsection 3.4 some
examples of multigraphs, which can be studied via our results, are given.

The BRW studied in Section 3 may be viewed as a population which reproduces following
an ‘edge breeding’ pattern, while some authors prefer a ‘site breeding’ pattern. In Section 4
we consider this modification of the BRW. These two versions of the BRW are essentially
equivalent on regular graphs, while in the general setting the behavior of the ‘site breeding’
BRW can be much more easily characterized (Theorem 4.1). We show that BRWs and modified
BRWs may both be seen as particular cases of BRWs on weighted graphs. Most of the results
given in the previous sections still hold in this general setting.

Section 5 is devoted to a final discussion of open questions.

2. Basic definitions and preliminaries

2.1. Multigraphs

A countable (or finite) multigraph is a couple (X,E(X)), where X is the countable (or
finite) set of vertices and E(X) ⊆ X × X × N∗ is the set of (oriented) edges (where N∗ is
the set of positive natural numbers); we define the number of edges from x to y as nxy :=
|{i : (x, y, i) ∈ E(X)}| ≡ max{i : (x, y, i) ∈ E(X)} (where | · | denotes cardinality). We
denote byD(x) := {y ∈ X : nxy > 0} the set of neighbors of x and by deg(x) := ∑

y∈D(x) nxy
the degree of x. If nxy = nyx for all x, y ∈ X then the multigraph is called nonoriented. A
multigraph is a graph if and only if nxy = 1D(x)(y),

A path from x to y of length n is a couple of sequences

({x = x0, x1, . . . , xn = y}, {k1, . . . , kn})
such thatnxixi+1 ≥ ki+1 > 0 for all i = 0, 1, . . . , n−1. The multigraph is said to be connected if
there exists a path (of suitable length) from x to y for all x, y ∈ X. From now on, the multigraph
will always be connected and of bounded degree, that is, M(X) := supx∈X deg(x) < +∞;
obviously, M depends on (X,E(X)), but to avoid cumbersome notation, the dependence on

https://doi.org/10.1239/jap/1214950362 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1214950362


484 D. BERTACCHI AND F. ZUCCA

the set of edges will be tacitly understood. The same implicit assumption will be made for all
quantities depending on the multigraph. Moreover, if not explicitly stated, the multigraph does
not need to be nonoriented.

Let γ nx,y be the number of paths of length n from x to y (and γ 0
x,y := δx,y). More explicitly,

to each sequence {x = x0, x1, . . . , xn = y} there corresponds a set of
∏n−1
i=0 nxixi+1 paths in

the multigraph, whence γ nx,y is the sum over all the sequences {x = x0, x1, . . . , xn = y}
of

∏n−1
i=0 nxixi+1 . Moreover, let T nx be the number of paths from x of length n, that is,

T nx := ∑
y∈X γ nx,y . Finally, let φnx,y be the number of paths of length n starting from x and

reachingy for the first time; to be precise,φnx,y is the number of paths ({x = x0, x1, . . . , xn = y},
{k1, . . . , kn}) such that xi 	= y for all i = 1, . . . , n−1. By definition, φ0

x,y := 0 for all x, y ∈ X.
For γ nx,y and T nx , the following recursive relations hold for all n,m ≥ 0:

γ n+mx,y =
∑
w∈X

γ nx,wγ
m
w,y, γ 1

x,y = nxy,

T n+mx =
∑
w∈X

γmx,wT
n
w, T 1

x = deg(x),

and, for all n ≥ 1,

γ nx,y =
n∑
i=0

φix,yγ
n−i
y,y .

Given any vertex x ∈ X and n ∈ N, we define ρ(x, y) := min{i : γ ix,y > 0} and B(x, n) :=
{y ∈ X : ρ(x, y) ≤ n}; note that ρ is a metric if nxy > 0 is equivalent to nyx > 0 for all
x, y ∈ X (for instance, in the case of nonoriented multigraphs).

By using the number of paths, it is possible to introduce two asymptotic degrees, namely

Ms(X) := lim sup
n

(γ nx,y)
1/n, Mw(X) := lim sup

n
(T nx )

1/n.

It is easy to show that the above definitions do not depend on the choice of x, y ∈ X and simple
arguments of supermultiplicativity show that Ms(X) = limn→∞(γ dnx,x)1/dn = supn(γ

dn
x,x)

1/dn,
where d := gcd{n : γ nx,x > 0} is the period of the multigraph (which does not depend on the
choice of x). Analogously,Ms(X) = limn→∞(γ dn+ix,y )1/(dn+i), where 0 ≤ i ≤ d−1 is uniquely
chosen such that γ nx,y > 0 implies that n = i (mod d). In the rest of the paper, whenever there
is no ambiguity, we will denote M(X), Ms(X), and Mw(X) simply by M , Ms, and Mw.

By definition, 1 ≤ Ms ≤ Mw ≤ M . We note that Mw = M if the multigraph is regular,
that is, it has constant degree. It is well known that, for a regular nonoriented graph,Ms < Mw
if and only if it is nonamenable (see Subsection 3.3 for the definition). A simple case where
Mw = Ms is provided by the following proposition.

Proposition 2.1. Let (X,E(X)) be a nonoriented multigraph. If |B(x, n)|1/n → 1 for some
(equivalently, for all) x ∈ X then Mw = Ms.

Proof. It is enough to prove that Mw ≤ Ms. Note that, by the Cauchy–Schwarz inequality,

M2n
s ≥ γ 2n

x,x =
∑
y∈X

γ nx,yγ
n
y,x =

∑
y∈B(x,n)

(γ nx,y)
2 ≥ (

∑
y γ

n
x,y)

2

|B(x, n)| = (T nx )
2

|B(x, n)| ;

hence,

Ms ≥ lim sup
n

2n

√
(T nx )

2

|B(x, n)| = lim sup
n

n
√
T nx = Mw.
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2.2. Generating functions

In order to find some characterizations ofMs andMw, let us define the generating functions

H(x, y | λ) :=
∞∑
n=0

γ nx,yλ
n, �(x | λ) :=

∞∑
n=0

T nx λ
n,

with radius of convergence 1/Ms and 1/Mw, respectively. Of course, for all λ ∈ C such that
|λ| < 1/Mw, we have �(x | λ) = ∑

y∈Y H(x, y | λ) and the following relations hold:

H(x, y | λ) = δx,y + λ
∑
w∈X

γ 1
x,wH(w, y | λ)

= δx,y + λ
∑
w∈X

H(x,w | λ)γ 1
w,y for all λ ∈ C such that |λ| < 1

Ms
, (2.1)

�(x | λ) = 1 + λ
∑
w∈X

γ 1
x,w�(w | λ) for all λ ∈ C such that |λ| < 1

Mw
.

We define

�(x, y | λ) :=
∞∑
n=1

φnx,yλ
n;

it is easy to see that

�(x, x | λ) = λ
∑

y∈X, y 	=x
γ 1
x,y�(y, x | λ)+ λγ 1

x,x,

and if x, y,w ∈ X are distinct vertices such that every path from x to y contains w then
�(x, y | λ) = �(x,w | λ)�(w, y | λ). Moreover,

H(x, y | λ) = �(x, y | λ)H(y, y | λ)+ δx,y for all λ such that |λ| < 1/Ms.

Since the radius of the series H(x, x | ·) does not depend on the choice of x ∈ X and since

H(x, x | λ) = 1

1 −�(x, x | λ) for all λ ∈ C such that |λ| < 1

Ms
, (2.2)

we have 1/Ms = max{λ ≥ 0 : �(x, x | λ) ≤ 1} for all x ∈ X (remember that�(x, x | ·) is left
continuous on [0, 1/Ms] and that 1/(1 −�(x, x | λ)) has no analytic prolongation in 1/Ms).

The computation of Mw is not easy in general, but in the case of finite multigraphs there is
a simple characterization of Mw. In the following proposition, I is the identity matrix.

Proposition 2.2. Let (X,E(X)) be an irreducible, finite multigraph with adjacency matrix
N := (nxy)x,y∈X. Then

1

Mw
= 1

Ms
= min{λ > 0 : det(λN − I ) = 0}.

Proof. We use the same notation N for the matrix and the linear operator. By the Perron–
Frobenius theorem, there exists an eigenvalue σ0 > 0 of N such that any other eigenvalue σ
satisfies |σ | < σ0, and the same holds for N
. Moreover, dim(Ker(N
 − σ0I )) = 1 and it is
possible to choose the eigenvector v in such a way that v > 0. It is clear that any vector w < 0
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cannot possibly belong to Rg(N − σ0I ) ≡ Ker(N
 − σ0I )
⊥ since 〈w, v〉 < 0. Then (2.1)

(which holds for |λ| < 1/Mw) can be written as

(λN − I )�(λ) = −

⎛
⎜⎜⎜⎝

1
1
...

1

⎞
⎟⎟⎟⎠ , (2.3)

and has no solutions if λ = 1/σ0. On the other hand, (2.3) defines a holomorphic (vector)
function�′(λ) = −(λN−I )−1(1, 1, . . . , 1)
 on {λ ∈ C : |λ| < 1/σ0}. Note that�′ coincides
with � on {λ ∈ C : |λ| < min{1/σ0, 1/Mw}}; hence, 1/σ0 ≤ 1/Mw. If 1/σ0 < 1/Mw then
there would be an analytic prolongation of �′ to 1/σ0 and, by continuity, (2.3) would hold for
λ = 1/σ0.

2.3. Generalized branching process

In the classical branching process (see, for instance, [4, Chapter 1]) there is a unique
offspring distribution according to which each individual breeds. We consider a generalized
branching process where each father may have different types of children and each of them
breeds according to a specific distribution which depends on its type and on the father. To be
more specific, let T = (

⋃∞
i=0 N

2i∗ , E(T )), where N
0∗ := {o} and o is the root of the tree T .

Identifying as usual N
2n∗ × N

2∗ with N
2n+2∗ , the set of edges is

E(T ) := {(x, y) ∈ T : there exists k ∈ N
2∗, y = (x, k)} ∪ {(o, k) : k ∈ N

2∗}.
Roughly speaking, y = (x, i, j) means that y is the j th son of type i of its father x (whereas
(i, j) is the j th son of type i of o), and the oriented edges are drawn from fathers to sons.
Moreover,

⋃n
i=0 N

2i∗ represents the genealogic tree of the progeny of o up to the nth generation.
We provide each individual x with a distribution µx such that if x = (v, i, j) and y = (v, i, k)

then µx ≡ µy (that is, the offspring distribution depends only on the father and on the type).
Now, each distribution is defined on the countable space E := {f ∈ N

N∗ : S(f ) < +∞}, where
S(f ) = ∑∞

i=1 f (i). To be more precise, it is possible to construct a canonical probability space
(
,A,P) supporting the generalized branching process and such that P satisfies

µx(f ) = P

( ∞⋂
i=1

{x has f (i) sons of type i}
)

for all f ∈ E .

Moreover, for every x ∈ T , let νx be the distribution of the total number of children of x, that
is, νx(k) = µx({f : S(f ) = k}) for all k ∈ N. Take a family of independent E -valued random
variables {Zx}x∈T such that Zx has distribution µx .

Let us recursively construct this generalized branching process {Bn}n≥0:

B0 = {o}, Bn+1 = {(v, i, j) : v ∈ Bn, 1 ≤ j ≤ Zv(i)},
whereBn is the nth generation and its member v has exactlyZv(i) children of type i. Extinction
is the event (Bn = ∅ eventually).

Lemma 2.1. LetGx(z) be the generating function of νx , and suppose that there exists δ ∈ [0, 1)
such that Gx(δ) ≤ δ for all x ∈ T . Then P(Bn = ∅ eventually) ≤ δ.
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Proof. Denote by Axn the event of extinction before the nth generation of the progeny of
x. Let qxn := P(Axn). Clearly, qxn depends only on the father and the type of x; we claim
that qxn ≤ δ for all x ∈ T . We proceed by induction on n. Obviously, for each x ∈ T ,
qx0 = νx(0) = Gx(0) ≤ δ. By induction, using the hypothesis of independence,

qxn+1 = P

( ∞⋃
i=0

⋃
f : S(f )=i

∞⋂
j=1

f (j)⋂
k=1

A
(x,j,k)
n

)

=
∞∑
i=0

∑
f : S(f )=i

µx(f )

∞∏
j=1

(q
(x,j,1)
n )f (j)

≤
∞∑
i=0

∑
f : S(f )=i

µx(f )δ
S(f )

=
∞∑
i=0

δi
∑

f : S(f )=i
µx(f )

=
∞∑
i=0

δiνx(i)

= Gx(δ)

≤ δ.

Now, qon ↑ P(Bn = ∅ eventually) and δ ≥ limn q
o
n . This completes the proof.

This lemma trivially applies when each distribution µx is drawn from a finite set of distribu-
tions such that the corresponding νx represents a supercritical branching process. In this case
we have a finite number of fixed points in [0, 1) for the generating functions and δ may be taken
as the maximum among them (indeed this is what we do in Theorem 3.2, below).

3. Main results

3.1. The critical values

The critical values λs and λw separate different behaviors of the λ-BRW. Namely, given
nonextinction, if λ > λs then the conditional expected value of the number of particles per site
tends to ∞, while if λ > λw then the conditional probability that the total number of particles on
the graph tends to ∞ is equal to 1. Indeed, the BRW (starting with a finite number of particles)
is a continuous-time random walk on the countable state space of finite configurations η ∈ N

X,
with a trap state in 0 (the configuration with no particles). Hence, all the states but 0 are transient
and the process which does not hit 0 leavesAk = {η ∈ N

X : ∑
x∈X η(x) ≤ k} eventually for all

k ∈ N. Indeed, the probability of reaching 0 starting from any configuration in Ak is bounded
from below by a positive constant (the reproduction rate is bounded from above); hence, the
claim follows.

Here we investigate the critical values λs and λw and their relationship with Ms and Mw.
Since the critical values do not depend on the number of particles at t = 0 (nor on their
location), we suppose that the initial state is one particle at a fixed vertex o ∈ X. To each
particle p (present at some time at a site x) there corresponds a (unique) reproduction trail,
starting from the initial particle located at o at time 0, reconstructing the genealogy of p.
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Roughly speaking, the (space-time) reproduction trail corresponding to p is a path ({x0 = o,

x1, . . . , xn−1, xn = x}, {k1, . . . , kn}) along with a sequence (t0, . . . , tn−1), where t0 is the epoch
when the original particle in o generated the ancestor of p in x1 (through the edge (o, x1, k1))
and, for i = 1, . . . , n − 1, ti is the epoch when the ancestor in xi generated the one in xi+1
(through the edge (xi, xi+1, ki+1)). Clearly, setting t−1 = 0, then, for all i = 0, . . . , n − 1,
ti − ti−1 is the realization of an exponential random variable with rate λ (it is tacitly understood
that each ancestor is alive when breeding). Such a trail is said to have length n. For a detailed
construction, we refer the reader to [14, Section 3] (where what we call a reproduction trail is an
infection trail). Note that the expected number of trails along a path of length n is λn; hence, to
each sequence {x0, x1, . . . , xn} there corresponds a number λn

∏n−1
i=0 nxixi+1 of expected trails.

In [14, Lemma 3.1] it was proved that λs = 1/Ms for any graph. We use a different approach
to extend this result to multigraphs; this approach allows us to study the critical behavior when
λ = λs (see Theorem 3.5, below).

Theorem 3.1. For each multigraph (X,E(X)), we have λs = 1/Ms.

Proof. Let us consider a path � := ({o = x0, x1, . . . , xn = o}, {k1, . . . , kn}) and let us
define its number of cycles L(�) := |{i = 1, . . . , n : xi = o}|; the expected number of
trails along such a path is λn (hence, to each sequence {x0, x1, . . . , xn} there corresponds a
number λn

∏n−1
i=0 nxixi+1 of expected trails). Disregarding the original time scale, to the BRW

there corresponds a Galton–Watson branching process: given any particlep in o (corresponding
to a trail with n cycles), define its children as all the particles whose trail is a prolongation of
the trail of p and is associated with a spatial path with n+ 1 cycles. Hence, a particle is of the
kth generation if and only if the corresponding trail has k cycles; moreover, it has one (and only
one) parent in the (k−1)th generation. Since each particle behaves independently of the others,
the process is Markovian. Thus, the BRW survives if and only if this branching process does.
The expected number of children of the branching process is the sum over n of the expected
number of trails of length n and one cycle, that is,

∑∞
n=1 φ

n
o,oλ

n = �(o, o | λ). Thus, we have
almost sure local extinction if and only if�(o, o | λ) ≤ 1, that is, λ ≤ 1/Ms (see (2.2) and the
remark thereafter).

We now focus our attention on the weak critical value.

Lemma 3.1. For every multigraph, we have λw ≥ 1/Mw.

Proof. Since the average number of trails on a fixed path of length n starting from (o, 0) is
λn, the average number of all the trails on any path from (o, 0) is

∑∞
n=0 λ

nT no . If λMw < 1
then this sum is finite; hence, the number of reproduction trails is almost surely finite and there
is no weak survival.

Remark 3.1. For every multigraph, ifMw = Ms, there is no pure weak survival (since 1/Mw ≤
λw ≤ λs = 1/Ms). Examples are subexponentially growing graphs (recall Proposition 2.1)
such as Z

d or d-dimensional combs (see [1] for the definition).

Let us now consider whether λw = 1/Mw. The following theorem states that this equality
holds if the multigraph satisfies the following geometric condition:

for all ε > 0, there exists n̄ = n̄(ε) such that sup
n≤n̄

n
√
T nx ≥ Mw − ε for all x ∈ X. (3.1)

Note that, by definition of Mw, for all fixed ε > 0 and x ∈ X, there exists nx such that
nx
√
T
nx
x ≥ Mw − ε. Condition (3.1) is a request of uniformity in x.
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Theorem 3.2. If (X,E(X)) is a multigraph such that condition (3.1) holds then λw = 1/Mw.

Proof. Fix ε > 0 and λ such that λ(Mw − ε) > 1. We associate to the BRW a generalized
branching process where the type of each particle is the site where it is born (although in
Subsection 2.3 the type was indexed by N, this is not a restriction sinceX is at most countable).
For all x ∈ X, define nx to be the smallest positive integer such that nx

√
T
nx
x ≥ Mw − ε. In

this generalized branching process the ‘children’ of the initial particle (which represents the
root of the tree of the process) are all the particles associated with trails of length no starting
from o. Each of these trails ends on a specific vertex in B(o, no), which represents the type of
children generated there. The offspring distributionµo is supported on Eo := {f ∈ E : f (x) =
0 for all x 	∈ B(o, no)} and satisfies

µo(f ) = P

( ⋂
y∈B(o,no)

{Ky = f (y)}
)

for all f ∈ Eo,

where P is the probability on the space where the BRW is defined and Ky is the (random)
number of trails of length no starting at o and ending at y. The corresponding νo is supercritical
in the sense that

G′
o(1) ≡

∞∑
n=0

nνo(n) = λnoT noo > 1.

This means that Go has a fixed point δo < 1.
Analogously, we repeat this construction for any particle at any site x. The children of such

a particle p are the particles associated with trails which are prolongations of the trail of p, and
the difference between the lengths of the prolongation and of the trail of p is nx . Clearly, the
offspring distribution µx is supported on Ex := {f ∈ E : f (z) = 0 for all z 	∈ B(x, nx)} and is
defined as

µx(f ) = P

( ⋂
y∈B(x,nx)

{Ky = f (y)}
)

for all f ∈ Ex,

where Ky is the (random) number of prolongations, ending at y, of the trail of p such that the
difference between the lengths of the prolongation and of the trail of p is nx . By the Markov
property, these laws do not depend on the particle, but only on the site x; hence, the definition
is well posed. More precisely, µx depends only on the submultigraph B(x, nx). We call Gx
the generating function of νx .

The generating functions,Gx , are taken from a finite set ofGs; indeed, in a bounded degree
multigraph the set of the equivalence classes up to isometries of the balls of radius at most
n̄ is finite. Since all these generating functions are convex, we may apply Lemma 2.1 with
δ = max{δx : x ∈ X}, finding that the generalized branching process is supercritical. Since,
for each x ∈ X, we consider only the particles generated along a path of length nx (starting
from x), the generalized branching process is dominated by the total number of particles of the
original BRW; hence, this last one is supercritical as well. Since ε was arbitrary, we deduce
that λw ≤ 1/Mw. Lemma 3.1 yields the conclusion.

A large family of multigraphs for which condition (3.1) holds is described by the following
theorem. Roughly speaking, the geometrical request therein is a sort of ‘translational quasi-
invariance’ which allows us to compare all T nx with a single T nx0

.
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Theorem 3.3. Let (X,E(X)) be a multigraph; let us suppose that there exists x0 ∈ X, Y ⊆ X,
and n0 ∈ N such that

(a) for all x ∈ X, we have B(x, n0) ∩ Y 	= ∅,

(b) for all y ∈ Y , there exists an injective map ϕy : X → X such that ϕy(x0) = y and
nϕy(x)ϕy(z) ≥ nxz for all x, z ∈ X.

Then condition (3.1) holds and λw = 1/Mw.

Proof. We fix ε > 0. For any given x ∈ X, condition (a) implies the existence of y ∈ Y such
that ρ(x, y) ≤ n0; hence, T ny ≤ T

n+n0
x for all n ∈ N. Using condition (b), we have T ny ≥ T nx0

for all n ∈ N, which in turn implies that T n+n0
x ≥ T nx0

. Since lim supn→∞(T nx0
)1/(n+n0) = Mw,

we may find n1 ∈ N such that (T n1
x0 )

1/(n1+n0) ≥ Mw − ε, whence n̄(ε) := n1 + n0 satisfies the
hypothesis of Theorem 3.2.

For a nontrivial example of trees satisfying the hypotheses of the previous theorem, see
Example 3.3, below. Another important class of multigraphs satisfying condition (3.1) is
described by the following definition (see also Theorem 3.4, below).

Definition 3.1. Let (X,E(X)) and (Y,E(Y )) be two multigraphs. A map ϕ : X → Y is
called a local isomorphism from X onto Y if and only if, for all x ∈ X and y ∈ Y , we have∑
z∈X : ϕ(z)=y nXxz = nYϕ(x)y .
We say that a multigraph (X,E(X)) is an F -multigraph if it is locally isomorphic to a finite

multigraph. We say that a graph (X,E(X)) is an F -graph if it is locally isomorphic to a finite
graph.

Note that a local isomorphism from X to Y does not imply the existence of a local iso-
morphism from Y to X. Moreover, it is easy to show that, for any local isomorphism,
ϕ(DX(x)) = DY (ϕ(x)) and that, for all n ∈ N and for all x, y ∈ X,∑

z∈X : ϕ(z)=y
γ nx,z = γ̃ nϕ(x),y, T nx (X) = T nϕ(x)(Y ), (3.2)

where γ̃ refers to paths in Y . The second equation in (3.2) is implied by the first equation,
which may be proved by induction using the properties of ϕ.

The following proposition shows howMw, λw, and λs (or, equivalently,Ms) are affected by
the action of a local isomorphism.

Proposition 3.1. Let (X,E(X)) and (Y,E(Y )) be two connected multigraphs, and suppose
that there exists a local isomorphism ϕ from X onto Y . The following assertions hold.

(a) λw(X) = λw(Y ).

(b) λs(X) ≥ λs(Y ). If there exists y ∈ Y such that |ϕ−1(y)| < +∞ then λs(X) = λs(Y ).

(c) Mw(X) = Mw(Y ). Moreover, Y satisfies condition (3.1) if and only if X satisfies it.

Proof. (a) Let ηt be a λ-BRW process on X starting with one particle at site x. We may
easily show that

ξt (y) :=
∑

x∈ϕ−1(y)

ηt (x)

is a λ-BRW process on Y starting with one particle at site ϕ(x). It is clear that ηt survives
globally if and only if ξt does; this implies that λw(X) = λw(Y ).
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(b) If ηt survives locally then ξt does; hence, λs(X) ≥ λs(Y ). On the other hand, given that
|ϕ−1(y)| < +∞, if we start the process ηt with one particle at a site x ∈ ϕ−1(y) and ξt survives
locally (in y), the same must be true for ηt at some z ∈ ϕ−1(y) and, hence, at x ∈ X.

(c) It is a simple consequence of the equality T nx (X) = T nϕ(x)(Y ) which holds for all x ∈ X and
n ∈ N.

According to the previous proposition, if (X,E(X)) is locally isomorphic to a multigraph
(Y,E(Y )) which satisfies the hypotheses of Theorem 3.3, then the same conclusions of this
theorem hold for (X,E(X)). In particular, if (Y,E(Y )) is a finite multigraph then Mw(Y ) =
Ms(Y ) and λw(Y ) = λs(Y ).

We note that both quasi-transitive graphs and regular graphs are F -multigraphs. Indeed, if
X is a quasi-transitive graph, we take Y as the quotient space with respect to the action of the
automorphism group, ϕ as the quotient map, and nyy′ := |ϕ−1(y′ ∩DX(x))|, where ϕ(x) = y

(this definition does not depend on the choice of x); regular graphs of degree k may be mapped
on the one-point multigraph with k loops (and Mw = k). Nevertheless, this class contains
graphs which are neither regular nor quasi-transitive (see Examples 3.1, 3.2, and 3.3, below).
Moreover, the ‘regularity’ of F -multigraphs is only ‘local’; indeed, we can easily construct
examples of quite irregular F -graphs.

The following lemma gives a sufficient condition for a graph to be an F -graph.

Lemma 3.2. Let us consider a graph (X,E(X)) such that, for all x, y ∈ X with deg(x) =
deg(y), we have

|{z ∈ D(x) : deg(z) = j}| = |{z ∈ D(y) : deg(z) = j}| for all j = 1, . . . ,M.

Then (X,E(X)) is an F -graph.

Proof. Take

Y := {i ∈ N : there exists x ∈ X, deg(x) = i} and nij := |{z ∈ D(x) : deg(z) = j}|
for some x ∈ X such that deg(x) = i (the definition does not depend on x) and ϕ := deg.

In analogy to Theorem 3.3, the following theorem describes another class of multigraphs
satisfying condition (3.1).

Theorem 3.4. If (X,E(X)) is an F -multigraph then it satisfies condition (3.1) and λw =
1/Mw.

Proof. Let (X,E(X)) be locally isomorphic to the finite multigraph (Y,E(Y )). We note
that, being finite, Y satisfies condition (3.1), whence, by Proposition 3.1, X also does.

Remark 3.2. It is natural to wonder howMs,Mw, λs, andλw are affected by local modifications
of the multigraphs (X,E(X)) (such as, for instance, attaching a complete, finite graph to a vertex
of X or removing a set of vertices and/or edges).

If (X,E(X)) and (Y,E(Y )) are two multigraphs andψ : Y → X is an injective map such that
nψ(x)ψ(y) ≥ ñxy for all x, y ∈ Y (where ñ refers to Y ) then λw(X) ≤ λw(Y ), λs(X) ≤ λs(Y ),
Mw(X) ≥ Mw(Y ), and Ms(X) ≥ Ms(Y ).

In certain cases it is easy to show that the existence of a pure weak phase on X implies
the existence of a pure weak phase on some submultigraph; indeed, if Y is a finite subset
of X such that X \ Y is divided into a finite number of connected multigraphs X1, . . . , Xn
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(which is certainly true if nxy > 0 is equivalent to nyx > 0 for all x, y ∈ X \ Y ) then, for
every λ ∈ (λw(X), λs(X)), the λ-BRW leaves eventually almost surely the subset Y . Hence,
it survives (globally but not locally) at least on one connected component; this means that,
although λs(Xi) ≥ λs(X) and λw(Xi) ≥ λw(X) for all i = 1, . . . , n, there exists i0 such
that λw(Xi0) = λw(X). The existence of a pure weak phase on Xi0 follows from λs(Xi0) ≥
λs(X) > λw(X) = λw(Xi0).

Moreover, if there exists a subset Y as above such that λw(Xi) > λw(X) for all i then there
is no pure weak phase for the BRW on X. Take, for instance, a graph (X′, E(X′)) and k ∈ N

such that 1/k < λw(X
′). Attach a complete graph of degree k to a vertex of X′. We obtain a

new graph X such that λs(X) = λw(X) ≤ 1/k < λw(X
′); hence, even if the BRW on X′ has a

pure weak phase, the BRW on X has none.

3.2. Critical behaviors

It is well known that any critical branching process dies out almost surely. In Theorem 3.1
we associated to the BRW a (discrete-time) branching process in such a way that the progeny
of the BRW in a fixed site x coincides with the total progeny of the branching process. This
allows us to study the strong critical behavior of the BRW (and the weak critical behavior for
a BRW on an F -multigraph).

Theorem 3.5. For each multigraph (X,E(X)), if λ = λs then the λ-BRW dies out locally
almost surely. For each F -multigraph, if λ = λw then the λ-BRW on X dies out globally
almost surely.

Proof. Recall that (see the proof of Theorem 3.1) the λ-BRW survives if and only if the
branching process with an expected number of children �(o, o | λ) does. Since

�

(
o, o

∣∣∣∣ 1

Ms

)
≤ 1 and λs = 1

Ms
,

there is an almost sure local extinction at λs.
Now suppose that X is locally isomorphic to the finite multigraph Y . Since the global

behavior of the λ-BRW ηt on X is the same as the corresponding behavior of the induced
λ-BRW ξt on Y (see the proof of Proposition 3.1), then Theorem 3.2 and Proposition 3.1 imply
that λw(X) = 1/Mw(X) = λw(Y ) = λs(Y ). But we just proved that each λs-BRW dies out
locally almost surely; moreover, since Y is finite, ξt dies out globally almost surely; hence, the
same holds for ηt .

3.3. Nonamenability and weak phase

In this subsection we consider only nonoriented multigraphs. A multigraph (X,E(X)) is
nonamenable if

inf

{ |∂E(S)|
|S| : S ⊆ X, |S| < ∞

}
=: ιX > 0,

where ∂E(S) is the set of edges (x, y, i) ∈ E(X) such that x ∈ S and y 	∈ S.
We define N : l2(X) → l2(X) by Nf (x) := ∑

y∈X nxyf (y), which is a bounded, linear
operator with ‖N‖ ≤ M . It is well known that, on a regular, nonoriented graph (where M =
Mw), the existence of the weak phase is equivalent to nonamenability (see [15, Theorem 2.4]).
Indeed, on regular, nonoriented graphs, Ms < Mw is equivalent to nonamenability: we can
easily prove that Ms = ‖N‖ (see Lemma 3.3, below, and the reference therein); moreover,
‖N‖ = M‖P ‖, where P is the transition operator associated to the simple random walk and
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Gerl [2] proved that ‖P ‖ < 1 is equivalent to nonamenability. Hence, using Theorem 3.1 and
Theorem 3.4, we obtain an alternative proof of [15, Theorem 2.4].

Now we show that, for nonoriented F -multigraphs, nonamenability is equivalent to the
existence of a pure weak phase which, in turn, is equivalent to Ms < Mw.

Lemma 3.3. The operator N is self-adjoint and ‖N‖ = ρ(N) = Ms, where ρ(N) =
limn→∞ ‖Nn‖1/n is the spectral radius of N .

Proof. The self-adjointness of N is easy and ‖N‖ = ρ(N) is a standard property which
follows from the spectral theorem for any normal (hence self-adjoint) operator. To prove that
Ms = ‖N‖, we proceed essentially as in [15, Lemma 2.2].

The following theorem implies the analogous results for regular and quasi-transitive graphs.

Theorem 3.6. Let (X,E(X)) be a nonoriented F -multigraph. Then λw < λs if and only if
(X,E(X)) is nonamenable.

Before proving this statement, we need a technical result concerning the Dirichlet norm of
l2 functions. Given f ∈ l2(X), define

‖f ‖D(2) =
( ∑
x,y∈X

nxy |f (x)− f (y)|2
)1/2

.

Lemma 3.4. Let (X,E(X)) be a nonamenable multigraph. Then there exists c > 0 such that,
for all f ∈ l2(X),

‖f ‖D(2) ≥ c‖f ‖2.

Proof. The proof is analogous to the one of [15, Theorem 2.6] (we have to deal carefully
with the presence of nxy); hence, we omit it.

Proof of Theorem 3.6. We follow the proof of [15, Theorem 3.1]. Let (X,E(X)) be non-
amenable, letN = (nxy)x,y∈X be its adjacency matrix, and let Ñ = (ñxy)x,y∈Y be the adjacency
matrix of the finite multigraph (Y,E(Y )), which (X,E(X)) is locally isomorphic to. We
must prove that ‖N‖ < Mw. By definition of local isomorphism, we have ñϕ(x)ϕ(y) =∑
z:ϕ(z)=ϕ(y) nxz. By the Perron–Frobenius theorem, Ñ has largest positive eigenvalue Mw

with associated positive eigenvector (a1, . . . , ak) (k being the cardinality of Y ). Then

Mwaϕ(x) =
∑
y′∈Y

ñϕ(x)y′ay′ =
∑
y′∈Y

∑
y∈ϕ−1(y′)

nxyaϕ(y) =
∑
y∈X

nxyaϕ(y). (3.3)

Take f ∈ l2(X). Applying (3.3) and the fact that (X,E(X)) is nonoriented,

M2
w‖f ‖2

2 = M2
w

∑
y∈X

(f (y))2 =
∑
x∈X

(∑
z∈X

nxzaϕ(z)

)(∑
y∈X

nxy
(f (y))2

aϕ(y)

)
.

Hence,

M2
w‖f ‖2

2 − ‖Nf ‖2
2 =

∑
x∈X

∑
z,y∈X

nxznxy

(
aϕ(z)

aϕ(y)
(f (y))2 − f (z)f (y)

)
≥ 1

2
(min ai)

2‖g‖D(2),

where g(x) = f (x)/aϕ(x) is considered as a map on the multigraph G2 = (X, Ē(X))

with adjacency matrix N̄ defined by n̄xy = ∑
z∈X nzxnzy and Ē(X) := {(y, z, i) : 1 ≤ i ≤

n̄xy}. Applying Lemma 3.4 to each connected component of G2 (note that each of them is
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nonamenable) and noting that ‖g‖2
2 ≥ D2‖f ‖2

2 forD−1 = max(ai), we have, for some C > 0,

M2
w‖f ‖2

2 − ‖Nf ‖2
2 ≥ C‖f ‖2

2,

whence ‖N‖ ≤ √
M2

w − C < Mw.
Now suppose that (X,E(X)) is amenable and fix ε > 0. Then, for some finite set S ⊂ X,

|∂ES|/|S| < ε. Define f (x) = aϕ(x) 1S(x). If x ∈ S and D(x) ∩ Sc = ∅ then, by (3.3),
Nf (x) = Mwf (x). Hence,

‖Nf ‖2
2 ≥ M2

w‖f ‖2
2 − 2Mwε|S|(max ai)

2

and
‖Nf ‖2

2

‖f ‖2
2

≥ M2
w − 2εMw

(
max ai
min ai

)2

.

By taking ε arbitrarily small, we prove that ‖N‖ ≥ Mw, whence Ms = Mw (recall that
‖N‖ = Ms ≤ Mw).

3.4. Examples

The first two explicit examples listed hereafter show that the class of F -multigraphs is
larger than the union of regular and quasi-transitive multigraphs. Both these examples are
modifications of regular graphs: Example 3.1 is obtained by attaching an edge to each vertex
and Example 3.2 is obtained by drawing a ‘bridge with intermediate station’ between some of
the vertices.

Example 3.1. Take a square and attach to every vertex a branch of a homogeneous tree of
degree 3, obtaining a regular graph (of degree 3) which is not quasi-transitive. If we now attach
to each vertex a new edge with a new endpoint, we obtain a nonoriented, nonamenable F -graph
(X,E(X)) which is neither regular nor quasi-transitive. It is easily seen (by Lemma 3.2) to be
locally isomorphic to a multigraph with adjacency matrix

N =
(

3 1
1 0

)
.

According to Theorem 3.6, the BRW on this graph has a pure weak phase.

Example 3.2. Take an infinite graph (X,E(X)) with a set of vertices X = {x1, x2, . . . }. If
Y = {y1, y2, . . . } is another countable set, disjoint from X, we may consider the graph with a
set of vertices Z := X ∪ Y and

E(Z) := E(X) ∪
∞⋃
i=1

{(x2i−1, yi), (yi, x2i−1), (x2i , yi), (yi, x2i )};

roughly speaking, we join x2i−1 and x2i by a bridge and we cut this bridge into two edges
by using a new vertex yi . If the graph X is nonamenable then it is possible to show that the
(multi)graph Z is nonamenable as well. By choosing (X,E(X)) regular (with deg ≡ k), we
obtain an F -graph which (by Lemma 3.2) is locally isomorphic to a multigraph with adjacency
matrix

N =
(
k 1
2 0

)
.

Again, by choosing accurately (X,E(X)) and ordering its vertices wisely, we may obtain a
graph which is neither quasi-transitive nor regular.
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The following trees are natural examples of graphs which are not quasi-transitive and,
nevertheless, are not ‘too irregular’. We show that, for these trees, nonamenability is equivalent
to the existence of a pure weak phase and the proof is not a direct application of Theorem 3.6.

Example 3.3. Given a sequence of positive natural numbers {mk}k≥1, we construct a non-
oriented, rooted tree T (with root o) such that if x ∈ T satisfies ρ(o, x) = k then it has mk+1
neighbors y such that ρ(0, y) = k+1. We call this radial graph the T{mk}-tree. If the sequence is
periodical of period d then Theorem 3.3 applies with x0 = o, n0 = d, and Y := ∪n∈NB(o, nd),
and ϕy (where y ∈ Y ) maps isomorphically the tree T onto the subtree branching from y. We
call Ti the T{m′

k}-tree obtained by means of this construction, where m′
k := mk+i−1. Roughly

speaking, we construct T1, . . . , Td by using cyclic permutations of the sequence {m1, . . . , md}.
Obviously, T = T1. Since Ti may be mapped into Tj for all i, j = 1, . . . , d (in the sense of
Remark 3.2), λw(Ti), λs(Ti), Mw(Ti), and Ms(Ti) do not depend on i.

Let us consider the finite cyclic graph Ỹ := {y1, . . . , yd}, where nyiyi+1 = nyi+1yi = 1 for
all i = 1, . . . d (with the identification yd+1 = y1). To each vertex yi we attach mi − 1 copies
of Ti+1 (again with the identification Td+1 = T1) by using mi − 1 distinct two-way edges. We
denote this connected, nonoriented F -graph by (X,E(X)); indeed, it may be mapped onto
the finite multigraph Y ′, where Y ′ = Ỹ , and n′

yiyi+1
= mi and n′

yi+1yi
= 1 for all i = 1, . . . d.

Note that X is neither quasi-transitive nor regular, unless mi = 1 for all i. The graph X is
nonamenable if and only if T1 is nonamenable, that is, if and only if there exists i such that
mi ≥ 2. In this case, according to Theorem 3.6, λw(X) < λs(X); hence, by Remark 3.2
(considering X \ Ỹ ), there exists i such that λw(Ti) < λs(Ti). This means that, for all i, we
have λw(Ti) < λs(Ti) and there is a pure weak phase on Ti . On the other hand, if mi ≡ 1 for
all i = 1, . . . , d then there is no pure weak phase (Remark 3.1).

4. Modified BRW and BRW on weighted graphs

4.1. Modified BRW

In this subsection we consider an irreducible random walk (X, P ). In the case of simple
random walks some of the results of this subsection may also be found in [15]. We study the
modified BRW where each particle at site x dies at rate 1 and breeds at rate λ and it sends the
offspring randomly according to the probability distribution p(x, ·).

We denote by p(n)(x, y) the n-step transition probabilities from x to y (n ≥ 0) and by
f (n)(x, y) the probability that the random walk starting from x hits y for the first time after
n steps (n ≥ 1). Then we define the corresponding generating functions G(x, y | z) =∑
n≥0 p

(n)(x, y)zn and F(x, y | z) = ∑
n≥1 f

(n)(x, y)zn, where x ∈ X and z ∈ C (further
details can be found in [16, Chapter I.1.B], where F is called U ).

The expected number of trails along a path� = {x0, . . . , xn} is equal toλn
∏n−1
i=0 p(xi, xi+1).

Hence, the expected number of trails along paths starting from x and reaching y for the first
time is equal to F(x, y | λ). If x is equal to y, we call them first generation trails in x. Since
G(x, x | λ) = 1/(1 − F(x, x | λ)) and the radius R of G does not depend on the choice of x,
we have R = max{λ : F(x, x | λ) ≤ 1}.
Theorem 4.1. For the modified BRW, λw = 1 and, if λ = 1, there is global extinction almost
surely. Moreover, λs = R and, if λ = R, there is local extinction almost surely.

Proof. The total number of particles Tt is a branching process with rate λ, whence the claim
for λw follows. As for the second claim, the proof is the same as in Theorems 3.1 and 3.5 using
F instead of �.
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The following corollary is the analog of Theorem 3.6 (see [2] for the definition of a strongly
reversible random walk).

Corollary 4.1. For the modified BRW, the existence of a pure weak phase is equivalent to
R > 1. If P is a strongly reversible random walk then the existence of the pure weak phase is
equivalent to nonamenability.

Proof. The result is a simple consequence of Theorem 4.1 and the main theorem of [2].

4.2. BRW on weighted graphs

Our methods apply, with minor modifications, to more general BRWs, which generalize
simultaneously BRWs on multigraphs and modified BRWs.

Let us consider (X,N), whereX is a countable (or finite) set andN = (nxy)x,y∈X is a matrix
of nonnegative weights (that is, nxy ≥ 0) such that supx∈X

∑
y∈X nxy = M < ∞. We suppose

that N is irreducible in the sense that (X,E(X)), where E(X) := {(x, y) ∈ X ×X : nxy > 0}
is a connected graph. We call (X,N) a weighted graph.

The λ-BRW is defined by setting the reproduction rate on every edge (x, y) as λnxy ; hence,
to each path {x0, . . . , xn} there corresponds a weight

∏n−1
i=0 nxixi+1 . We define γ nx,y , T nx , φnx,y ,

Ms, and Mw as in Subsection 2.1.
It is clear that the BRW on multigraphs and the modified (according to an irreducible random

walk) BRW may be viewed as BRWs on weighted graphs. Moreover, the expected number
of trails along a path {x0, x1, . . . , xn} is λn

∏n−1
i=0 nxixi+1 . Substituting the word ‘multigraphs’

with ‘weighted graphs’, all the results of Sections 2 and 3 still hold (with the exception of
Theorems 3.2 and 3.3) with unimportant modifications. In particular, extending Definition 3.1
verbatim to weighted graphs, we can prove Theorem 3.4, since in this case nxy may take just
a finite number of values and it is possible to apply Lemma 2.1 as we did in Theorem 3.2.
Clearly, we extend the results on the critical behaviors (Theorem 3.5) to this case. For regular
weighted graphs (that is,

∑
y∈X nxy = M for all x ∈ X), we prove results analogous to the

ones of Subsection 4.1.

5. Open questions

As we stated in Section 1, this paper is motivated by three main issues: the identification of
the critical value λw, the behavior of the process when λ = λs or λ = λw, and the existence of
the pure weak phase.

To complete the first point, one should verify whether the equality λw = 1/Mw holds for
every multigraph or if Mw characterizes the critical value λw only on a restricted class of
multigraphs.

As for the second one, the open question is the following: is it possible to construct a
multigraph where if λ = λw the process does not die out globally? In particular, is it possible
to find a multigraph where λs = λw but the λw-BRW does not die out globally (it certainly does
locally)?

Finally, dealing with the existence of a pure weak phase, it is well known that there is
no equivalence, in general, with nonamenability. We proved that this equivalence holds, for
instance, for the class of nonoriented F -multigraphs; we do not know what can be said in the
case of oriented F -multigraphs. To be precise: is there a nonamenable, oriented F -multigraph,
where the BRW has no weak phase? On the other hand, is it possible to find an amenable,
oriented F -multigraph where λs = λw?
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