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Abstract

In this paper, we characterise the structure of the eigencone for the Finsler Laplacian corresponding to
the first Dirichlet eigenvalue on a compact Finsler manifold with a smooth boundary.
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1. Introduction
Let (M,F) be an n-dimensional Finsler manifold, that is, a connected smooth manifold
equipped with a Finsler metric F : T M → [0,+∞). A Finsler metric F on M induces
a Finsler co-metric F∗ on M, defined on T ∗M \ {0} by F∗(x, ξ) := supFx(y)=1 ξ(y).
To consider the global analysis on a Finsler manifold M, we assume that (M, F) is
orientable throughout the paper.

Given a smooth measure m on (M, F), for a weakly differentiable vector field
V : M → T M, we define its divergence divmV : M → R through the identity∫

M
ϕdivmV dm = −

∫
M

dϕ(V) dm, (1.1)

where ϕ ∈ C∞0 (M) (that is, the set of smooth functions on M with a compact support).
For any u ∈ C∞(M), the gradient ∇u of u is defined to be the dual of the 1-form du
under the Legendre transformL : TxM→ T ∗x M for x ∈ M (see Section 2). Note that the
gradient vector field ∇u is not differentiable at points with ∇u(x) = 0 even if (M,F) and
u are smooth. However, it is continuous on M. The Finsler Laplacian ∆m is formally
defined by ∆mu := divm(∇u), which is a nonlinear elliptic differential operator of the
second order. To be more precise, ∆mu is defined in a distributional sense through the
identity ∫

M
ϕ∆mu dm = −

∫
M

dϕ(∇u) dm (1.2)

for all ϕ ∈ C∞0 (M). For the sake of simplicity, we denote ∆m as ∆ in the following.

Supported by Zhejiang Provincial NSFC (No. LY15A010002) and NNSFC (No. 11171297).
c© 2016 Australian Mathematical Publishing Association Inc. 0004-9727/2016 $16.00

316

https://doi.org/10.1017/S0004972716000034 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972716000034


[2] On the first eigencone for the Finsler Laplacian 317

Let (M, F,m) be a compact Finsler manifold (M, F) with or without a smooth
boundary and equipped with a smooth measure m. Let H1,2(M) be the Sobolev
space of L2 functions on M such that F∗(du) < ∞ with respect to the norm ‖u‖2 :=
‖u‖L2 + ‖F∗(du)‖L2 and let H1

0 be a space of functions u ∈ H1,2(M) with
∫

u dm = 0
if ∂M = ∅ and u|∂M = 0 if ∂M , ∅. For any nonzero function u ∈ H1

0 \ {0}, define the
energy of u by

E(u) :=

∫
M[F∗(x, du)]2 dm∫

M |u|
2 dm

.

In [3], the authors proved that there is a function u ∈ H1
0 \ {0} with

∫
u2 dm = 1, which

minimises the energy functional E(u). Thus, λ1 := infu∈H1
0\{0}

E(u) is a critical value
of E, which is called the first (nonzero) eigenvalue for ∆ and u is a critical point of E
corresponding to λ1, which is called the eigenfunction on (M, F,m) corresponding to
λ1. In this case, u satisfies

∆u = −λ1u (1.3)

in a weak sense. It is known that the eigenfunction u is C1,α for some 0 < α < 1
and C∞ on an open subset Mu := {x ∈ M | du(x) , 0} [3]. Further, some sharp lower
bound estimates for the first eigenvalue of the Finsler Laplacian ∆ were given in [9]
and [10]. It is an interesting question to introduce and study the higher eigenvalues
and the associated eigenfunctions for the Finsler Laplacian.

Denote by V1 the union of the zero function and the set of all eigenfunctions
corresponding to λ1. In general, V1 is a cone, not a linear subspace in H1

0 . Therefore,
we will call V1 the eigencone corresponding to λ1. If F is Riemannian, then all
eigenfunctions are C∞ and the eigencone V1 is a finite-dimensional subspace in H1

0 .
In particular, the eigencone V1 is one dimensional for the Dirichlet problem [2]. It is
a natural question to study the structure of the first eigencone V1 for a general Finsler
metric. In this note, we give a characterisation of the structure of the first Dirichlet
eigencone Vλ1 , consisting of the zero function and the Dirichlet eigenfunctions
corresponding to λ1 (that is, the weak solution of (1.3) with u|∂M = 0), for the Finsler
Laplacian. In fact, we get the following result.

Theorem 1.1. Let (M, F,m) be an n-dimensional compact Finsler manifold with a
smooth boundary equipped with a smooth measure m. Assume that u ∈ H1

0 is a
Dirichlet eigenfunction corresponding to the first eigenvalue λ1. Then either u(x) > 0
or u(x) < 0 in M \ ∂M. Furthermore, the first Dirichlet eigencone Vλ1 is a one-
dimensional or two-dimensional cone. For the latter case, F must be nonreversible.

In fact, if there are two linearly independent Dirichlet eigenfunctions with opposite
signs in Vλ1 , then Vλ1 is a two-dimensional cone. Otherwise, Vλ1 is a one-dimensional
cone (see the proof of Theorem 1.1 below). Example 3.1 below shows that Vλ1 is
a two-dimensional cone if a , 0 and a one-dimensional cone if a = 0. Here we
say that two eigenfunctions f (x) and h(x) in Vλ1 are linearly dependent if there is a
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nonzero constant c such that f = ch. Otherwise, we say that f (x) and h(x) are linearly
independent. A nonzero function is always linearly independent.

In particular, if F is reversible, then all eigenfunctions in Vλ1 are linearly dependent.
In this case, Vλ1 is one dimensional (cf. Remark 3.6) and Theorem 1.1 is reduced to
Theorem 1.2 in [3]. Further, if F is Riemannian, then the Laplacian is a linear elliptic
differential operator. Theorem 1.1 is reduced to the classical results (cf. Corollary 2 of
Chapter I in [2], Theorem 8.38 in [4] or Theorem 1.3 in [5]).

2. Preliminaries
In this section, we briefly recall some fundamental concepts in Finsler geometry.

For details, we refer to [1] or [7]. Moreover, we shall make some preparations to prove
Theorem 1.1.

Let M be an n-dimensional connected smooth manifold. A Finsler metric F on M
means a function F : T M → [0,∞) with the following properties:

(1) F is C∞ on T M \ {0};
(2) F(x, λy) = λF(x, y) for any (x, y) ∈ T M and all λ > 0;
(3) the matrix (gi j) = ((1/2)(∂2F(x, y)/∂yi∂y j)) is positive.

Such a pair (M, F) is called a Finsler manifold. Given a smooth measure m, the triple
(M,F,m) is called a Finsler measure space. It is easy to see that F2(x, y) = gi j(x, y)yiy j.

A Finsler metric F on M is said to be reversible if F(x,−y) = F(x, y) for all x ∈ M
and y ∈ TxM. Otherwise, F is said to be nonreversible. In this case, we can define the
reverse Finsler metric

←−
F (x, y) by

←−
F (x, y) := F(x,−y).

Given a Finsler metric F on a manifold M, there is a dual Finsler metric F∗ on the
cotangent bundle T ∗M given by

F∗(x, ξx) := sup
y∈Tx M\{0}

ξ(y)
F(x, y)

for all ξ ∈ T ∗x M. (2.1)

The Legendre transformation L : T M → T ∗M is defined by

L(y) :=
{

gy(y, ·) y , 0,
0 y = 0.

One can check that it is a diffeomorphism from T M\{0} onto T ∗M\{0} and norm-
preserving, namely, F(y) = F∗(L(y)) for all y ∈ T M (see [7, Section 3.1]). From (2.1),
we have the Cauchy–Schwartz inequality

gy(y, v) ≤ F(y)F(v), (2.2)

for y, v ∈ TxM and y , 0. Equality holds if and only if v = cy for some c = c(x) ≥ 0
[7, Lemma 1.2.3].

For a smooth function u : M → R, we define the gradient vector ∇u(x) of u at x by
∇u(x) := L−1(du(x)) ∈ TxM. In a local coordinate system, we can re-express ∇u as

∇u(x) =

gi j(x,∇u)
∂u
∂xi

∂

∂x j x ∈ Mu,

0 x ∈ M \ Mu,
(2.3)
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where Mu = {x ∈ M | du(x) , 0}. Obviously, ∇u = 0 if du = 0. In general, ∇u is only
continuous on M, but smooth on Mu.

Given a smooth measure dm = σ(x) dx and a weakly differentiable vector field V on
M, the divergence divmV : M → R of V is defined by (1.1) and the Finsler Laplacian
∆m acting on functions u ∈ H1,2(M) is formally defined by ∆mu := divm(∇u). To be
more precise, ∆mu is the distributional Laplacian defined through the identity (1.2).
We shall simply denote divm and ∆m by div and ∆ in the following.

Let ψ := (xi) : U ⊂ M→ Rn be a local coordinate system in M. It induces a standard
local coordinate system (xi, ηi) in T ∗M by mapping η = ηi dxi|x → (xi, ηi).

Set

Ai(x, η) :=
1
2
∂[F∗]2

∂ηi
(x, η)

and

g∗i j(x, η) =
∂Ai

∂η j
(x, η) =

1
2
∂2[F∗2]
∂ηi∂η j

(x, η).

Since F(x, y) = F∗(x, η), where η ∈ T ∗x M is the dual of the vector y ∈ TxM, we have
gi j(x, y) = g∗i j(x, η). By choosing a smaller coordinate neighbourhood U ⊂ M if
necessary, one may assume that there exists a positive constant C ≥ 1 such that, for
x ∈ ψ(U) and nonzero ξ, η ∈ Rn,

|Ai(x, η)| ≤ C|η|, (2.4)∣∣∣∣∣∂Ai

∂x j (x, η)
∣∣∣∣∣ ≤ C|η|, (2.5)

C−1|ξ|2 ≤ g∗i j(x, η)ξiξ j ≤ C|ξ|2, (2.6)

which implies that

C−1|η|2 ≤ F∗2(x, η) ≤ C|η|2, (2.7)

|[Ai(x, η) − Ai(x, ζ)]ξi| ≤ C|η − ζ ||ξ|. (2.8)

Note that A(x,du) = (Ai)(x,du) = ∇u on Mu for any function u ∈ C∞(M). Then (1.3)
is equivalent to∫

ψ(U)

(
Ai(x, du)

∂ϕ

∂xi − λ1uϕ
)
σ(x) dx = 0 for all ϕ ∈ C∞0 (ψ(U)). (2.9)

Thus, (2.9) is an elliptic quasilinear equation.
Consider the following quasilinear differential equation (in a weak sense):

divA(x, u, du) + B(x, u, du) = 0 (2.10)

defined on an open set Ω in Rn. Assume that A(x, u, η) and B(x, u, η) satisfy the
following assumptions: for all K ≥ 0 and all (x, u, η) ∈ Ω × (−K,K) × Rn,

|A(x, u, η)| ≤ a0|η|
α−1 + |a1(x)u|α−1, (2.11)

η · A(x, u, η) ≥ |η|α − |a2(x)u|α, (2.12)

|B(x, u, η)| ≤ b0|η|
α + b1(x)|η|α−1 + (b2(x))α|u|α−1, (2.13)
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where α > 1, a0, b0 are constants and ai(x), bi(x) are nonnegative measurable functions
with |ai(x)|, |b j(x)| ≤ µ, where µ is a constant. Trudinger proved the following Harnack
inequality in [8].

Lemma 2.1 [8]. Let u(x) be a weak solution of (2.10) in a cube Ω = Ω(3ρ) ⊂ Rn with
0 ≤ u ≤ K in Ω, where A(x, u, du) and B(x, u, du) satisfy (2.11)–(2.13). Then

max
Ω(ρ)

u(x) ≤ C′min
Ω(ρ)

u(x),

where C′ = C′(α, n, a0, b0K, ρµ) is a constant and Ω(ρ) := Ωx0 (ρ) means a cube in Rn

of side ρ and centre x0 whose sides are parallel to the coordinate axes.

From Lemma 2.1, one obtains the following result.

Proposition 2.2. Let (M,F,dµ) be a compact Finsler manifold with a smooth boundary
and u be a nonnegative first Dirichlet eigenfunction on (M, F). Then u is positive on
M \ ∂M.

Proof. Assume that there is a point x0 ∈ M \ ∂M such that u(x0) = 0. Choose a
coordinate neighbourhood (U, ψ) at x0 such that ψ(U) ⊂ Ωx0 (3ρ), a cube in Rn. By
the assumption, it is easy to see that, for a nonnegative function u, σA(x, du) and
B(x, u, du) = λ1σu in (2.9) satisfy (2.11)–(2.13) with α = 2 and a1 = a2 = b0 = b1 = 0
from (2.4)–(2.8). Thus, it follows from Lemma 2.1 that u(x) ≡ 0 on a sufficiently
small cube Ωx0 (ρ). Since M is connected and compact, we have u(x) ≡ 0 on M, which
is impossible. �

Similarly, we can define the reverse gradient
←−
∇ and the reverse Laplacian

←−
∆ for

the reverse Finsler metric
←−
F . In fact, we have ←−g (x, y) = g(x,−y),

←−
∇u = −∇(−u) and

←−
∆u = −∆(−u). Note that ∇(−u) and −∇(u) are different. Obviously, if u is a weak
solution of ∆u = −λ1u, then −u is a weak solution of

←−
∆u = −λ1u and vice versa. Let

V1 be the eigencone for ∆ corresponding to λ1 and

←−
V 1 := {u ∈ H1

0 \ {0} |
←−
∆u = −λ1u in a weak sense} ∪ {0},

which is the eigencone for
←−
∆ corresponding to λ1. Obviously, if F is reversible, then

V1 =
←−
V 1. In general, V1 ,

←−
V 1 and V1,

←−
V 1 are not subspaces in H1

0 . The following
lemma is obvious.

Lemma 2.3.

(1) u ∈ V1 if and only if −u ∈
←−
V 1.

(2) u ∈ V1 if and only if ku ∈ V1 for a nonnegative constant k, if and only if ku ∈
←−
V 1

for any nonpositive constant k.
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Recall that Vλ1 is the first Dirichlet eigencone for the Dirichlet eigenvalue problem.
As above, we can define

←−
V λ1 . In this case, λ1 > 0 and the corresponding eigenfunction

u cannot be constant. For any nonpositive function u ∈ Vλ1 , we have 0 ≤ −u ∈
←−
V λ1

from Lemma 2.3. By Proposition 2.2, we have the following theorem.

Theorem 2.4. If u is a nonnegative (respectively nonpositive) first Dirichlet
eigenfunction on a compact Finsler manifold (M, F) with a smooth boundary, then
u is positive (respectively negative) on M \ ∂M.

3. Proof of Theorem 1.1

In this section, we are going to study the eigenfunctions corresponding to the first
eigenvalue for the Dirichlet problem and prove Theorem 1.1. First of all, we give an
example.

Example 3.1. Let F(y) = |y| + 〈a, y〉 be a Minkowski norm on Rn, where a is a constant
vector with |a| < 1, 〈· , ·〉 is a usual Euclidean inner product and | · | is a Euclidean norm.
With respect to the Busemann Hausdorff measure, the volume form of F is given by

dV = (1 − |a|2)(n+1)/2 dx

(see [7, Example 2.2.2]). Let u(y) = f (F(y)) for some nondecreasing C2 function f on
R+. Then

∇u =
f ′(F(y))

F(y)
y, ∆u =

(n − 1) f ′(F(y))
F(y)

+ f ′′(F(y)). (3.1)

If f is nonincreasing, then analogous expressions hold for v(x) = f (F(−y)), that is,

∇v =
f ′(F(−y))

F(−y)
y, ∆v =

(n − 1) f ′(F(−y))
F(y)

+ f ′′(F(−y)). (3.2)

For nonincreasing f , ∇ and ∆ in (3.1) are replaced by
←−
∇ and

←−
∆ . Similarly, ∇ and ∆ in

(3.2) are replaced by
←−
∇ and

←−
∆ for nondecreasing f .

Assume that λ1 is the first Dirichlet eigenvalue of ∆ and f is a strictly increasing
function satisfying the following ordinary differential equation on the ball Bn(1) :=
{y ∈ Rn | F(y) < 1}:

f ′′(t) +
n − 1

t
f ′(t) + λ1 f (t) = 0, f (1) = 0.

Then both u(y) = f (F(y)) and v(y) = − f (F(−y)) are the first Dirichlet eigenfunctions
of ∆ corresponding to λ1. In fact, λ1(Bn(1)) = λ1(Bn(1)), where λ1(Bn(1)) is the first
eigenvalue of the Euclidean Laplacian ∆0 with the first eigenfunction u0(y) = f (|y|)
defined on an Euclidean ball Bn(1) in Rn (cf. [6, Example]).

Further, u(y) and v(y) are linearly independent unless F is reversible. In fact, assume
that there is a constant c such that u = cv, that is, f (F(y)) = −c f (

←−
F (y)). Differentiating
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this with respect to y yields Fyi = −c
←−
F yi , where we use f ′ > 0. By contracting it with yi,

we have F(y) = −c
←−
F (y). Hence,

←−
F (y) = c2←−F (y), which means that c2 = 1. Since F > 0

and
←−
F > 0, we have c = −1. Thus, F(y) =

←−
F (−y), that is, F is reversible. Observe that

F(y) = |y| + 〈a, y〉 is nonreversible if and only if a , 0. Thus, if a , 0, then u(y) and
v(y) are linearly independent.

The above example shows that the first Dirichlet eigencone for the Finsler Laplacian
may not be one dimensional. In the following, we always assume that (M, F) is a
compact Finsler manifold with a smooth boundary.

Lemma 3.2. Let u be a Dirichlet eigenfunction on (M, F) corresponding to the first
eigenvalue λ1. Assume that u(x0) ≥ 0 for some point x0 ∈ M. Then u(x) ≥ 0 on M.

Proof. Since u(x0) ≥ 0, there is a coordinate neighbourhood (U, ψ) such that ψ(U) =

Br(x0) ⊂ Rn and u(x) ≥ 0 on U. Note that u satisfies (2.9) on ψ(U). By [3, Lemma 3.1],
u ∈ H2,2. Thus, we write (2.9) in a nondivergence form:

Lu := ai j ∂2u
∂xi∂x j + bi ∂u

∂xi = −λ1u, x ∈ Br(x0),

where

ai j(x) := g∗i j(x, du(x)), bi(x) :=
∂ lnσ
∂x j g∗i j(x, du(x)) +

∂g∗i j(x, du(x))
∂x j .

Obviously, L is an elliptic operator and bi ∈ L∞(Br(x0)). Let ε > 0 and α > 0. For any
x = (x1, · · · , xn) ∈ Br(x0), we assume that 0 ≤ x1 − x1

0 ≤ r without loss of generality.
Define

v(x) := sup
∂Br(x0)

u+ + λ1(eαr − eα(x1−x1
0)) sup
Br(x0)

u,

where u+ = max{u, 0}. Assume that
∑n

i=1 |b
i|2 ≤ b2. For x ∈ Br(x0),

Lv = ai j ∂2v
∂xi∂x j + bi ∂v

∂xi

= λ1α(−αa11 − b1)eα(x1−x1
0) sup
Br(x0)

u

≤ λ1α
(
−
α

C
+ b

)
eα(x1−x1

0) sup
Br(x0)

u,

where we use (2.6). Choose α = C(b + 1) > 1 such that Lv ≤ −λ1 supBr(x0) u. Thus,

L(v − u) = Lv − Lu ≤ −λ1 sup
Br(x0)

u + λ1u ≤ 0.

Obviously, v − u ≥ 0 on ∂Br(x0). By the maximum principle,

inf
Br(x0)

(v − u) ≥ inf
∂Br(x0)

(v − u)− = 0.
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Hence,
sup
∂Br(x0)

u+ = inf
Br(x0)

v ≥ sup
Br(x0)

u ≥ 0,

which means that u(x) ≥ 0 on ∂Br(x0). Otherwise, we have u ≡ 0 in Br(x0). Since
M is compact and connected, u is identically zero on M, which is impossible. Thus,
u(x) ≥ 0 on M by the compactness and connectivity of M. �

If u ∈ Vλ1 , then −u ∈
←−
V λ1 . So, we have the following counterpart to Lemma 3.2.

Lemma 3.2′. Let u be a Dirichlet eigenfunction on (M,F) corresponding to λ1. Assume
that u(x0) ≤ 0 for some point x0 ∈ M. Then u(x) ≤ 0 on M.

The following proposition follows directly from Lemmas 3.2–3.2′ and Theorem 2.4.

Proposition 3.3. Let u be a Dirichlet eigenfunction on (M, F) corresponding to λ1.
Then u is nonnegative or nonpositive on M. Consequently, u is positive or negative on
M \ ∂M.

Lemma 3.4. Let u and v be two nonnegative Dirichlet eigenfunctions on (M, F)
corresponding to λ1. Then there exists a positive constant c such that v = cu.

Proof. Since 0 ≤ u ∈ Vλ1 , u is a nonnegative solution of the following equation:∫
M

dφ(∇u) dm = λ1

∫
M

uφ dm (3.3)

for any φ ∈ C∞0 (M). From the definition of the eigenfunction, u, v are not constant on
M. Consider the functions uε := u + ε > 0 and vε := v + ε > 0, where ε is a sufficiently
small positive number. Obviously, duε = du. Hence, we have Muε = Mu, ∇uε = ∇u and
∆uε = ∆u. Similar equalities hold for v and vε .

Let

φ1 =
u2
ε − v2

ε

uε
and φ2 =

v2
ε − u2

ε

vε
be test functions in C1

0(M). From (3.3),

λ1

∫
M

( u
uε
−

v
vε

)
(u2
ε − v2

ε ) =

∫
M

dφ1(∇u) +

∫
M

dφ2(∇v). (3.4)

Note that

dφ1 =

(
1 +

v2
ε

u2
ε

)
duε −

2vε
uε

dvε , dφ2 =

(
1 +

u2
ε

v2
ε

)
dvε −

2uε
vε

duε . (3.5)

Substituting (3.5) into (3.4) yields

λ1

∫
M

( u
uε
−

v
vε

)
(u2
ε − v2

ε ) =

∫
M

u2
ε + v2

ε

u2
ε

F2(∇uε) +

∫
M

u2
ε + v2

ε

v2
ε

F2(∇vε)

−

∫
M

2vε
uε

dvε(∇uε) −
∫

M

2uε
vε

duε(∇vε). (3.6)
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Since dvε(∇uε) = g∇vε (∇vε ,∇uε) ≤ F(∇vε)F(∇uε) by (2.2), from (3.6),

λ1

∫
M

( u
uε
−

v
vε

)
(u2
ε − v2

ε ) ≥
∫

M
(u2
ε + v2

ε )
[F(∇uε)

uε
−

F(∇vε)
vε

]2
≥ 0. (3.7)

Note that u and v are positive on M \ ∂M by Theorem 2.4. Moreover, it is obvious that

lim
ε→0+

∫
M

( u
uε
−

v
vε

)
(u2
ε − v2

ε ) = 0.

By taking a limit ε → 0+ on both sides of (3.7) and using Fatou’s lemma, there
is a nonnegative function c = c(x) such that ∇v = c∇u from the Cauchy–Schwartz
inequality (2.2) and

F(∇u)
u

=
F(∇v)

v
(3.8)

almost everywhere on M. Thus, v = cu almost everywhere on M from (3.8). By
continuity, v = cu holds at every point on M.

Obviously, c(x) > 0 on Mu ∩ Mv. Thus, gi j(x,∇v(x)) = gi j(x,∇u(x)) on Mu ∩ Mv.
From this and (2.3), one obtains that vx j = cux j , which means that c is a constant on
Mu ∩ Mv. Since M is connected and compact, and c(x) is continuous, c is a positive
constant on M. This completes the proof. �

If u ∈ Vλ1 and v ∈ Vλ1 are two nonpositive eigenfunctions corresponding to λ1, then
−u ∈

←−
V λ1 and −v ∈

←−
V λ1 are two nonnegative eigenfunctions from Lemma 2.1. Thus,

from Lemma 3.4, one obtains the following result.

Lemma 3.4′. Let u and v be two nonpositive Dirichlet eigenfunctions on (M, F)
corresponding to λ1. Then there exists a positive constant c such that v = cu.

For the case when u and v have opposite signs on M, we have the following result.

Lemma 3.5. Let u and v be two Dirichlet eigenfunctions on (M, F) corresponding to
λ1. Suppose that u ≥ 0 and v ≤ 0 on M. Then one of the following holds.

(1) Vλ1 =
←−
V λ1 . Equivalently, u and v are linearly dependent on M.

(2) u and v are linearly independent. In this case, F must be nonreversible.

Proof. Note that both u and v are not zero identically on M. Assume that −v = cu
for some constant c > 0. Then −v,−u ∈ Vλ1 , which implies u, v ∈

←−
V λ1 by Lemma 2.1.

Thus, u, v ∈ Vλ1 ∩
←−
V λ1 and hence −u, −v ∈ Vλ1 ∩

←−
V λ1 . For any other eigenfunction

w ∈ Vλ1 , w must be nonnegative or nonpositive on M by Proposition 3.3. Thus, either
w, u are linearly dependent or w, v are linearly dependent. In any case, w ∈

←−
V λ1 and

vice versa. Hence, Vλ1 =
←−
V λ1 . Conversely, if Vλ1 =

←−
V λ1 , then |u|, |v| ∈ Vλ1 for any u,

v ∈ Vλ1 . Thus, |u| = c|v| for some constant c > 0 by Lemma 3.4. Obviously, u and v are
linearly dependent.

If u and v are not linearly dependent, then they are linearly independent and hence
Vλ1 ,

←−
V λ1 , which implies that F is nonreversible. This finishes the proof. �
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Remark 3.6. If F is reversible, then |u|, |v| ∈ Vλ1 for any u, v ∈ Vλ1 . Thus, |u| = c|v| for
some positive constant c by Lemma 3.4. In this case, Vλ1 =

←−
V λ1 and all eigenfunctions

in Vλ1 are linearly dependent. Consequently, Vλ1 is a one-dimensional cone, which was
proved in [3] in a different way.

Proof of Theorem 1.1. The first-half result follows from Proposition 3.3. Further, if
all eigenfunctions in Vλ1 have the same sign, then these eigenfunctions are linearly
dependent by Lemmas 3.4–3.4′. Thus, Vλ1 is one dimensional.

If there exist two eigenfunctions u, v ∈ Vλ1 for which u ≥ 0 and v ≤ 0, then u and v
are linearly independent unless Vλ1 =

←−
V λ1 by Lemma 3.5. If Vλ1 =

←−
V λ1 , then Vλ1 is one

dimensional by Remark 3.6. If Vλ1 ,
←−
V λ1 , then u, v are linearly independent. In this

case, Vλ1 is a two-dimensional cone and F is nonreversible by Lemma 3.5 again. �
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