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Abstract

Objective: To evaluate the utility of selective reactive whole-genome sequencing (WGS) in aiding healthcare-associated cluster investigations.

Design: Mixed-methods quality-improvement study.

Setting: Thes study was conducted across 8 acute-care facilities in an integrated health system.

Methods: We analyzed healthcare-associated coronavirus disease 2019 (COVID-19) clusters between May 2020 and July 2022 for which
facility infection prevention and control (IPC) teams selectively requested reactive WGS to aid the epidemiologic investigation. WGS was
performed with real-time results provided to IPC teams, including genetic relatedness of sequenced isolates. We conducted structured
interviews with IPC teams on the informativeness of WGS for transmission investigation and prevention.

Results: In total, 8 IPC teams requestedWGS to aid the investigation of 17 COVID-19 clusters comprising 226 cases and 116 (51%) sequenced
isolates. Of these, 16 (94%) clusters had at least 1 WGS-defined transmission event. IPC teams hypothesized transmission pathways in
14 (82%) of 17 clusters and used data visualizations to characterize these pathways in 11 clusters (65%). The teams reported that in 15 clusters
(88%), WGS identified a transmission pathway; the WGS-defined pathway was not one that was predicted by epidemiologic investigation
in 7 clusters (41%). WGS changed the understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission in 8
clusters (47%) and altered infection prevention interventions in 8 clusters (47%).

Conclusions: Selectively utilizing reactive WGS helped identify cryptic SARS-CoV-2 transmission pathways and frequently changed the
understanding and response to SARS-CoV-2 outbreaks. Until WGS is widely adopted, a selective reactive WGS approach may be highly
impactful in response to healthcare-associated cluster investigations.

(Received 1 September 2023; accepted 13 November 2023; electronically published 22 December 2023)

Healthcare-associated infections due to severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) represent a preventable
risk to patients and healthcare workers. Hospital-onset corona-
virus disease 2019 (COVID-19) cases have been associated with
increased length of stay and higher mortality.1,2 Identifying and
interrupting SARS-CoV-2 transmission in acute-care settings can
be challenging due to the incubation period,3 contagiousness in
asymptomatic individuals,4 community infection prevalence levels,5

and variable compliance with infection prevention measures.6,7

These characteristicsmake SARS-CoV-2 an aptmodel to investigate
the role of using genetic relatedness testing to confirm potential
transmission routes identified by epidemiologic investigation.

Whole-genome sequencing (WGS) is currently the gold
standard tool for elucidating in-hospital transmission pathways
in acute-care settings.8–12 For COVID-19 disease, approaches have
included both WGS of all hospital-onset isolates (“WGS
surveillance”) to identify transmission events and reactive
sequencing to investigate potential outbreaks.2,13–15 WGS surveil-
lance identifies genetically related viruses in individuals without
epidemiologic links in as many as 11%–22% of sequenced
specimens.8 Although WGS surveillance may identify all genet-
ically related COVID-19 cases, it has practical limitations
including resource costs, experienced staff, and availability.16,17

Reactive sequencing methods utilize WGS to confirm or refute
hypothesized transmission routes after a suspected outbreak to
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provide useful information in identifying a cluster and performing
an epidemiologic investigation.8,9 Where surveillance WGS is
unfeasible and there are barriers to the routine use of reactive
WGS, a selective reactive strategymay be appropriate. Guidance on
when and how to employ the selective use of reactive WGS for
infection prevention is mostly limited to potential use cases with at
least 1 suggested clinical decision aid,18 although at the time of
writing this approach had not been applied to COVID-19.19

Understanding when reactive WGS is most impactful may help
inform effective use of a limited resource for COVID-19 and
potentially other healthcare-associated pathogens.

In this quality improvement evaluation, we retrospectively
reviewed the utility of selective reactive WGS to aid COVID-19
cluster investigations in a multifacility health system. We present a
description of COVID-19 clusters, genomic findings, and an
interview-based mixed-methods examination of the impact of
selective reactive WGS to elucidate transmission pathways and
inform infection prevention responses.

Methods

Setting and design

UPMC is a 40-hospital, integrated academic healthcare system
with coordinated infection prevention practices.20 Individual
facility infection prevention and control (IPC) teams facilitate
COVID-19 contact tracing, conduct cluster investigations, and
perform public health reporting. The characteristics of facilities
included in this analysis that used WGS to support at least 1
COVID-19 outbreak investigation are described in Supplementary
Table S1 (online). Admission screening was not performed for
asymptomatic individuals except for facility F, an acute-care
behavioral health hospital. This study includes outbreaks that were
investigated from May 2020 through July 2022.

We conducted a mixed-methods study to understand the
impact of WGS to elucidate transmission pathways and inform IPC
responses.21 The quantitative phase consisted of characterizing
findings from selective WGS used by IPC teams in their
epidemiological investigations of potential healthcare-associated
COVID-19 outbreaks. The qualitative phase utilized structured
interviews with IPC teams to explore the contribution of WGS to
COVID-19 cluster investigations and impact on IPC team practices.

This investigation underwent formal review and was granted
ethical approval (project nos. 4092 and 4094) as a quality
improvement project by the UPMC Quality Improvement
Review Committee.

Genomic relatedness of SARS-CoV-2 isolates

Reactive WGS is performed to support epidemiologic cluster
investigations at the Microbial Genomics Epidemiology Laboratory
(MiGEL) at the University of Pittsburgh.22,23 Reactive WGS was
available as a resource for COVID-19 cluster investigations within
UPMC facilities through a structured request process (Supplementary
Fig. S1 online). Local IPC teams reviewed all SARS-CoV-2-positive
tests among patients and reported illness or positive tests among
healthcare workers. They also performed contact tracing to identify
potentially exposed individuals. Patients and healthcare workers were
considered a case at the discretion of investigating local IPC team
based on nucleic acid amplification testing, antigen testing, and/or
COVID-19 disease based on epidemiologic exposure. If a potential
cluster was identified, local IPC investigated possible source(s) and
transmission routes and then implemented or reinforced infection

prevention measures. Asymptomatic screening was routinely
performed among patients following an exposure identified via
contact tracing. Asymptomatic screening was selectively and
infrequently used among healthcare workers and/or indirect unit-
based patient contacts when an outbreak was suspected but
transmission pathways could not be ascertained. IPC teams could
request WGS of cluster isolates to resolve uncertain transmission
pathways or understand failures of IPC practice to inform future
prevention measures.

Clinical nasal or nasopharyngeal swab samples sequenced in this
study were obtained from Food and Drug Administration-approved
nucleic acid amplification testing platforms or molecular laboratory
developed test [ref: https://www.fda.gov/media/140545/download].
These isolates were collected by MiGEL and were deidentified for
sequencing. Nucleic acids were extracted using the MagMAX Viral
RNA/Pathogen isolation kits (ThermoFisher Scientific, Waltham,
MA) according to the manufacturer’s instructions. Sequencing
libraries were prepared using either the ARTIC V3 protocol24 or the
IlluminaRNAprepwith enrichment (L) protocol and the respiratory
virus oligo panel (RVOPv1).25 Libraries were sequenced on a
NextSeq550 high-output flow cell using 150-bp paired-end reads.
The resulting reads were aligned to Wuhan-Hu-1 (MN908947)
reference sequence. A detailed description of the genomic data
analyses is presented in Srinivasa et al.22 Briefly, single-nucleotide
polymorphisms (SNPs) were identified using Breseq and hierarchi-
cal clustering was performed using the single linkage clustering
method for all clusters except cluster 14. For cluster 14, average
linkage clustering with a 3-SNP cutoff was used. A pairwise SNP
difference of ≤2 was used to define genetically related SARS-CoV-2
genomes for all other clusters.17

For each request, a report was prepared that included a pairwise
SNP distance matrix, Pangolin lineages for sequenced isolates, and a
detailed explanation of the genomic investigation. The report was
provided to the requesting local IPC teams and to UPMC system IPC
leadership to augment the traditional epidemiologic investigation.

Structured interviews

Structured interviews of local IPC teams were conducted in
January and February of 2023 separately for each individual cluster
for which WGS was performed. Interviews were conducted by one
investigator (T.R.) using a standardized interview form
(Supplementary Fig. S2 online). Prior to the interview, additional
IPC materials were requested (if present) to supplement under-
standing of cluster investigations, including line lists, transmission
visualizations, email communications, and other pertinent inves-
tigation documentation. Extended responses were recorded as field
notes that were discussedwith the IPC team to ensure agreementwith
qualitative statements. These responses underwent inductive coding
to identify common themes for reporting (by T.R.). Quantitative and
qualitative components from the interviews were reported as
frequencies. Interviews were conducted and data were recorded
using an organization-hosted web-based application suite (Microsoft
Teams, Forms and Excel; Redmond, WA). Consolidated criteria for
Reporting Qualitative research (COREQ) framework was used to
enhance reporting of structured interview responses.26

Results

Description of investigated clusters

Between May 1, 2020, and August 1, 2022, IPC teams from 8
UPMC facilities requested and received reactive WGS analyses for
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17 COVID-19 clusters. These clusters comprised 226 adults
identified as potentially part of an outbreak: 132 patients (58%) and
94 healthcare workers (24%). Themedian number of individuals in
the suspected outbreaks was 10 (range, 3–26). Of 226 suspected
cases, 182 isolates (81%) were submitted for sequencing, from
which 116 high-quality genomes (51%) were obtained for cluster
analysis (Supplementary Tables S2 and S3 online).

Genomic characterization of SARS-CoV-2 outbreak isolates

Among 17 investigated clusters, 16 clusters (94%) had ≥2
genetically related isolates among sequenced isolates (Fig. 1).
Also, 5 clusters (29%) had multiple genetically distinct subclusters,
including 4 (24%) with 2 subclusters (clusters 6, 9, 10 and 17) and 1
cluster (6%) with 3 subclusters (cluster 14). Figure 2 shows the
genomic clustering of sequenced SARS-CoV-2 isolates among the
16 investigated clusters with ≥2 genetically related isolates. The
average number of genetically related isolates within an inves-
tigated cluster was 5.5 (range, 2–20). A heatmap of the pairwise
SNP comparisons is provided in Supplementary Figure 3 (online).

When we compared the SARS-CoV-2 genomes used in the
study to publicly available genomes from Pennsylvania, the study
isolates represented circulating strains in the community at the
time of each cluster (data not shown, sequence information in
Supplementary Materials online).

Structured interviews

Overall, 17 structured interviews were completed among the 8 IPC
teams requesting WGS to support cluster investigations. One IPC
team supports both facilities A and H as well as 2 separate teams
support the acute-care and long-term care clinical areas of facility D.
Details of cluster investigations, including epidemiologically sus-
pected transmission routes,WGS-supported transmission routes, and
description of the clusters are provided in Supplementary Tables S4a
and S4b (online). The most common suspected transmission routes
on epidemiologic investigation by IPC teams prior to WGS were
patient-to-patient and healthcare worker-to-patient routes, each
occurring in 53% of investigations. The most common WGS-
supported transmission route was patient to patient (53%), followed
by healthcare worker to patient (41%).

Transmission pathways were hypothesized prior to WGS in
82% of cluster investigations, and transmission visualizations were
used in ∼65% of investigations (Table 1). When transmission
visualizations were used, 10 were Gantt charts (clusters 1, 3, 4, 5, 6,
7, 11, 12, 14 and 15), 2 were spider charts (clusters 9 and 16), 1 was
a cluster map (cluster 7), and 1 was a timeline (cluster 4). Selected
examples of data visualizations are provided in Supplementary
Figures S4a–S4c (online).

IPC teams reported that WGS identified at least 1 transmission
pathway in 16 (88%) of 17 clusters. The WGS-identified pathway
was not a predicted pathway in 7 clusters (41%), andWGS changed
the understanding of transmission in 8 clusters (47%) (Table 1).
IPC teams reported changing the interventions to prevent further
transmission in 8 (47%) of 17 cases (Table 1). Examples of changes
included the following: education of relevant stakeholders (8
clusters), enhanced cleaning procedures (4 clusters), and changed
the use of common spaces (2 clusters). In the 8 cluster
investigations for which WGS results changed the understanding
of transmission, all 8 investigations (100%) had a pre-WGS
hypothesized pathway and 7 (88%) used transmission visualiza-
tions. For the 8 investigations for which infection prevention
measures were changed because of WGS, 7 (88%) had pre-WGS
hypothesized transmission pathways and 6 (75%) used trans-
mission visualizations.

Discussion

In this mixed-methods analysis of 17 COVID-19 clusters in 8
healthcare facilities for which reactive WGS was used, 16 (94%) of
the clusters had 1 or moreWGS-defined outbreaks.WGS provided
likely transmission pathways in 88% of suspected outbreaks,
revealing a novel pathway or elucidating transmission pathways in
>40% of the investigated clusters, and affecting a change in the
interventions to interrupt transmission. Using COVID-19 as a
model, we have demonstrated the utility of selective reactive WGS.

We found that outbreaks were not frequently resolvable using
traditional epidemiologic methods alone, which was consistent
with multiple studies implicating the effectiveness of WGS in both
confirming and refuting cryptic transmission.8,27–29 Adding WGS
can identify transmission events that may be either missed or
misidentified using traditional epidemiologic methods. In the
COG-UK study, investigators performed prospective sequencing

Figure 1. Genetic relatedness among SARS-CoV-2 isolates within
investigated healthcare-associated COVID-19 clusters.
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Figure 2. Genomic clustering of
SARS-CoV-2 isolates among the 17
investigated clusters. Note: SNP,
single-nucleotide polymorphism; x-
axis denotes days since initial case
in the cluster.
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and provided either “rapid” (<48 hours) or “longer-turnaround”
(5–10 days) feedback to IPC teams to assist in cluster investigations
and transmission interruption.17 The intervention was resource
intensive, returned reports in <50% of cases, and did not
demonstrate a decrease in hospital-onset COVID-19 compared
to a baseline period without sequencing. However, the information
did change IPC interventions in ∼7%–20% of cases.17 Although
our study was not designed to test the impact of WGS in reducing
transmission, we did demonstrate that selective reactive WGS can
be effective with less resource consumption and that it retains
potential to reduce future transmission events.

Our study is not the first to show the utility of a reactive WGS
strategy in COVID-19 infection prevention. In a single-center, 18-
month trial using “on-demand” reactive WGS to characterize 6
outbreaks, WGS commonly refuted epidemiologic hypotheses for
transmission (29% of outbreaks) and informed infection pre-
vention measures, changing practice in 5 of 6 (83%) outbreaks.30

However, this approach was not selective because it used defined
criteria to trigger investigations of outbreaks with WGS, and did
not describe epidemiologic investigation characteristics that may
have indicated where WGS was most useful. In our investigation,
we attempted to characterize the hypothesis generation about
transmission pathways that preceded requests for WGS. Nearly all
teams generated hypotheses to be tested by WGS and ∼65%
utilized transmission visualizations to assist.31 Where WGS
changed transmission understanding or prevention measures,
IPC teams frequently hypothesized pathways and used visualiza-
tions. This robust hypothesis generation, and the high frequency of

genomic relatedness in our clusters, meant that we were unable to
assess whether selective reactive WGS has utility in less well
characterized cluster investigations. If a resource-sparing, selective
WGS approach could be successful in reducing transmission risk,
while reducing the costs of WGS investigation of outbreaks for
COVID-19 or other pathogens, future studies will need to further
elaborate on how infection preventionists identify and perform
preliminary investigation of clusters for which WGS will be most
informative.

This study had several limitations. First, the use of reactive
WGS was not randomly selected and the investigation was not
designed as a controlled trial of selective reactiveWGS. Second, the
utility of reactiveWGS to a heterogenous group of experienced and
qualified IPC team members in consultation with IPC leadership
may not be generalizable to all healthcare settings. Third, structured
interviewswere conducted retrospectively, and interview results could
have been affected by staff attrition and loss of investigation
documentation, potentially diminishing our understanding of
response to WGS results. This potential missing information may
have resulted in an overestimation of the impact of WGS. Fourth,
WGS of isolates was subject to availability. Isolate sequencing was not
performed for∼50% of the individuals epidemiologically identified in
the investigated clusters. These isolates may not be missing randomly
(eg, insufficient viral titer and genetic sequencemay be correlatedwith
transmission risk), and nonsequenced isolates could have yielded
undetected or unexpected transmission pathways. Finally, we were
unable to directly compare the costs of our approach compared to no
use of WGS or WGS surveillance because the cost estimate was
beyond the scope of this work.16,32

In this study, we demonstrated an approach to a selective use of
reactive WGS for healthcare-associated COVID-19 cluster inves-
tigation. We prioritized a priori transmission pathway hypothesis
generation with or without data visualization, which can yield a
high likelihood of WGS informativeness. This approach changed
our understanding of transmission pathways and modified IPC
interventions for COVID-19 clusters. Until real-time WGS
surveillance is widely available and adopted, a selective approach
to reactiveWGS is an effective and cost-efficient tool to assist in the
investigation of COVID-19 outbreaks in the hospital.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/ice.2023.274
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