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When a rising bubble in a Newtonian liquid reaches the liquid–air interface, it can burst,
leading to the formation of capillary waves and a jet on the surface. Here, we numerically
study this phenomenon in a yield-stress fluid. We show how viscoplasticity controls the
fate of these capillary waves and their interaction at the bottom of the cavity. Unlike
Newtonian liquids, the free surface converges to a non-flat final equilibrium shape once
the driving stresses inside the pool fall below the yield stress. Details of the dynamics,
including flow energy budgets, are discussed. The work culminates in a regime map with
four main regimes, all with different characteristic behaviours.
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1. Introduction

Bubble bursting processes abound in nature and technology and have been studied for
many years in fluid mechanics (Liger-Belair, Polidori & Jeandet 2008). For example,
they play a vital role in transporting aromatics from champagne (Liger-Belair 2012;
Vignes-Adler 2013; Ghabache et al. 2014, 2016), and pathogens from contaminated water
(Poulain & Bourouiba 2018; Bourouiba 2021). The process is also responsible for forming
sea spray through ejecting myriads of droplets (MacIntyre 1972; Singh & Das 2019).
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Figure 1. Schematics for the process of a bursting bubble: (a) a gas bubble in bulk. (b) The bubble approaches
the free surface forming a liquid film (thickness δ) between itself and the free surface. (c) A bubble cavity
forms when the thin liquid film disappears.

Bursting bubbles also play an important role in geophysical phenomena such as volcanic
eruptions (Gonnermann & Manga 2007).

In Newtonian liquids, the bubble bursting mechanism is controlled by buoyancy, surface
tension and viscosity. First, the air bubble (figure 1a) being lighter than the surrounding
medium, rises and approaches the liquid–air interface (figure 1b). The thin film between
the bubble and the free surface then gradually drains (Toba 1959; Princen 1963) and
eventually ruptures, resulting in an open cavity (figure 1c, Mason 1954). The collapse
of this cavity leads to a series of rich dynamical processes that involve capillary waves
(Zeff et al. 2000; Duchemin et al. 2002) and may lead to the formation of a Worthington
jet (Gordillo & Rodríguez-Rodríguez 2019). In some cases, the jet might break via a
Rayleigh–Plateau instability, forming droplets (Ghabache et al. 2014; Ghabache & Séon
2016). The phenomenon is so robust that it even occurs in soft granular matter, when a
rising bubble also bursts at the surface, leading to a granular jet (Lohse et al. 2004).

Earlier work on bursting bubbles used boundary integral methods in an inviscid limit
(Boulton-Stone & Blake 1993; Longuet-Higgins & Oguz 1995). However, the progress
made using direct numerical simulation (DNS) tools for multiphase flows (Popinet 2003,
2009; Tryggvason, Scardovelli & Zaleski 2011) has resulted in models that take into
account the effects of viscosity. In fact, some recent studies have revealed how the viscosity
of a liquid affects the dynamics of bursting bubbles (Deike et al. 2018; Gordillo &
Rodríguez-Rodríguez 2019).

For Newtonian liquids, Deike et al. (2018) have provided quantitative cross-validation
of numerical and experimental studies. They have also given a complete quantitative
description of the influence of viscosity, gravity and capillarity on the process,
extending the earlier work of Duchemin et al. (2002). More recently, experiments and
simulations, complemented by theoretical frameworks (Gañán-Calvo 2017; Gordillo &
Rodríguez-Rodríguez 2019), have resulted in a profound understanding of the physics of
bubble bursting in Newtonian fluids. Appendix B provides more details on the previous
studies in the Newtonian limit and compares our results with those available in the
literature.

Notably, despite many applications, such as in the food industry and geophysics,
the influence of rheological properties on the collapse of bubble cavities is yet to be
understood. Here, we study the dynamics of bursting bubbles in a viscoplastic medium
using DNS. Viscoplastic or yield-stress fluids manifest a mix of solid and fluid behaviour.
The materials behave more like an elastic solid below critical stress (yield stress); however,
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they flow like a viscous liquid above this critical stress. Readers can find detailed reviews
on yield-stress fluids in Bird, Dai & Yarusso (1983), Coussot (2014), Balmforth, Frigaard
& Ovarlez (2014) and Bonn et al. (2017).

Previous experiments and simulations have been reported for trapped bubbles in a
viscoplastic medium (Dubash & Frigaard 2004; De Corato et al. 2019; Sun et al. 2020),
rising bubbles in yield-stress fluids (Singh & Denn 2008; Tsamopoulos et al. 2008;
Sikorski, Tabuteau & de Bruyn 2009; Mougin, Magnin & Piau 2012; Dimakopoulos,
Pavlidis & Tsamopoulos 2013; Tripathi et al. 2015; Lopez, Naccache & de Souza Mendes
2018) and bubbles moving inside tubes filled with viscoplastic fluids (Jalaal & Balmforth
2016; Laborie et al. 2017; Zamankhan, Takayama & Grotberg 2018). We will show that
the introduction of non-Newtonian properties can significantly influence the bursting
behaviour of bubbles on a free surface. At moderate values of yield stress, the collapse
of the cavity can still lead to the formation of a Worthington jet, but the droplet formation
might be suppressed. At high yield-stress values, the unyielded region of the viscoplastic
fluid can seize the collapse of this cavity, which leads to distinct final crater shapes.

The paper is organised as follows: § 2 describes the problem and the governing
parameters. Section 3 provides a phenomenological analysis and § 4 presents the different
modes of energy transfer during the viscoplastic bursting process. Section 5 presents the
final equilibrium shapes. The work culminates in § 6 where we summarise the different
regimes observed in the process of bursting in a phase diagram. The paper ends with
conclusions in § 7.

2. Numerical framework and problem description

2.1. Governing equations
We consider the burst of a small axisymmetric bubble at a surface of an incompressible
Bingham fluid. To non-dimensionalise the governing equations, we remove the length
and velocity scales using the initial bubble radius R0 and inertia–capillary velocity Vγ ,
respectively. Pressure and stresses are scaled with the characteristic capillary pressure τγ

(see Appendix A). The dimensionless equations for mass and momentum conservation,
for the liquid phase, then read

∇ · u = 0, (2.1)

∂u
∂t
+∇ · (uu) = −∇p+∇ · τ − Bo êZ, (2.2)

where u is the velocity vector, t is time, p is the pressure and τ represents the deviatoric
stress tensor. We use a regularised Bingham model with

τ = 2 min
( J

2‖D‖ + Oh, Ohmax

)
D, (2.3)

where ‖D‖ is the second invariant of the deformation rate tensor, D and Ohmax is
the viscous regularisation parameter. The three dimensionless numbers controlling the
equations above are the plastocapillary number (J ), which accounts for the competition
between the capillary and yield stresses, the Ohnesorge number (Oh) that compares
the inertial–capillary to inertial–viscous timescales and the Bond number (Bo), which
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compares gravity and surface tension forces:

J = τyR0

γ
, Oh = μl√

ρlγ R0
, Bo = ρlgR2

o

γ
. (2.4a–c)

Here, γ is the liquid–gas surface tension coefficient and τy and ρl are the liquid’s yield
stress and density, respectively; μl is the constant viscosity in the Bingham model. Note
that in our simulations, we also solve fluid motion in the gas phase, using a similar set
of equations (see Appendix A). Hence, the further relevant non-dimensional groups, in
addition to those in (2.4a–c), are the ratios of density (ρr = ρg/ρl) and viscosity (μr =
μg/μl). In the present study these ratios are kept fixed at 10−3 and 2× 10−2, respectively.

2.2. Method
For our calculations, we use the free software program Basilisk C (Popinet & collaborators
2013–2021a; Popinet 2015). The code uses a volume of fluid (VoF) technique (Tryggvason
et al. 2011) to track the interface, introducing a concentration field c, that satisfies the
scalar advection equation. Hence, (2.1)–(2.2) and their counterparts for the gas phase are
solved using a one-fluid approximation, where the surface tension acts as a body force,
f γ , only at the gas–liquid interface (Brackbill, Kothe & Zemach 1992; Popinet 2009). In
dimensionless form,

f γ = κδsn̂ ≈ κ∇c, (2.5)

where δs is the interface Dirac function, n̂ is a unit vector normal to the interface
(Tryggvason et al. 2011) and κ is the curvature of the interface, z = S(r) (as discussed
by Deserno 2004, pp. 14–16):

κ =
d2S
dr2(

1+
(

dS
dr

)2
)3/2 +

dS
dr

r

(
1+

(
dS
dr

)2
)1/2 . (2.6)

In Basilisk C, the curvature in (2.6) is calculated using the height-function method. As
the surface-tension scheme is explicit in time, the maximum time step is maintained at
most at the oscillation period of the smallest wave-length capillary wave (Popinet 2009;
Popinet & collaborators 2013–2021b). Note that the curvature defined above is, in fact, the
dimensionless capillary pressure. Hence, in the text, the wave with the largest curvature is
called the ‘strongest wave’.

Basilisk C also provides adaptive mesh refinement (AMR). We use this feature to
minimise errors in the VoF tracer (tolerance threshold: 10−3) and interface curvature
(tolerance threshold: 10−4). Additionally, we refine based on velocity (tolerance threshold:
10−2) and vorticity (tolerance threshold: 10−3) fields to accurately resolve the regions
of low strain rates. For AMR, we use a grid resolution such that the minimum cell size
is Δ = R0/512, which dictates that to get similar results, 512 cells are required across
the bubble radius while using uniform grids. We have also carried out extensive grid
independence studies to ensure that changing the grid size does not influence the results.
Moreover, we employ free-slip and no-penetration boundary conditions for both liquid
and gas at the domain boundaries. For pressure, a zero-gradient condition is employed
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at the boundaries. For cases where a Worthington jet breaks into droplets, an outflow
boundary condition is employed at the top boundary to ensure that the drop does not
bounce off the boundary. These boundaries are far away from the bubble (size of the
domain is 8R0) such that they do not influence the process.

Note that our numerical method uses a regularised form of the Bingham constitutive
equations (see (2.3) and Appendix A). Hence, we cannot resolve the exact position of the
yield surface as ‖D‖ is never precisely zero. However, we can safely assume that low
values of ‖D‖ will be associated with the plastic regions. In our simulations, Ohmax =
108. We have ensured that our results are independent of this regularisation parameter
(Appendix E.1). The regularisation of the constitutive model also forces us to choose a
criterion for the stoppage time, ts. In our simulations, we consider a significantly small
cut-off kinetic energy to stop the simulations (see Appendix E.2 for details).

2.3. Initial condition
This initial shape of a bubble at a fluid–fluid interface (figure 1b) can be calculated by
solving the Young–Laplace equations to find the quasi-static equilibrium state for an
arbitrary Bond number, Bo (see Lhuissier & Villermaux 2012; Walls, Henaux & Bird
2015; Deike et al. 2018; Magnaudet & Mercier 2020). As a starting point, for this study,
we are only concerned with the limit of Bo→ 0, i.e. when capillary effects dominate the
gravitational ones. We choose Bo = 10−3 for all the simulations in this work. For this
value, the initial bubble is nearly spherical in a surrounding Newtonian liquid. Note that
the bubble sphericity is a crucial assumption (simplification) in our work. The actual initial
shape of the bubble depends on its size (Bo), material properties (J , Oh), the method of
generation and its dynamics before approaching the interface (Dubash & Frigaard 2004;
Dimakopoulos et al. 2013). Furthermore, for a bubble to rise in a viscoplastic medium, the
buoyancy forces should be strong enough to yield the flow (Dubash & Frigaard 2004;
Sikorski et al. 2009; Balmforth et al. 2014), i.e. Bo� J . Hence, non-spherical and
non-trivial shapes might be expected (Lopez et al. 2018). For such a limit, one should
first solve the full dynamics of rising bubbles to achieve the correct initial condition for
the bursting problem. Note that low Bo bubbles could still form near a free surface in
other situations. One example is the process of laser-induced forward transfer, in which a
laser pulse generates a bubble near the free surface of a viscoplastic liquid (Jalaal et al.
2019).

For our given initial shape, the value of J varies between 0 and 64. This range is selected
such that we will study a full range of yield-stress effects, from the Newtonian limit
(J = 0) to a medium that barely deforms owing to a large yield stress (J = 64).

Following the common assumption in these types of problems (Deike et al. 2018;
Gordillo & Rodríguez-Rodríguez 2019), we assume that the thin liquid cap of thickness
δ (figure 1b) disappears at t = 0, resulting in the configuration shown in figure 1(c), i.e.
the initial condition for our simulations. In figure 1(c), (R,Z) denotes the radial and axial
coordinate system. Furthermore, Hi ≈ 2 is the initial bubble depth and θi is the initial
location of the cavity-free surface intersection. Note that the curvature diverges at this
intersection in such a configuration. We smooth the sharp edge using a small circular arc
to circumvent this singularity, introducing a rim with a finite curvature κ0 that connects
the bubble to the free surface. We ensured that the curvature of the rim is high enough
such that the subsequent dynamics are independent of its finite value (for details, see
Appendix E.3).
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Figure 2. Bursting bubble dynamics for different plastocapillary numbers. (a) J = 0.0: a typical case with a
Newtonian liquid medium, (b) J = 0.1: a weakly viscoplastic liquid medium in which the process still shows
all the major characteristics of the Newtonian liquid, (c) J = 0.5: a case of moderate yield stress whereby
the jetting is suppressed, nonetheless the entire cavity still yields and (d) J = 1.0: a highly viscoplastic liquid
medium whereby a part of the cavity never yields. The left part of each panel shows the magnitude of the
velocity field, and the right part shows the magnitude of the deformation tensor on a log10 scale. The transition
to the black region (low strain rates) marks the yield-surface location in the present study. The time instances
in this figure are chosen to show significant events throughout the process of bursting bubbles for different J
numbers. For all the cases in this figure, Oh = 10−2. Movies 1–3 are available in the supplementary material.

3. Effects of yield stress on the bursting bubble

3.1. Phenomenology
This section describes the dynamics of bursting bubbles and the qualitative effects of
the plastocapillary number (J ). Figure 2 illustrates four representative cases for this
purpose (supplementary movies are available at https://doi.org/10.1017/jfm.2021.489). For
a Newtonian liquid (figure 2a, J = 0), the retraction of the rim leads to the formation of
capillary waves.

Part of these waves travels away from the cavity, forming regions of small strain rates
(black dots in figure 2a: t = 0.45), which are advected with the train of capillary waves.
Meanwhile the other part of the waves travel down the cavity (figure 2a: t = 0.1) and
focuses on the bottom of the cavity (figure 2a: t = 0.45).

Consequently, a Worthington jet is formed as depicted in figure 2(a): t = 0.65.
Furthermore, owing to the conservation of momentum, a high-velocity jet is also formed
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Bursting bubble in a viscoplastic medium

in an opposite sense to the Worthington jet, inside the liquid pool (figure 2a: t = 0.65).
The Worthington jet can then break into multiple droplets owing to the Rayleigh–Plateau
instability (Walls et al. 2015). In the Newtonian limit, the flow continues until the free
surface is fully flat, that is, when the surface energy is minimised (figure 2a: t = 4.00).

The introduction of the yield stress, in general, slows down the flow owing to a larger
apparent viscosity. Remarkably, even at large yield stresses, the early time dynamics near
the retracting rim remain unchanged owing to the highly curved interface, as clearly shown
in the first panels (t = 0.1) of figure 2(a–d). In contrast, the anatomy of the flow inside the
pool is considerably affected owing to the yield stress. At low yield stresses (J = 0.1 in
figure 2b: t = 0.1), everywhere near the bubble cavity yields at early times. However, as
the values of plastocapillary number increases, the size of the yielded region decreases
(J = 0.5 and J = 1.0 in figures 2c and 2d, respectively).

Furthermore, at low values of J , the flow focusing at the bottom of the cavity persists
(figure 2b: t = 0.50), though, owing to the increased dissipation, it is less vigorous. As
a result, the jet formed post-collapse is thicker, slower and less prominent (figure 2b:
t = 1.00) as compared with the Newtonian case (figure 2a: t = 0.65). Notably, for small
values of J , a Worthington jet still forms and breaks up into droplets owing to the
Rayleigh–Plateau instability.

Note that unlike the Newtonian case, where the final shape is always a flat free surface,
a viscoplastic medium (i.e. finite J ) comes to a halt when stress inside the liquid drops
below the yield stress. Hence, the final state can feature non-zero surface energy (figure 2b:
t ≥ 4.00).

At higher values of J , the capillary waves are so damped that the flow focusing at
the bottom of the cavity vanishes. At moderate J numbers (figure 2c where J = 0.5),
the capillary waves are still strong enough to travel over the entire cavity (figure 2c: t =
0.25− 0.80). As a result, the entire cavity yields nonetheless, and the final shape still
features a deep crater (figure 2c: t = 1.60). On further increasing J such that the yield
stress equals the capillary stress (τy ∼ γ /R0, i.e. J ∼ O(1)), the capillary waves do not
yield the entire cavity (figure 2d: t = 0.25–0.75). Hence, the final shape is a deep crater
that stores a large surface energy, contrary to the final shapes at small J values.

In this section, we mainly focus on the effect of yield stress (via J ) on the process of
bursting bubbles. Appendix C contains the discussion on the effect of Oh. Furthermore,
in the subsequent sections, we will discuss the features explained previously in more
quantitative detail. Sections 3.2 and 3.3 then delineate the travelling capillary waves and
the subsequent jet formation (or lack of it), respectively.

3.2. Capillary waves in the presence of yield stress
Capillary waves are critical in the bubble bursting process (Gordillo & Rodríguez-Rodríguez
2019). Initially, the breakage of the film and the retraction of the rim create a train
of capillary waves of varying strengths (Gekle et al. 2009). However, sharper waves
experience very high viscous damping. As a result, the wave focusing and jet formation
are controlled by the strongest wave, which is not halted by viscous damping. We follow
Gordillo & Rodríguez-Rodríguez (2019) and track the strongest wave by chasing the
maximum curvature of the free-surface wave (‖κc‖). The location of this wave, on the
cavity, is denoted by the angular position, θc (see inset in figure 3a).

For a Newtonian liquid (J = 0), at low Ohnesorge numbers (e.g. figure 3), the
strongest capillary wave propagates at a constant velocity Vγ , dashed line in figure 3(a).
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Figure 3. Effects of viscoplasticity on the travelling capillary waves. (a) Variation of the location (θc) of
strongest capillary with time. The grey dotted line denotes the Newtonian limit, θc − θi ∼ −Vγ t as described
by Gordillo & Rodríguez-Rodríguez (2019). (b) Variation of the strength (‖κc‖) of the strongest capillary wave
with time. Snapshots of the deformation tensor modulus ‖D‖ for (c) J = 0.2 and (d) J = 1.0. For all the
cases in this figure, Oh = 10−2. Movies 4–6 are available in the supplementary material.

The viscous stress attenuates these waves but does not influence θc. Previous studies
(Krishnan, Hopfinger & Puthenveettil 2017; Gordillo & Rodríguez-Rodríguez 2019)
have found similar results for Newtonian liquids (see Appendix B for more details).
The strength of this wave decreases as it propagates down the cavity owing to continuous
viscous dissipation. Around θc ≈ π/2, the geometry changes leading to flow focusing
resulting in an increase in the strength (κc) of the wave (see figure 3c: t = 0.2 to
t = 0.35). This minimum value of κc depends nonlinearly on Oh (see Gordillo &
Rodríguez-Rodríguez 2019 & Appendix B for details).

As shown in figures 3(a) and 3(b) (and also discussed in § 3.1), the initial changes in ‖θc‖
and ‖κc‖ remain similar to the Newtonian limit, because the highly curved region near the
initial rim retraction fully yields the fluid around it. As the flow develops, the plasticity
effects become more pronounced as compared to the capillary effects, and the capillary
waves no longer follow the path taken by their Newtonian counterpart. The larger the value
of J , the sooner the dynamics of the capillary waves deviate from the Newtonian limit,
and they become weaker. Eventually, the waves stop at a finite stoppage time, furnishing a
finite final θc and ‖kc‖ (represented by θf and ‖κf ‖, respectively). In § 5, we will discuss
the variation of these parameters for the final crater shapes.

3.3. Jet formation in the presence of yield stress
Another interesting feature of the bubble bursting process is the Worthington jet formation
as the bubble cavity collapses. To characterise this jet, we track the location (H) of
the interface at the centre R = 0. figure 4(a) shows the temporal variation of H for
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Figure 4. Effects of viscoplasticity on the formation of the jet as a result of the collapsing cavity: (a) variation
of the depth H of the cavity at its axis with time. The inset shows the definition of H. Modulus of the
deformation tensor ‖D‖ for the collapse of the bubble cavity and formation of the jet for (b) J = 0.1 and
(c) J = 0.3. Note that each kink in panel (a) is associated with the formation of a drop, as illustrated in the
insets of panel (b). For all the cases in this figure, Oh = 10−2. Movies 7–8 are available in the supplementary
material.

different values of J at fixed Oh = 10−2. As the waves propagate, the cavity begins to
collapse, hence the value of H decreases. A jet forms when the bottom of the cavity
crosses the free surface, and H becomes negative (see figure 4b). For small values of
J , the Rayleigh–Plateau instability and a subsequent pinch-off occur, resulting in the
kinks shown in figure 4(a). The jets eventually retract, and H approaches 0, i.e. a flat
final interface. As the value of J increases, the final value of H increases, approaching
the upper bound of H = Hi = 2, which is set by the initial condition (twice the bubble
radius, i.e. the bottom of the cavity never yields). In fact, for J ≥ 0.65, this value remains
unchanged, meaning the plug region attached to the bottom of the cavity never yields. Note
that, in an intermediate range of J ∼ 0.35, the interplay of the capillary waves and the
yield stress results in a dimple (underdeveloped jet) that never crosses the free surface (see
figure 4c).

4. What happens to the initial surface energy?

To better understand the bubble bursting dynamics in a viscoplastic medium, we also
looked at the energy budgets. The total energy E is the sum of the total kinetic energy of the
liquid pool Ek, its surface energy Es and the energy dissipation Ed. The latter contains two
parts owing to viscous (EOh

d ) and yield stress (EJ
d ) contributions, Ed = EOh

d + EJ
d . Lastly,

small energies associated with jet breakup and airflow are summarised in Em. Hence,

E = Ek(t)+ Es(t)+ Ed(t)+ Em(t) = Ei, (4.1)

where, Ei is the initial energy that is purely the surface energy. Readers are referred to
Appendix D for details for calculating the energy budget.

Figure 5 shows three representative examples of these energy budgets, normalised
by the initial energy Ei. In figure 5, the time is normalised by the stoppage time ts.
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Figure 5. Energy budget for the process of the bubble bursting in a viscoplastic medium: temporal evolution
of the different modes of energy transfers for (a) J = 0.1 and Oh = 10−1, (b) J = 1.0 and Oh = 10−1 and
(c) J = 1.0 and Oh = 10−2. (d) Comparison of the energy footprint at the stoppage time, t = ts for different
J and Oh.

Panel (a) shows the temporal evolution of different modes of the energy transfer for a
low J number. Initially, at t = 0, the system’s total energy is stored as the bubble-cavity
surface energy. As the flow starts, a part of this surface energy converts to the kinetic
energy of the flow generated by the travelling capillary waves. The kinetic energy reaches
a maximum when the capillary waves focus at the bottom of the cavity, because the
focusing process forms a region of high velocity. At the instant of focusing, for J = 0.1
and Oh = 10−1, ∼60 % of the initial energy is still present in the system as a sum of the
kinetic and surface energy of the liquid pool. Subsequently, a Worthington jet forms and
high dissipation is observed owing to an increase in the strain rate (see (D3)). The surface
energy decreases monotonically throughout the process and reaches a finite near-zero value
at the stoppage time ts. This behaviour is different from a Newtonian liquid, where the
surface energy would become exactly zero, as t→∞.

For J = 1.0 (figure 5b,c), initially, the surface energy decreases monotonically until it
reaches a plateau at t = ts. However, contrary to the example with a small value of J ,
in these cases, a major part of the cavity never yields. Consequently, more than 70 % for
Oh = 10−1 and over 60 % for Oh = 10−2 of the initial energy is still stored as the crater’s
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Figure 6. Final crater shapes: variation of the final shapes with the Oh at (a) J = 0.2, (b) J = 0.4,

(c) J = 0.6, (d) J = 1.0, (e) J = 5.0 and ( f ) J = 10.0.

surface energy. In addition, note that in the limit of large J (and low Oh), yield stress is
responsible for the majority of energy dissipation, i.e. EOh

d 
 EJ
d .

The energy footprint at t = ts gives insight into the final static shape of the bubble.
Therefore, we compare these energies for different J and Oh numbers in figure 5(d). For
all the conditions, Ek → 0, and only surface energy remains in the system at the stoppage
time. The remainder of the energy (Ei − Es) features as dissipation (except for those cases
where drops form and Em is not negligible).

For low values of J , the final surface energy Es is close to zero because the final craters
are shallow (see § 5 for details). This residual surface energy increases with increasing J
and Oh; however, the dependency on Oh is negligible at higher values of J . Finally, the
dissipation owing to the yield stress (EJ

d ) contributes more to the overall dissipation for
small Oh numbers.

5. Final crater shapes

The process of bubble bursting in yield-stress fluids results in non-flat final shapes.
Figure 6 shows the final crater shapes as observed for different J and Oh numbers, and
figure 7 quantifies the different features of these final shapes by analysing the location (θf )
and strength (‖κf ‖) of the strongest capillary wave and the final depth of the crater (Hf ).
For the convenience of comparison, we normalise Hf by its initial value Hi ≈ 2 and ‖κf ‖
by the initial curvature of the bottom of the cavity ‖κi‖ ≈ 2.
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Figure 7. Quantifying the characteristics of the final shapes as a function of J at different Oh. (a) Depth Hf
of centreline of the final cavity surface. (b) Location θf and (c) Strength ‖κf ‖ of the strongest capillary wave in
the final crater. The grey dashed lines in panels (b) and (c) are guides to the eye.

At low values of yield stress (J ≤ 0.4), the final shape of the crater strongly depends
on Oh (see figures 6a,b, and 7a). When both J and Oh are small, a Worthington jet forms
(see § 3.3 for detailed discussions) which relaxes back towards the flat surface as t→∞.
This jet relaxation results in shallow final cavities. As Oh increases, viscous dissipation
dominates the flow, the capillary waves are damped, and the change in the final cavity
height becomes minimal; hence, Hf ∼ Hi. In fact, for Oh > 10−1, the capillary wave’s
amplitude is so close to zero that it becomes impossible to track.

As the value of yield stress (J ) increases, the effective viscosity of the domain increases
and hence the initial cavity deforms less. For a highly plastic medium, the capillary waves
cannot yield the entire cavity. As a result, Hf = Hi for J ≥ 0.65, independent of the
values of Oh. For higher Oh, this transition is reached (marginally) earlier (e.g. J ≥ 0.5
for Oh ≥ 1.0).

For the cases where the bottom of the cavity never yields (figure 6d–f ), we characterise
the final crater shapes based on the location and strength of the frozen capillary wave (θf
and κf , respectively). The variations of these values are shown in figures 7(b) and 7(c). As
J increases, the final location of the wave is closer to the initial value, θf ≈ θi. Similarly,
the strength of the final wave approaches the value defined by the initial condition, as J
increases. For this regime, the effects of Oh on the final shape seem to be negligible for
J > 2.

6. Regime map

In the present study, the two crucial control parameters to describe the process of bursting
bubbles in a viscoplastic medium are the plastocapillary number J , and the Ohnesorge
number Oh. This section uses these dimensionless numbers to summarise the observed
features explained in the text, providing a regime map (or phase diagram). Figure 8 shows
this map for the bursting bubble process in a viscoplastic medium. Note that we have run
more than 750 simulations to arrive at this regime map, but in figure 8 we only show a few
representatives at the transition lines.

For Newtonian fluids, the previous studies have found that for Oh > 0.03, viscous
stresses dominate over the surface tension, such that the Worthington jet does not break
up into droplets (San Lee et al. 2011; Ghabache et al. 2014; Walls et al. 2015). In this
work, at J = 0, we have reproduced this transition Oh number (see left axis in figure 8).
Increasing J has a similar effect on the jet break up as it manifests itself as increased
apparent viscosity of the liquid. Consequently, even when Oh→ 0 the capillary waves
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Oh

0
10–3

100
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10–2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 64

No pinch-off

Drops

t → ∞

t → ∞

t = 0

J
Figure 8. Regime map in terms of the plastocapillary number J and the Ohnesorge number Oh showing the
transitions between the different categories identified in the current study. The insets show a representative
case from each of the four regimes, namely, formation of jet which breaks into droplets (blue), formation of
jet without droplets (grey), the entire cavity collapses but the cavity centre never crosses the initial pool free
surface (white) and a part of the cavity never yields (red). The symbols represent simulations at the different
transition lines.

get severely damped for J > 0.3, and no droplets are formed. The blue area in figure 8
highlights the region in which a Worthington jet forms and disintegrates.

The grey area in figure 8 shows an intermediate regime in which the jet forms and
crosses the free-surface line (Z = 0) but does not break up. This transition, for J = 0,
occurs at Oh ≈ 10−1. For non-zero J , the transition occurs at smaller values of Oh as the
jet (if it forms) has less kinetic energy and cannot cross the Z = 0 line. If the jet does not
form (beyond the grey area), the collapse of the cavity results in a crater (for J /= 0).

As discussed in § 3.2, if the surface tension stresses are high enough, the whole cavity
yields. Otherwise, for large values of the yield stress (J ∼ O(1)), the plug region attached
to the bottom of the cavity never yields. As a result, the bottom of the cavity does not move,
i.e. Hf = Hi. This transition from a fully yielded cavity to the cavity with an unyielded
bottom is highlighted in figure 8 with the red line.

7. Conclusions

In this work, we have studied the capillary-driven process of bursting bubbles in a
viscoplastic medium. As with Newtonian fluids, flow begins when the rim, which connects
the bubble cavity to the free surface retracts. Consequently, the fluid is yielded, and a train
of capillary waves is generated. The yield stress significantly affects the flow structure
inside the pool by making plug regions. The higher the value of the yield stress, the larger
is the deviation from the Newtonian counterpart.

Following the analyses of Deike et al. (2018) and Gordillo & Rodríguez-Rodríguez
(2019), we provided information on the dynamics of the capillary waves as they travel
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down the bubble cavity. In liquids with low yield stresses, the cavity collapse leads to a
Worthington jet that might break up into drops as a result of a Rayleigh–Plateau instability.
However, for liquids with a large yield stress, the jet vanishes. The energy budgets analysis
gives insight into the dynamics by showing how the initial surface energy is dissipated.
Eventually, in contrast to the Newtonian fluids, where the final state is always a flat
film, bubble bursting in a viscoplastic medium results in final crater shapes with high
residual surface energy. We have analysed the geometry of these shapes as a function of
the governing control parameters, namely, the Ohnesorge and the plastocapillary numbers.
Lastly, we use the same numbers to categorise the four different regimes in viscoplastic
bubble bursting (see the phase diagram in figure 8).

Our study has direct applications in a range of industrial operations, where bubbles
are present at the surface of a yield-stress fluid. The focus of this work is to compare
the bursting bubble process in a yield-stress fluid with that of a Newtonian fluid, without
the initial shape effects. However, once the exact shape of the bubble at the free surface is
known, either from experiment or theory, one can calculate the resulting flow and compare
with the present study. Moreover, the current results could be useful in analysing some
geophysical flows, such as those in volcanic eruptions. In a broader perspective, the work
presents a system in which surface tension and yield stress are the main factors. Such
a system is of fundamental interest in design and manufacturing at small scales where
capillary action is competing with the yield stress, e.g. in three-dimensional printing and
coating with polymeric fluids (Rauzan et al. 2018; Jalaal et al. 2019; Nelson et al. 2019;
Jalaal, Stoeber & Balmforth 2021).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.489.

Acknowledgements. We would like to thank Andrea Prosperetti, Arup Kumar Das and Stéphaze Zaleski for
insightful discussions about the Newtonian limit of the bursting-bubble process. We also want to thank Uddalok
Sen, Rodrigo Ezeta and Carola Seyfert for comments on the manuscript. This work was carried out on the
national e-infrastructure of SURFsara, a subsidiary of SURF cooperation, the collaborative ICT organisation
for Dutch education and research.

Funding. The authors acknowledge the ERC Advanced Grant No. 740479-DDD.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Vatsal Sanjay https://orcid.org/0000-0002-4293-6099;
Detlef Lohse https://orcid.org/0000-0003-4138-2255;
Maziyar Jalaal https://orcid.org/0000-0002-5654-8505.

Appendix A. Governing equations

In this appendix, we describe the governing equations that describe the process of bursting
bubbles in a viscoplastic medium. For an incompressible liquid, the continuity and
momentum equations read

∇ · u = 0, (A1)

ρl

(
∂u
∂t
+∇ · (uu)

)
= −∇p+∇ · τ + ρlg, (A2)

where u is the velocity vector, ρl is the density of the liquid, p is the pressure field, τ is the
stress tensor in liquid and g is the acceleration owing to gravity. We model the viscoplastic
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liquid medium as a non-Newtonian Bingham fluid with a yield stress, τy. For such liquids,
the constitutive equation are⎧⎪⎨

⎪⎩
D = 0 ‖τ‖ < τy,

τ =
(

τy

2‖D‖ + μl

)
‖τ‖ ≥ τy.

(A3)

In the equation above, D = (∇u+ (∇u)T)/2 is the deformation tensor and μl the constant
viscosity in the Bingham model. We adopt a regularised revision of (A3) in our numerical
simulations, given by

τ = 2 min
(

τy

2‖D‖ + μl, μmax

)
D. (A4)

In (A4), τy/(2‖D‖)+ μl is the apparent viscosity (μeff ) of the liquid and μmax is the
‘large’ regularisation viscosity, such that μeff ← min(μeff , μmax).

The same sets of mass and momentum conservation equations (A1)–(A2) are also solved
for the gas phase, but now with constant density and viscosity. We use the inertia–capillary
velocity (Vγ ) and inertial–capillary time tγ and the capillary stress τγ defined as

Vγ =
√

γ

ρlR0
, tγ = R0

Vγ

=
√

ρlR3
0

γ
, (A5a,b)

τγ = γ

R0
, (A6)

to non-dimensionalise the preceding governing equations to find (2.1) to (2.4a–c).

Appendix B. The Newtonian limit

One of the essential and widely studied features of the bursting bubble process in a
Newtonian liquid is the resulting Worthington jet velocity. The jet is formed because of
the strong flow-focusing caused by the capillary waves at the bottom of the bubble cavity.
In general, this process is very fast, as shown in figure 9(a). Over a small time span of
≈ 0.1tγ (see insets of figure 9), the jet traverses a distance of ≈ 1.5R0. Moreover, the
inception of the jet is characterised by velocities as high as 50Vγ . The jet flow is also
associated with high viscous dissipation (because of the high strain rates resulting from
such high velocities). As a result of these two processes, there is a distinct maximum at
the instant of jet inception (vj,1). This velocity might be difficult to calculate, especially
at low Oh numbers because of high-frequency capillary waves. Numerically, it is easiest
to calculate the velocity of the jet as it crosses the free surface, Z = 0 (grey dotted line in
figure 9a). However, in experiments, it is easier to calculate the velocity of the first droplet
that forms as a result of the jet break up. In the inset of figure 9(a), the instant immediately
before jet break up into a droplet gives a velocity of vj,3. As a result, in the literature,
different authors have reported different jet velocities. We have decided to plot all three
velocities (wherever applicable) in figure 9(b) along with the scaling laws proposed by
Deike et al. (2018) (grey line) and Gordillo & Rodríguez-Rodríguez (2019) (green, red
and blue lines). Our results agree well with the previously published works, which have
been extensively validated with experimental data. Note that the differences between our
data points and those of Gordillo & Rodríguez-Rodríguez (2019) also arise because of

922 A2-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

48
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.489


V. Sanjay, D. Lohse and M. Jalaal

Present study: vj,1
Present study: vj,2
Present study: vj,3

Deike et al. (2018)

Gordillo & 

Rodríguez-Rodríguez (2019)

–1.0 –0.5 0 10–3

101

10–2 10–1

10

20

30

40

50

(a) (b)

t = 0.4489

t = 0.4515

t = 0.4556

t = 0.5062

t = 0.5300

Oh

vj

vj,1 vj,2

Z = 0

vj,3

vj ∼ Oh–1

           
—–

vj ∼ �Oh (Ohc–Oh)–3/4

           —–
vj ∼ �Oh 

                
   —––––

vj ∼ (1 – �Oh/Ohc)
–1/2

102

–H
Figure 9. Characterisation of the Worthington jet velocity formed as a result of the bursting bubble process in
Newtonian liquids: (a) variation of the jet velocity as it travels through different axial locations (Oh = 10−2).
The inset shows the shape of this jet at different time. The grey dotted line represents the free surface, Z = 0.
(b) Comparison of the jet velocity with the data and scaling laws available in the literature for the range of
Ohnesorge numbers used in this study. Note that the scaling law in solid grey line comes from Deike et al.
(2018), whereas the other lines are from Gordillo & Rodríguez-Rodríguez (2019) as noted in the figure.

a slight difference in Bond numbers for the two studies (Bo = 5× 10−2 in Gordillo &
Rodríguez-Rodríguez (2019) as compared with Bo = 10−3 in Deike et al. (2018) and in
the present work). This disagreement is higher for high Oh numbers. Furthermore, as
pointed out by Deike et al. (2018), at lower Bo, the maxima in the vj − Oh plot shifts to
the right with higher velocities, a feature which is distinctly captured by figure 9(b).

Figure 10(a) shows the temporal evolution of the angular trajectory of the strongest
capillary wave as it travels down the bubble cavity. As predicted by Gordillo &
Rodríguez-Rodríguez (2019) and shown experimentally by Krishnan et al. (2017), this
wave travels at a constant angular velocity, implying θc − θi ∼ −Vγ t (grey dotted line in
figure 10a). Furthermore, we also compare the strength of this wave with those predicted
by the scaling laws given in Gordillo & Rodríguez-Rodríguez (2019) and found good
agreement (figure 10b).

Appendix C. The effect of Oh

This appendix describes the dynamics of bursting bubbles and the qualitative effects
of varying Ohnesorge number Oh at a given plastocapillary number of J = 0.1.
Figure 11 illustrates four representative cases for this purpose. As noted in the text
and several previous studies (Duchemin et al. 2002; Deike et al. 2018; Gordillo &
Rodríguez-Rodríguez 2019), the initial retraction of the rim forms a train of capillary
waves. For low Ohnesorge numbers, e.g. Oh = 10−3 in figure 11(a), viscous dissipation
is very small, and as a result, most of these capillary waves converge at the bottom of the
cavity and result in vigorous surface undulations here (figure 11a: t = 0.1− 0.50). These
waves result in a thick Worthington jet. As Oh increases (Oh = 10−2 in figure 11b), viscous
dissipation damps the high-frequency capillary waves and improves the flow focusing at
the bottom of the cavity, leading to thinner and faster jets. This process is similar to
what has been reported in the literature for Newtonian liquids (Duchemin et al. 2002;
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Figure 10. (a) Variation of the location θc of the strongest capillary wave with time. The grey dotted line
denotes θc − θi ∼ −Vγ t as described by Gordillo & Rodríguez-Rodríguez (2019). (b) Variation of the strength
‖κ∗c ‖ at θc = π/2 with the Oh numbers. The scaling laws are taken from Gordillo & Rodríguez-Rodríguez
(2019).

Oh = 10–3

R0

Oh = 10–2

Oh = 10–1

Oh = 100

0 5 –3 3

log10 (‖D‖)‖u‖

t = 0.50

t = 0.50 t = 1.00 t ≥ 2.13

t = 0.10

(a)

(b)

(c)

(d)

t = 0.10

t = 0.10

t = 0.50 t = 1.10 t ≥ 3.58

t = 1.00 t ≥ 4.00

t = 0.10 t = 1.00 t ≥ 18.60t = 2.50

Figure 11. Bursting bubble dynamics for different Ohnesorge numbers: (a) Oh = 10−3, (b) Oh = 10−2,
(c) Oh = 10−1 and (d) Oh = 100. In the background, the left part of each panel shows the magnitude of the
velocity field and the right part shows the magnitude of the deformation tensor on a log10 scale. For all the
cases in this figure, J = 0.1. Movies (2 and 9–10) are available in the supplementary material.

922 A2-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

48
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.489


V. Sanjay, D. Lohse and M. Jalaal

Ghabache et al. 2014; Deike et al. 2018). Note that figure 11(b) is the same as figure 2(b)
and has been presented again for completeness.

Larger Oh numbers (10−1 and 100 in figures 11c and 11d, respectively) result in longer
flow timescales. Nonetheless, at low J numbers (such as 0.1 in figure 11), the entire cavity
still yields and the centre gently approaches the free surface at Z = 0 (figure 11b,c: first
three columns). Most of the initial surface energy is lost as viscous dissipation (both EOh

d
and EJ

d ) and the flow stops as the internal stresses in the fluid fall below the yield stress
(figure 11b,c: last column).

Appendix D. Energy budget calculations

Here, we describe the formulation used to evaluate the different energy transfer modes
discussed in § 4. A similar approach was used by Wildeman et al. (2016) and Ramírez-Soto
et al. (2020) to evaluate the energy budget for impacting droplets and colliding droplets,
respectively. In this work, we have extended the methodology to yield-stress liquids. The
kinetic and the surface energy of the liquid are given by

Ek = 1
2

∫
Ωp

‖u‖2 dΩp, (D1)

Es =
∫

Γp

dΓp, (D2)

respectively, where the energies are normalised by the surface energy γ R2
0. The integrals

are evaluated over the volume (Ωp) and the surface (Γp) of the largest liquid continuum
in the domain, disregarding drops (which are included in the energy budget in a different
way, and described below). The state of the liquid pool with a flat free surface is taken as
the reference to calculate Es.

Extending the Newtonian fluid formulation in Landau & Lifshitz (1987, pp. 50–51), the
total dissipation in our system can be calculated as

Ed = 2
∫

t

(∫
Ωp

(
Oh+ J

2‖D‖
)
‖D‖2 dΩp

)
dt. (D3)

Note that by writing the equation in this form, we assume that the yield stress contributes to
the energy dissipation only through an increase in the effective viscosity (see Appendix A).
In order to isolate the effects of the viscosity and yield-stress associated viscosity, we can
rewrite (D3) as Ed = EOh

d + EJ
d , where

EOh
d = 2Oh

∫
t

(∫
Ωp

‖D‖2 dΩp

)
dt, (D4)

EJ
d = J

∫
t

(∫
Ωp

‖D‖ dΩp

)
dt. (D5)

We present together all other forms of energy as

Em = EDrops
k + EDrops

s + EDrops
d +

∫
Ωp+Ωd

BoZ d(Ωp +Ωd)+ Eg. (D6)

In (D6), the first two terms, EDrops
k and EDrops

s denote the kinetic and the surface energies
of the ejected drops, respectively. The third term, EDrops

d , is the sum of the effective
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dissipation inside the drop. Note that all three terms are evaluated in the same way as
(D1) to D5, with one difference; that the volume and surface integrals are performed over
the drops (Ωd and Γd, respectively), instead of over the pool (Ωp and Γp, respectively).
The next term evaluates the gravitational potential energy for the liquid (both the pool
and the drops). As Bo→ 0, this term becomes insignificant. Lastly, Eg denotes the sum
of energies stored in the gas medium and viscous dissipation owing to velocity gradients
inside it, and is written

Eg = ρr

∫
Ωg

(‖v‖2
2
+ BoZ

)
dΩg + 2μgOh

∫
t

(∫
Ωg

‖D‖2 dΩg

)
dt. (D7)

Em (D6) is only significant when the resultant Worthington jet leads to the formation of
droplets (figure 5c).

Appendix E. Code availability and choosing numerical parameters

For our calculations, we use the free software program Basilisk C (Popinet & collaborators
2013–2021a; Popinet 2015). To ensure reproducibility, the codes used in the present
article are permanently available at Sanjay (2020). Furthermore, § 2 contains major
computational choices and parameters employed in the current study. In this appendix,
we provide further details and reasons for selecting the critical parameters in light of the
regularisation method.

E.1. Viscous regularisation parameter
To verify that the macroscopic flow features were independent of the regularisation
parameter, we conducted simulations for different Ohmax. We show a representative case
for this test in figure 12. Using a small value of Ohmax, such as 100 in figure 12(a-i), the
process resembles a case with increased effective viscosity. However, at higher values of
Ohmax (104 for figure 12(a-ii) or 108 for figure 12(a-iii)), the process is independent of a
viscous regularisation parameter. To ensure that the flow is captured precisely, the liquid
kinetic energy is also tracked over time (figure 12b). For Ohmax > 102, there are negligible
differences between the cases.

Comparing the values of ‖D‖, it is shown that the flow patterns are unchanged for the
given large values of Ohmax. Furthermore, one could clearly distinguish a sharp transition
between a weakly deformed region as compared to a strongly deformed one. However,
we would like to mention that the identification of the yield surface is obscured, when
regularised constitutive models are used (cf. Frigaard & Nouar (2005)). Nevertheless,
irrespective of such details, the map of the second invariant of the deformation-rate tensor
provides important information on flow patterns inside viscoplastic medium.

E.2. Stoppage time
Another important consequence of yield stress is a finite stoppage time. The flow in a
liquid will stop if the stress falls below the yield stress. This implies that ‖D‖ should
vanish. Because we use a regularisation method, the flow in our simulations never
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Ohmax = 100

R0

Ohmax = 102

Ohmax = 104

Ohmax = 106

Ohmax = 108

–3 30 5

0

0.5

1.0

1.5

2.0
(b)

0.5 1.0

t

Ek

1.5 2.0

  t = 2.00  t = 0.80  t = 0.60  t = 0.25  t = 0.10

  t = 2.00  t = 0.80  t = 0.60  t = 0.25  t = 0.10

  t = 2.00  t = 0.80  t = 0.60  t = 0.25  t = 0.10

  t = 1.00

  t = 1.00

  t = 1.00

(a)

(i)

(ii)

(iii)

log10 (‖D‖)‖u‖

Figure 12. Sensitivity to viscous regularisation parameter Ohmax: temporal evolution of the bubble cavity for
(a) Ohmax = (i) 100, (ii) 104 and (iii) 108 and (b) Kinetic energy evolution in time. The results show negligible
differences for Ohmax > 102.

truly stops. Hence, we consider a cut-off kinetic energy of 10−6 ×max(ETotal
k ), where

ETotal
k = 0.5

∫
Ω

(‖u‖2 + ρr‖v‖2) dΩ (E1)

is the total kinetic energy of the system. We stop the calculations when the total kinetic
energy of the system is below the cut-off. To verify the sensitivity of this cut-off, we ran
a number of simulations up to t = 2ts (figure 13). Clearly, independent of the Oh number,
the flow becomes asymptotically stationary beyond t = ts. A sharp decrease in the total
kinetic energy can be observed in the semi-log inset plots of figures 13(a) and 13(b), as
stoppage time is approached. Note that, this analysis only provides an estimation for the
stoppage time, ts and a more comprehensive study is required to find the exact values
of ts. Nonetheless, as is clear from our results (similar to those shown in figures 2 and
13), beyond this time, the flow dynamics are too slow for any macroscopic change in the
location or the strength of the capillary waves, or the shape of the final cavity.
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Figure 13. Selection of stoppage time: variation of the kinetic energy of the liquid, Ek (see (E1)) with time for
eight representative cases: (a) J = 0.1 and Oh = 10−3–100 and (b) J = 1.0 and Oh = 10−3–100. The inset
of each figure shows the kinetic energy normalised by the maximum kinetic energy on a semi-log scale. We
define a finite stoppage time, t = ts beyond which the flow is too slow to cause any macroscopic changes in the
timescales we wish to study.
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0.2 0.4 0.6 0.8 1.00
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0.8
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0 0.05 0.10 0.15 0.20
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θc /π
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/π
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t = 0.00

t = 0.20

t = 0.80
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Figure 14. Sensitivity to initial rim curvature: (a) temporal evolution of the location of the strongest capillary
wave θc, and (b) Influence on the overall process of cavity collapse. Beyond, t = 0.2, there is negligible
difference between the interfaces as the effect of the initial conditions vanish. Inset in (a) zooms into the
initial stages of the process where the influence of ‖κ0‖ is apparent.

E.3. Initial rim curvature effects
As mentioned in § 2.3, in our initial shape, we introduced a rim with a finite curvature
κ0 that connects the bubble to the free surface. The initial location of the cavity-free
surface intersection θi also changes (inset of figure 14a), depending on this regularised
curvature. In this appendix, we will show how this initial condition affects the bubble
bursting process. For all the cases presented in this work, we have used κ0 = 100. For
Newtonian cases, Deike et al. (2018) have carried out a more extensive sensitivity test
to ascertain the importance of initial cavity shape on the process. For J = 0, our results
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support their findings, that the size of the initial hole around the axis (R = 0) is crucial,
and can manifest into changes in the jet velocity. Furthermore, κ0 controls the first capillary
waves that appear as the bubble cavity collapses (§ 3.2). Figures 9 and 10 show that our
results agree with Deike et al. (2018) and Gordillo & Rodríguez-Rodríguez (2019), which
have been validated with experiments.

For higher J values, it is essential that ‖κ0‖ > J for flow initiation. We have restricted
our study to J = 64 where the flow is confined in the region of this high curvature (see
§ 5). Furthermore, figure 14 contains one representative case where we show the influence
of κ0 on the temporal evolution of the strongest capillary wave as it travels down the bubble
cavity (figure 14a), and also on the interface deformations (figure 14b). As shown in these
curves the difference in the results is negligible when ‖κ0‖ > 75.
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