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Oestrus detection remains a problem in the dairy cattle industry. Therefore, automatic detection systems have been developed to
detect specific behavioural changes at oestrus. Vocal behaviour has not been considered in such automatic oestrus detection
systems in cattle, though the vocalisation rate is known to increase during oestrus. The main challenge in using vocalisation to
detect oestrus is correctly identifying the calling individual when animals are moving freely in large groups, as oestrus needs to
be detected at an individual level. Therefore, we aimed to automate vocalisation recording and caller identification in group-
housed dairy cows. This paper first presents the details of such a system and then presents the results of a pilot study validating
its functionality, in which the automatic detection of calls from individual heifers was compared to video-based assessment of
these calls by a trained human observer, a technique that has, until now, been considered the ‘gold standard’. We developed a
collar-based cattle call monitor (CCM) with structure-borne and airborne sound microphones and a recording unit and developed
a postprocessing algorithm to identify the caller by matching the information from both microphones. Five group-housed heifers,
each in the perioestrus or oestrus period, were equipped with a CCM prototype for 5 days. The recorded audio data were
subsequently analysed and compared with audiovisual recordings. Overall, 1404 vocalisations from the focus heifers and 721
vocalisations from group mates were obtained. Vocalisations during collar changes or malfunctions of the CCM were omitted
from the evaluation. The results showed that the CCM had a sensitivity of 87% and a specificity of 94%. The negative and
positive predictive values were 80% and 96%, respectively. These results show that the detection of individual vocalisations and
the correct identification of callers are possible, even in freely moving group-housed cattle. The results are promising for the
future use of vocalisation in automatic oestrus detection systems.
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Implications

Our aim is to establish vocalisation as an innovative param-
eter for oestrus detection in dairy cows. We present a com-
bined hardware and software solution for individual
vocalisation recording in group-housed cattle for use as an
additional oestrus indicator on dairy farms. This could be
of interest for researchers, farmers and the farm equipment
industry. We show that the automatic detection of individual
vocalisations and the correct identification of callers are pos-
sible, even in freely moving group-housed cows. These results

are promising for automatic oestrus detection systems and,
beyond that, for further applications in terms of monitoring
animal health and welfare status.

Introduction

Oestrus detection is an essential component of successful
reproduction management for dairy cattle. In the last several
decades, automatic devices have been developed to assist
farmers in this task. The most frequently used parameter
acquired by automatic oestrus detection devices is an
increase in physical activity, as measured by pedometers
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attached to the leg of the animal or by other devices located
at its neck (Rutten et al., 2013). Another behaviour that is
currently monitored in the context of oestrus detection is
rumination (Reith et al., 2012), with duration of rumination
and changes in the time spent ruminating in certain daytime
intervals being the main parameters. Additional commer-
cially available devices detect mounting behaviour as part
of oestrus behaviour (Walker et al., 1996). These mounting
detectors are attached to the cow’s back and detect the
mounting activity of herd members to identify cows that
show standing heat behaviour, that is, those who will toler-
ate being mounted by a potential mating partner. However,
although these different parameters have been implemented
in commercially available automatic oestrus detection devi-
ces, farmers are still facing significant economic losses due to
undetected oestrus cycles. Beyond oestrus detection, physical
activity and rumination are also typically used for health
monitoring in commercially available devices.

Another behavioural parameter of farm animals that is
monitored (albeit rarely) is vocal behaviour. Vocalisations
convey not only semantic information (e.g., ‘I am here’ in
contact calls) but also contextual information about, for
example, body size, sex, identity, state of the sexual cycle,
rank and exhaustion (Fischer et al., 2004; Mielke and
Zuberbühler, 2013; Pitcher et al., 2014). Pigs produce con-
text-specific distress calls (screams) when confronted with
acute, severe stressors (Puppe et al., 2005; Düpjan et al.,
2008), which can be detected automatically to monitor their
welfare (Schön et al., 2001; Schön et al., 2004), but they also
demonstrate subtle variations in vocalisation indicative of
their affective state (Leliveld et al., 2016) and emotional reac-
tivity (Leliveld et al., 2017). For cattle, it is known that vocal-
isation rates increase at the day of oestrus (Schön et al.,
2007; Dreschel et al., 2014) and that the vocalisation climax
occurs shortly before or at the climax of oestrus behaviour
(Röttgen et al., 2018). Considering that endogenous hor-
mone secretion is likewise associated with oestrus behaviour
(Lyimo et al., 2000; Aungier et al., 2015), vocalisation can
serve as an indirect indicator of endogenous hormonal
changes and therefore as a potential additional parameter
for automatic oestrus detection.

There are some examples of successful acoustic monitor-
ing of farm animals, for instance, a commercial device for
cough detection in pigs. The device records and analyses
incoming sounds via stationary microphones, identifies
coughs and triangulates the housing compartment where
they originate from (Silva et al., 2008). Meen et al. (2015)
proposed a similar system to monitor animal welfare in cat-
tle. However, while the assignment to a specific individual
animal (henceforth termed ‘caller identification’) is not essen-
tial for cough detection in pigs, it is essential for oestrus
detection. Yajuvendra et al. (2013) tried to solve the problem
of caller identification by using individual structural charac-
teristics in vocalisations. Similar techniques have been used
in wildlife species (e.g., in blue monkeys: Mielke and
Zuberbühler, 2013). However, these techniques require
high-quality samples of vocalisations for each individual

animal to enable the identification of individual call charac-
teristics. For vocalisation to be used in automatic oestrus
detection devices on farms, it must be easy to use, and caller
identification must be accurate. Therefore, a system based on
individual samples seems unlikely to be a feasible solution.
Another possibility that has been investigated is to equip
each animal with a microphone (as tested in chipmunks:
Couchoux et al., 2015). In group-housed animals, however,
caller identification might be inaccurate, as group mates can
vocalise close to another individual’s microphone (but see
Gill et al., 2016, for a technical solution in zebra finches).

Automatic detection of specific behaviours on an individ-
ual level is the first step towards implementing such detec-
tion in technical devices that support farmers. A very
challenging task – beyond vocalisation detection itself – is
to develop algorithms that make the gained data easily
assessable on farms. Algorithms must compensate for indi-
vidual differences and must be self-adaptive to individual
variation to accurately identify a large percentage of animals
without manual adjustments. Therefore, these algorithms
must be based on fundamental knowledge of individual
variation, the detection errors of the system and the timing
of the behaviours in relation to the event (e.g., oestrus) they
are developed to detect.

If calls can be detected and the caller correctly identified
with sufficient sensitivity and specificity, future develop-
ments can implement the data to detect peaks in individual
vocalisation rates to assist in oestrus detection. Therefore, we
developed a collar-based cattle call monitor (CCM) with
structure-borne (SBM) and airborne sound microphones
(ABM) and a recording unit that uses a postprocessing algo-
rithm to identify the caller by matching the information from
both microphones. The aim of this paper is to first present the
developed system and to then present the validation of its
functionality in a pilot study in which the automatic detection
of calls from individual heifers was compared to a video-
based assessment of these calls by a trained human observer,
a technique that has, until now, been considered the ‘gold
standard’.

Materials and methods

Development of the Cattle Call Monitor
Collar. The CCM was developed based on a regular cattle
neck strap with a plastic locking system (see Figure 1). To
ensure proper contact with the animal’s neck, an elastic band
was inserted close to the lock. A box for technical equipment
was mounted on the collar next to the inserted elastic band.
This box included an ABM (Elecret-Condenser-Microphone
EMY-9765P, EKULIT Elektrotechnik, Ostfildern, Germany;
frequency range: 30 to 16 000 Hz), an SBM for recording
structure-borne sounds (MicW i456 Cardioid Recording
Microphone, frequency range: 100 Hz to 10 kHz; MicW
Audio, Beijing, China), an energy supply, a microSD card
(Verbatim 8 GB microSDHC Class 10; Verbatim Ltd.,
Charlotte, NC, USA) as a recording unit and a processing unit
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(TMS320C5515 eZdsp; Spectrum Digital, Inc., Stafford, TX,
USA). To capture structure-borne sounds, a stethoscope head
was mounted on the inside of the strap and connected via a
plastic air-filled tube to the SBM in the box. The stethoscope
head was positioned on the left side of the animal’s neck over
the cleido-occipital muscle and the cervical part of the trape-
zius muscle. This area allows firm contact between the
stethoscope head and the animal’s body and vibrates notice-
ably when an animal vocalises. Audio data were sampled
using the stereo line-in attached to the processing unit.
One channel was used for the SBM, and the other was used
for the ABM. Data from both microphones were sampled at a
rate of 22 048 Hz to transform the analogue sound signal into
digital data. Data were saved on the microSD card in files of a
fixed size of 44 112 KB. Every day, the collars were detached
from the animals, so that the data could be read out and
stored in a central storage location.

Machine-aided vocalisation detection. The stored data were
analysed on a stationary computer using an algorithm imple-
mented in custom-built software (see Supplementary Figure S1)
coded in LabVIEW™ (LabVIEW 2014, Service Pack 1, Version
14.0.1f3; National Instruments, Austin, TX, USA). In general, auto-
matic recording of vocalisations requires the separation of sound
events from silent periods and the subsequent identification of ani-
mal calls amongst these soundevents. As the exact start andendof
a sound can hardly be detected automatically under on-farm
recording conditions, this can only be done by analysing the incom-
ing signal from the microphone in segments called ‘windows’. We
set the window size at 1024 data points, which at our sampling
rate of 22 048 Hz (i.e., 22 048 data points per second) corresponds
to a duration of 46.4 ms. Windows that exceeded the amplitude
threshold of 1% of the maximum voltage qualified as a sound
event and were temporarily saved to the buffer and merged with
all adjacent windows passing the criterion. Sound events ended
once a window fell below the amplitude threshold. This procedure
for the event-oriented recording of animal calls was previously
developed by our research group (Schön et al., 2004). In addition
to those from the ABM, the SBM signals were also saved in the
buffer.

To qualify as a potential call and be permanently stored,
the recorded sound events had to meet three criteria (see
Figure 2): (1) The signal of the ABM had to be in the frequency
range of 50 to 2000 Hz. (2) The duration of the ABM sound
event had to be between 0.5 and 10 s. (3) The corresponding
signal of the SBM had to have, on average, more than five
zero crossings per window. These criteria were implemented

to record vocalisations from only the focus animal and to pre-
vent false recordings. Criterion (1) prevented the recording of
low-amplitude background noise, for example, noise from
heavy farm machinery such as feed mixing vehicles.
Criterion (2) excluded normal/high-amplitude short-duration
background noise, for example, noise from rattling of the
equipment. Criterion (3) ensured that both microphones
(ABM and SBM) were active and therefore should have
excluded calls from group mates (see Figure 3). If all three
criteria (frequency range, duration and zero crossings) were
met, the signals from both microphones were stored in a
separate file together with a timestamp. Due to the window-
ing of the data, a single vocalisation could be split into two
separate ‘calls’ (split call) if one window in the middle
failed the criteria, but the remaining rest of the vocalisation
met the criteria of the algorithm again. These preselected
vocalisations were analysed for the remaining ambient
sounds by a human observer, and any such sounds were
manually deleted (18% of the original detections by
the CCM).

Validation of the Cattle Call Monitor (pilot study)
Animals and housing. Recordings were conducted at the
Experimental Facility for Cattle at the Leibniz Institute for
Farm Animal Biology in Dummerstorf, Germany. We observed
five CCM-wearing German Holstein heifers from three groups
of four animals each (group 1: three focus animals, i.e., heifers
in oestrus or perioestrus; group 2: one focus animal and group 3:
one focus animal). The observed animals were randomly
selected from a larger group of heifers at the institute. The
groupswere successively housed in a 5- by 10-m penwith wood
shavings as the bedding material. The pen was equipped with a
self-locking feeding fence and three freely accessible drinking
bowls. The animals were fed once a day with a total mixed
ration ad libitum.

All procedures were approved by the federal state of
Mecklenburg-Western Pomerania (LALLF M-V/TSD/7221.3-
2.1-021/13).

Video observation. Audiovisual data were recorded using
two cameras (EverFocus HDTV, EverFocus Co. Ltd., New
Taipei City, Taiwan) positioned on the left and right of
the pen and a microphone (Sennheiser MKE600;
Sennheiser Electronic GmbH & Co. KG, Wedemark,
Germany) positioned under the ceiling above the heifers,
all of which were attached to a digital video recorder (EDR
HD-4H4, EverFocus Co. Ltd., New Taipei City, Taiwan).

Figure 1 (colour online) Picture of the collar-based cattle call monitor (CCM). The essential components and their location at the collar are marked either with
arrows or written on the component itself.

Röttgen, Schön, Becker, Tuchscherer, Wrenzycki, Düpjan and Puppe

200

https://doi.org/10.1017/S1751731119001733 Published online by Cambridge University Press

https://doi.org/10.1017/S1751731119001733
https://doi.org/10.1017/S1751731119001733


Video recording was performed for 24 h on all analysed
days. To synchronise the CCM data with the video data,
a vocal timestamp was included on the audio stream
shortly before the collars were reattached to the heifers
(i.e., the experimenter announced the date, hour, minute
and second, as given in the video live stream, and the sub-
ject’s identification number).

Video analysis was performed with The Observer XT 10.1
software (Noldus Information Technology, Wageningen, the
Netherlands) over a period of 5 days in the perioestrus and
oestrus periods. Every vocalisation was coded as a point
event, and the caller was identified (as the focus animal v.
the group mates) based on characteristic head movements
and/or exhalation of the focus animal that was synchronous
with the vocalisation (Röttgen et al., 2018). These video-

observed vocalisations were used as a gold standard for com-
parison to the machine-detected vocalisations.

Comparing video observation tomachine-aided detection. The
machine-detected and the video-observed vocalisations were
first compared based on the timestamps in order to find the
matching pairs. To do this, the CCM data were imported into
the video observation files as external data.

Events recorded by the CCM and in the videos were clas-
sified into the following categories: (1) true positive: vocal-
isation of the focus animal was identified in the video and
correctly detected by the CCM; (2) true negative: vocalisation
by a group mate was identified in the video and was (cor-
rectly) not assigned to the focus animal by the CCM; (3) false
positive: no vocalisation of the focus animal was identified in

Figure 2 Process of call recording. Program flow chart of the developed algorithm for caller identification in dairy cattle (Bos taurus).

Figure 3 Visualisation of caller identification. The picture shows the time signals of the airborne sound microphone (ABM, top row) and the structure-borne
sound microphone (SBM, bottom row) for three possible scenarios in dairy cattle (Bos taurus): (a) a correctly detected call of the focus animal (match of ABM
and SBM), (b) a correctly undetected call emitted by a groupmate (mismatch of ABM and SBM) and (c) noise (correctly undetected; mismatch of ABM and SBM).
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the video, but vocalisation was incorrectly detected by the
CCM and (4) false negative: vocalisation of the focus animal
was identified in the video but was not identified by the CCM.

Statistical analysis
Vocalisations were excluded when they occurred during
collar changes (n=37) or one CCM malfunction (n=53),
where the microSD card was compromised and the data
could not be accessed.

The following indices were calculated:

sensitivity ¼ true positive
true positiveþ false negative

� 100 (1)

specificity ¼ true negative
true negativeþ false positive

� 100 (2)

positive predictive value ¼ true positive
true positiveþ false positive

� 100

(3)

negative predictive value ¼ true negative
true negativeþ false negative

� 100

(4)

detection level ¼ true positive
all vocalizations

� 100 (5)

For split calls (see the ‘Machine-aided vocalisation detec-
tion’ section) the first ‘call’ was counted as a true positive,
and the second ‘call’ was considered a false positive.

Results

In total, 2171 vocalisations were detected from the five focus
animals and their group mates. Thereof, 1404 vocalisations
were assigned to the focus animals by video observation and
721 vocalisations were emitted by respective group mates
(Table 1).

The CCM operated continually for 24 h until the power
supply changes and operated over the whole period of the
pilot study. The system recorded 576 h of audio data, which
were analysed by the algorithm. Only 24 h had to be omitted
from the analyses due to the CCM malfunction. Technical
problems that occurred during the testing of our prototype
were the limited buffer capacity of the processing unit and
the limited writing speeds of the microSD cards. These prob-
lems caused an offset between the timestamp of the audio
file and the video timestamp. Additionally, these technical
issues caused data gaps within and between files. The gaps
between the files caused approximately 1% of the unde-
tected vocalisations for the CCM.

During the observation period, 1404 vocalisations were
observed from five heifers by analysing 576 h of audiovisual
recordings, and 1266 vocalisations were detected by the
algorithm in the same period (Table 1). Out of the 1404 vocal-
isations, 1220 (87%) were detected by the CCM with correct

caller identification (true positives). On the other hand, 184
vocalisations were not detected by the CCM (false negatives).
Among these, 82 vocalisations were clearly visible and audi-
ble in the video but could still not be found in the automatic
detection data; another 81 vocalisations were ‘moo’-type
vocalisations that were (too) short and/or (too) quiet, and
6 vocalisations were throaty. In 15 cases, the vocalisations
occurred in the gap between two data blocks.

The CCM detected 46 vocalisations that were not emitted
by the focus heifer (false positives). Out of these vocalisa-
tions, 19 were vocalisations by group mates, 5 were probably
vocalisations by group mates but occurred simultaneously
with farm equipment noise, and the remaining 22 were split
calls (see above).

These findings resulted in a sensitivity of 87%, a specificity
of 94%, a negative predictive value of 80% and a positive
predictive value of 96%.

The detection rates varied between individual heifers,
ranging from 60% to 100% (Table 2).

Discussion

In this study, a collar-based system for individual vocalisation
detection in cattle was developed and validated. The results
of the pilot study show that vocalisations during perioestrus
and oestrus of individual animals can be detected with a sen-
sitivity of 87% and a positive predictive value of 96%. The
specificity was 94%, and the negative predictive value
was 80%.

Most of the undetected vocalisations were short and quiet
mooing that most likely did not meet criteria 2 (duration of
the ABM signal between 0.5 and 10 s) and 3 (five zero cross-
ings per window for the SBM signal). These sounds are pro-
duced with a closed mouth and minimal change in posture.
While these vocalisations might be of interest in the context
of animal welfare, in the context of oestrus detection, these
vocalisations might be irrelevant. A study by Schön et al.
(2007) showed a tendency towards more nonharmonic vocal-
isations on the day of oestrus compared to those on di-oes-
trus days. These nonharmonic calls differ in their structure

Table 1 Total number of vocalisations. Overview of the number of calls
detected in dairy cattle (Bos taurus) by video observation and cattle call
monitor (CCM) across subjects and the derived indices

Total: 2171

Video

Predictive valueDetected Undetected

CCM
Detected 1220 46 Positive

96%
Undetected 184 721 Negative

80%
Sensitivity Specificity

87% 94%
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and length from the short and quiet mooing calls. The devel-
oped algorithm appears to have had problems detecting the
mooing vocalisations. This is also apparent in the detection
rates for the individual animals, for example, an animal that
produced more mooing vocalisations than the others had the
lowest detection rate of 60%. The length of the calls being
detected must be limited to suppress the detection of ambi-
ent sounds. During the development of the prototype, met-
allic sounds close to the SBM (e.g., caused by the self-locking
feeding fence) were found to have great impact on that
microphone, with amplitudes above the threshold (1% of
the maximal voltage of the ABM). The duration restriction
is likely to have lowered the negative predictive value for
these metallic sounds, as duration is the only criterion that
discriminates these sound events from calls. This index gives
the probability that a ‘no vocalisation’ readout from the CCM
is correct. In contrast, the positive predictive value, which
gives the probability that a registered vocalisation was
indeed produced by the focus animal, was high. Therefore,
since eliminating noise is crucial and the proportion of unde-
tected mooing calls may not have an impact on oestrus
detection (as nonharmonic calls seem to be more important
to detect oestrus in cows), we see no need to alter the
algorithm.

The second large group of undetected vocalisations
included vocalisations that were clearly visible/audible and
assignable to the focus animal. The reason that these vocal-
isations were not detected by the CCMmight be that the SBM
was not attached properly to the body of the heifer or that a
data gap occurred while the data were written to the memory
card during the time of the vocalisation. The contact between
the heifer’s neck and the SBM was sufficient in most cases,
but contact can be impaired during the contraction of specific
neck muscles. This problem can only be solved if the SBM is
permanently and directly mounted on the skin or with a much
tighter-fitting collar. A permanent solution can only be
achieved by implanting or stitching the microphone to the
animal. However, this solution would not be feasible for
on-farm use. A tighter fitting collar would probably result
in mechanical problems during feed intake due to the con-
striction of the oesophagus. Additionally, a tighter collar
might cause venous stasis of the jugular vein and mechanical

skin erosions. Hence, given the high overall sensitivity and
the significant side effects of possible solutions that could
impair animal welfare, we consider this inaccuracy negligible.

The results showed two kinds of data gaps: the first kind
was within a file and the second kind was between files. Gaps
within files were difficult to reconstruct with an accurate time-
line, so vocalisations that were missing in the automatic
detection data as a result of such gaps were counted as mis-
matches. The gaps between files were, however, easy to
reconstruct, and the vocalisations that were emitted during
these gaps were excluded. To solve the problem of data gaps,
technical improvements must be made. One approach could
be to integrate the algorithm into the collar-mounted process-
ing unit itself and to relay the audio data stream without pre-
vious saving. This would also provide considerable progress
towards developing an applicable system for on-farm use.

Some vocalisations were divided into two parts because
one window failed to match the recording criteria, but a sub-
sequent window during that vocalisation fulfilled the criteria.
This caused a split recording of these vocalisations. One
potential adjustment to the algorithm could be to make it
end the recording only if two or more consecutive windows
fail the criteria.

Once these technical problems are solved, analysis of
algorithms for oestrus detection must begin. These algo-
rithms need to identify peaks in individual vocalisation rates
based on the CCM data and must therefore be robust against
significant individual variations in vocal behaviour. Our focus
animals showed considerable variation in individual vocalisa-
tion rates, but our data do not indicate that these influence
the reliability of call detection (with the highest detection rate
of 100% in an animal with 54 vocalisations and the second
highest detection rate of 89% in an animal with 1135 total
detected calls). An adaptive phase is the approach used to
deal with such individual vocalisation rates. In this phase,
the data from the CCM would be analysed and the mean
vocalisation rate per time interval calculated for each individ-
ual cow. Significant increases in mean vocalisation rate could
then indicate oestrus for that particular animal. A higher
number of vocalisations are also observed in stressful situa-
tions (Stookey et al., 1996; Grandin, 2001; Green et al.,
2018). These events should also be considered in the

Table 2. Individual detection rates and main detection errors. Individual call numbers, detection rates and the main detection errors (percentages
unless indicated otherwise) of the five focus heifers (Bos taurus)

Detection errors Animal A Animal B Animal C Animal D Animal E

Total number of detected calls (CCM + video) 1135 134 30 54 96
Number of CCM detected calls confirmed by video observation 1005 85 18 54 58
Detection rate 89 63 60 100 60
CCM detected calls not confirmed by video observation 1.5 2.2 40 0 13.5

Split calls 1.3 0 0 0 5.2
Calls detected by video observation only 10 34.3 0 0 26.0

Quiet short moos 3.1 28.4 0 0 8.3
In a gap 0.9 0 0 0 5.2

CCM=cattle call monitor.
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algorithm, for example, by comparing the data to the date of
the last oestrus event (adequate time span) and/or by cross-
checking the data with that of herd members during raw data
processing. This would exclude the increased number of
vocalisations that can occur during routine events such as
regrouping or routine treatments (e.g., hoof trimming) that
affect the whole herd.

Various technical approaches have been used to assess
the vocalisations of animals, particularly those of farm ani-
mals. Yajuvendra et al. (2013) chose to detect individual
cows by applying speech analysis techniques to samples of
cattle vocalisations. This approach requires a set of sample
vocalisations for each animal, so that the selected parame-
ters can be recorded. During routine daily farm work, such
samples are hard to obtain. Aside from the fact that cattle
rarely vocalise, there are also many ambient sounds on a
farm throughout the day, such as those emitted by other ani-
mals, farm equipment and personnel. It would also be time-
consuming to obtain vocalisation samples for each cow and
would therefore not be economically viable. In chipmunks,
Couchoux et al. (2015) attached microphones to the necks
of the animals and were able to record their vocal behaviours
throughout the day. This approach does not require a set of
individual vocalisation samples, and it can record all vocal-
isations of the focus animal. However, the problem with
using a single microphone in a farm environment is that
many animals of the same species live in a limited space,
and other than in zebra finches (Gill et al., 2016), the use
of amplitude differences for caller identification is not appli-
cable in dairy cattle. Therefore, techniques used in free-rang-
ing solitary-living animals or songbirds would need to be
adapted for on-farm application. The CCM relies neither
on individual vocalisation samples nor on isolated individual
housing, increasing its applicability on-farm.

A technical acoustic solution to monitor coughing in pigs
involves installing multiple microphones, which enables
detection of the compartment where the cough was emitted
by triangulation (Silva et al., 2008). Meen et al. (2015) sug-
gested a similar system for cows to monitor their vocalisa-
tions. However, in the context of oestrus detection, the
localisation of the housing compartment is not sufficient,
as the individual cowmust be identified, for example, for arti-
ficial insemination. Another problem with this approach is
the lack of a specific call indicating oestrus in cows. It has
been proven only that the vocalisation rate rises on the
day of oestrus (Schön et al., 2007; Dreschel et al., 2014;
Röttgen et al., 2018); individual vocalisation rates show a sig-
nificant variation both within and between animals. Even if
further studies identify a specific vocalisation or a specific
change in vocalisation patterns during oestrus, individual
assignment would remain a challenge.

The CCM could also be integrated into or combined
with existing oestrus detection devices that measure other
behaviours, for example, physical activity or rumination.
Synchronously monitoring more than one behavioural param-
eter would likely result in a higher accuracy of oestrus detection
in cattle (Reith and Hoy, 2018) and might be especially effective

in cases where current methods fail (e.g., ‘silent heat’).
Additionally, analysis of the sequence of behaviours occurring
during oestrus in cattle might enable improvements. For exam-
ple, the climax of the vocalisation rate is almost synchronous
with the climax of oestrus behaviour (Röttgen et al., 2018),
and both are synchronous with the oestradiol peak (Lyimo et
al., 2000), whereas the climax in physical activity appears 6
to 12 h after the oestradiol peak (Aungier et al., 2015).
Monitoring vocalisation could therefore provide farmers with
early information that can be substantiated by later observations
of increased physical activity.

Conclusion

As a whole, the CCM has the potential to record cattle vocal-
isations and to correctly identify the calling individual in com-
mercial housing environments. The automatic assignment of
vocalisations to an individual animal and a specific time point
will limit the time required for video analysis searching for
rare cattle vocalisations and will therefore enhance progress
towards decoding specific vocalisations. Such scientific find-
ings could be implemented in the CCM to further improve its
on-farm applicability. These results are promising for the
future use of vocalisation in automatic oestrus detection sys-
tems and for further applications in monitoring animal health
and welfare status.
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