LINEAR DIOPHANTINE EQUATIONS WITH CYCLIC COEFFICIENT MATRICES AND ITS APPLICATIONS TO RIEMANN SURFACES

by NOBUMASA TAKIGAWA

(Received 18th September 1984)

1.

Let $c_{0}, c_{1}, \ldots, c_{n-1}$ be the nonzero complex numbers and let $C=\left(c_{u+1, v+1}\right)=\left(c_{n+u-v}\right)$, $0 \leqq u, v \leqq n-1$, be a cyclic matrix, where $n+u-v$ is taken modulo n. In this paper we shall give the solution of the linear equations

$$
\begin{equation*}
\sum_{v=0}^{n-1} c_{n+u-v} y_{n-v}=L_{u} \quad(0 \leqq u \leqq n-1), \tag{1}
\end{equation*}
$$

where $L_{u}(0 \leqq u \leqq n-1)$ is a fixed complex number. In Theorem 1 we shall give a necessary and sufficient condition for (1) to have an integral solution.

As an application we shall give a nonnegative integral solution $\{t(v)\}$ of the linear Diophantine equations

$$
\begin{equation*}
\sum_{v=1}^{p-1} a(u, v) t(v)=p\left\{n(u)+1-g^{\prime}\right\} \quad(1 \leqq u \leqq p-1) \tag{2}
\end{equation*}
$$

where $a(u, v)=([u v / p]+1) p-u v, p$ is an odd prime number and [] denotes the Gaussian symbol. The linear equations (2) have first been introduced in [12] and it has been shown that nonhyperelliptic compact Riemann surfaces S of genus $g \geqq 3$ with an automorphism group $\langle h\rangle$ of order p can be characterized by nonnegative integral solutions of (2), where $\langle h\rangle$ is a cyclic group generated by h.

More precisely it is well known that there exists a Fuchsian surface group K such that S can be represented by an orbit space D / K (D is the open unit disk) and a Fuchsian group Γ containing K as a normal subgroup such that $\langle h\rangle \simeq \Gamma / K$ (c.f. [3] and [8]). When we consider the representation of $\langle h\rangle$ as linear transformations of the space of Abelian differentials of the first kind on $S, n(u)(0 \leqq u \leqq p-1)$ denotes the multiplicities of $\exp (2 \pi u i / p)$ as an eigenvalue of the diagonal form of that representation matrix, where $n(0)=g^{\prime}$ (the genus of the quotient space $S /\langle h\rangle$, J. Lewittes [6]) and $i=\sqrt{-1}$.

Consider the exact sequence

$$
1 \rightarrow K \rightarrow \Gamma \xrightarrow{\theta p} Z_{p} \rightarrow 1,
$$

where Z is the ring of rational integers and $\Gamma / K \simeq Z_{p}=Z /(p Z)$. If Γ has a presentation
of the form
generators: $\quad X_{1}, X_{2}, \ldots, X_{T} ; U_{1}, V_{1}, \ldots, U_{g^{\prime}}, V_{g^{\prime}}$
relations: $\quad X_{1}^{p}=X_{2}^{p}=\cdots=X_{T}^{p}=\prod_{l=1}^{T} X_{l} \prod_{k=1}^{g^{\prime}} U_{k} V_{k} U_{k}^{-1} V_{k}^{-1}=1$
satisfying $2\left(g^{\prime}-1\right)+(1-1 / p) T>0$, then $t(v)$ denotes the number of generators in Γ whose image under a surface kernel epimorphism θ_{p} is equal to $v(1 \leqq v \leqq p-1)$.
E. K. Lloyd [7] asked the question: For a fixed Fuchsian group and a fixed cyclic group, how many such epimorphisms are there? He gave an answer to this question for cyclic p-groups (c.f. [7, Chapter 5]). In this paper, we restrict our attention to the cyclic group of order p and the following question is asked:
(I) Determine all sets $\{n(u), 1 \leqq u \leqq p-1\}$ explicitly for a fixed $T>4$, and construct θ_{p} concretely for such $\{n(u)\}$.
If a surface S is given, then we see $\{t(v)\}$ and so $\{n(u)\}$ could be computed by making use of (2). Conversely, if there exists a nonnegative integral solution $\{t(v)\}$ of (2) for a given $\{n(u), T\}$, then the Riemann surface (and so θ_{p}) could be constructed from $\{t(v)\}$.

If $g^{\prime}=0$ and $T>4$, then the Weierstrass gap sequences at the fixed points of h is completely determined by $\{n(u)\}$ (c.f. [12]). By making use of the solution for (I), we can determine all types of the Weierstrass gap sequences which appear at the fixed points of h. The case $p=3$, the above problem (I) has already been solved by C. Maclachlan [9].

2.

In our study the following lemma is essential.
Lemma 1. Let $V\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)=\sum_{u=0}^{n-1}(-1)^{u+v} \Delta(u+1, v+1) x_{v}^{u}(n>1,0 \leqq v \leqq n-1)$ be the Vandermond's determinant. Putting $F(x)=\prod_{u=0}^{n-1}\left(x-x_{u}\right), F(x) /\left(x-x_{v}\right)=\sum_{\substack{n=0 \\ n-1}}^{u} \psi(u, v) x^{u}$ and $W_{v}=\prod_{0 \leqq k<l \leqq n-1}\left(x_{k}-x_{l}\right)(k \neq v \neq l)$, we have $\Delta(u+1, v+1)=(-1)^{n(n-i) / 2+v} \psi(u, v) W_{v}$ and $V\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)=(-1)^{n(n-1) / 2+v} W_{v} F^{\prime}\left(x_{v}\right)$, where $F^{\prime}(x)=d F(x) / d x$.

Proof. We see that $V\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$

$$
=\left|\begin{array}{ccccccc}
1 & \cdots & 1 & 1 & 1 & \cdots & 1 \\
x_{0} & \cdots & x_{v-1} & x_{v} & x_{v+1} & \cdots & x_{n-1} \\
\vdots & & \vdots & \vdots & \vdots & & \vdots \\
x_{0}^{u-1} & \cdots & x_{v-1}^{u-1} & x_{v}^{u-1} & x_{v}^{u-1} & \cdots & x_{n-1}^{u-1} \\
x_{0}^{u} & \cdots & x_{v-1}^{u} & x_{v}^{u} & x_{v+1}^{u} & \cdots & x_{n-1}^{u} \\
x_{0}^{u+1} & \cdots & x_{v-1}^{u+1} & x_{v}^{u+1} & x_{v+1}^{u+1} & \cdots & x_{n-1}^{u+1} \\
\vdots & & \vdots & \vdots & \vdots & & \vdots \\
x_{0}^{n-1} & \cdots & x_{v-1}^{n-1} & x_{v}^{n-1} & x_{v+1}^{n-1} & \cdots & x_{n-1}^{n-1}
\end{array}\right| .
$$

Then $V\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)=(-1)^{n(n-1) / 2+v} W_{v}\left(\sum_{u=0}^{n-1} \psi(u, v) x_{v}^{u}\right) \quad$ and $\quad F^{\prime}(x)=\sum_{u=0}^{n-1} \psi(u, v) x_{v}^{u}$. Thus the assertions hold.

Suppose that $\operatorname{det} C \neq 0$. Since C is a cyclic matrix, its eigenvalues are given by

$$
\begin{equation*}
\lambda_{u}=\sum_{v=0}^{n-1} c_{n-v} \omega_{n}^{u v}, \tag{3}
\end{equation*}
$$

where ω_{n} is a primitive n-th root of unity. Observing $\operatorname{det} C=\prod_{u=0}^{n-1} \lambda_{u} \neq 0$ (see [11, p. 343 (2)]), we see that (1) reduces to

$$
\begin{equation*}
\sum_{v=0}^{n-1} \omega_{n}^{u v} y_{n-v}=\left(\sum_{w=0}^{n-1} L_{w} \omega_{n}^{u w}\right) / \lambda_{u} \quad(0 \leqq u \leqq n-1) \tag{4}
\end{equation*}
$$

Consider $x_{v}=\omega_{n}^{v}(0 \leqq v \leqq n-1)$ in Lemma 1. Then we have

$$
\begin{equation*}
y_{n-u}=\sum_{v=0}^{n-1} \sum_{w=0}^{n-1}\left(\psi(u, v) \omega_{n}^{v w} L_{w} / \lambda_{v} F^{\prime}\left(\omega_{n}^{v}\right)\right) \quad(0 \leqq u \leqq n-1) \tag{5}
\end{equation*}
$$

Lemma 2. From $x_{v}=\omega_{n}^{v}(0 \leqq v \leqq n-1)$ in Lemma 1, follows that
(i) $F^{\prime}\left(\omega_{n}^{v}\right)=n \omega_{n}^{v(n-1)} \quad(0 \leqq v \leqq n-1) \quad$ and
(ii) $\psi(u, 0)=1 \quad(0 \leqq u \leqq n-1)$.

Proof. Since $F(x)=\prod_{j=0}^{n-1}\left(x-\omega_{n}^{j}\right)=(x-1)\left(x^{n-1}+x^{n-2}+\cdots+x+1\right)=x^{n}-1$, the assertions follow at once from

$$
F(x) /(x-1)=\sum_{u=0}^{n-1} \psi(u, 0) x^{u}=x^{n-1}+x^{n-2}+\cdots+x+1 .
$$

Lemma 3. Assume that $\operatorname{det} C \neq 0$ and that $L_{w}=c=\operatorname{constant}(0 \leqq w \leqq n-1)$. Then (1) has the solution $y_{n-u}=c / \lambda_{0}(0 \leqq u \leqq n-1)$, where

$$
\lambda_{0}=\sum_{v=0}^{n-1} c_{n-v} .
$$

Proof. Since $\sum_{w=0}^{n-1} \omega_{n}^{v w}=0$ for $1 \leqq v \leqq n-1$, (5) is reduced to $y_{n-u}=n c \psi(u, 0) / \lambda_{0} F^{\prime}(1)$ $(0 \leqq u \leqq n-1)$. Thus the assertion follows from Lemma 2.

Applying the above Lemma 2, we have

$$
y_{n-u}=\sum_{v=0}^{n-1} \sum_{w=0}^{n-1}\left\{\psi(u, v) \omega_{n}^{v(w+1)} L_{w} / n \lambda_{v}\right\} \quad(0 \leqq u \leqq n-1) .
$$

If $y_{n-j}=1$ for a certain $j(0 \leqq j \leqq n-1)$ and $y_{n-v}=0$ for all $v(v \neq j, 0 \leqq v \leqq n-1)$, then
$L_{w}=c_{n+w-j}(0 \leqq w \leqq n-1)$ follows from (1). We can conclude from (5') that the identities

$$
\begin{equation*}
\sum_{v=0}^{n-1} \sum_{w=0}^{n-1}\left\{c_{n+w-j} \psi(u, v) \omega_{n}^{v(w+1)} / n \lambda_{v}\right\}=\delta_{j u} \quad(0 \leqq u \leqq n-1) \tag{6}
\end{equation*}
$$

hold, where $\delta_{j u}$ is the Kronecker symbol.
Theorem 1. Let

$$
\sum_{v=0}^{n-1} Z c_{n-v}=\left\{\sum_{v=0}^{n-1} b_{n-v} c_{n-v} ; b_{n-v} \in Z \quad(0 \leqq v \leqq n-1)\right\} .
$$

The linear equations (1) have an integral solution $\left\{y_{n-v}\right\}$ if and only if
(i) $L_{w} \in \sum_{v=0}^{n-1} Z c_{n-v}$ for every $w(0 \leqq w \leqq n-1)$ and
(ii) $\sum_{w=0}^{n-1} L_{w} \in Z \lambda_{0}$.

Proof. From $u=0$ in (3) and (4), follows that $\lambda_{0} \sum_{v=0}^{n-1} y_{n-v}=\sum_{w=0}^{n-1} L_{w}$. Thus if there exists an integral solution of (1), then (i) and (ii) hold. Conversely, if $\left\{L_{w}\right\}$ satisfy the conditions (i) and (ii), then they can be written in the form $L_{w}=\sum_{\substack{n=0}}^{n-1} d_{n-j} c_{n+w-j}\left(d_{n-j} \in Z\right)$. (5') and (6) yield

$$
\begin{aligned}
y_{n-u} & =\sum_{v=0}^{n-1} \sum_{w=0}^{n-1}\left\{\psi(u, v) \omega_{n}^{v(w+1)} \cdot \sum_{j=0}^{n-1} d_{n-j} c_{n+w-j} / n \lambda_{v}\right\} \\
& =\sum_{j=0}^{n-1}\left(\sum_{v=0}^{n-1} \sum_{w=0}^{n-1}\left\{\psi(u, v) \omega_{n}^{v(w+1)} c_{n+w-j} / n \lambda_{v}\right\}\right) d_{n-j} \\
& =\sum_{j=0}^{n-1} \delta_{j u} d_{n-j}=d_{n-u} \quad(0 \leqq u \leqq n-1) .
\end{aligned}
$$

Remark. It can happen that, for the condition (i) only, all $L_{w}(0 \leqq w \leqq n-1)$ have the same common value. And then, as can be seen from Lemma 3, (1) does not necessarily have an integral solution.

Let \mathbb{Z}_{0}^{+}and \mathbb{R} denote the set of all nonnegative integers $\left(0 \in \mathbb{Z}_{0}^{+}\right)$and the field of real numbers, respectively.

Corollary 1. Suppose that $0<c_{n-v} \in \mathbb{R}$ and $0<L_{w} \in \mathbb{R}(0 \leqq v, w \leqq n-1)$. The linear equations (1) have a nonnegative integral solution $\left\{y_{n-u}\right\}$ if and only if $L_{w} \in \sum_{v=0}^{n-1} \mathbb{Z}_{0}^{+} c_{n-0}$ for every $w(0 \leqq w \leqq n-1)$ and $\sum_{w=0}^{n-1} L_{w} \in \mathbb{Z}_{0}^{+} \lambda_{0}$.

Corollary 2. Suppose that $0<L_{w} \in \mathbb{R}(0 \leqq w \leqq n-1)$. Let $c_{n-v}=m_{n-v} / l_{n-v} \quad\left(m_{n-v}\right.$, $l_{n-v} \in \mathbb{Z}_{0}^{+}, l_{n-v} \neq 0,\left(m_{n-v}, l_{n-v}\right)=1$ for $\left.0 \leqq v \leqq n-1\right)$. Then the linear equations (1) have a nonnegative integral solution $\left\{y_{n-u}\right\}$ if and only if $L_{w} \in \mathbb{Z}_{0}^{+}(1 / l)$ for every $w(0 \leqq w \leqq n-1)$ and $\sum_{w=0}^{n-1} L_{w} \in \mathbb{Z}_{0}^{+} l$, where l is the least common multiple of $\left\{l_{n-v}\right\}$.

3.

Throughout the remainder of this paper the following symbols will be used:
Q
$H_{1}(p)$:
$r:$ the field of rational numbers the first factor of the class number of the cyclotomic field $\mathbb{Q}(\exp (2 \pi i / p))$

$$
\phi=p-1, \quad s=\phi / 2 \quad \text { and } \quad \omega_{\phi}=\exp (2 \pi i / \phi)
$$ a primitive root $(\bmod p)(\operatorname{In}[1, p .266]$ the notation g is used instead of r)

$R(u)$ for $u \in \mathbb{Z}$: the least positive residue of $u(\bmod p)$
$r_{j}=R\left(r^{j}\right)$ for $j \in \mathbb{Z}$
(the indices j are taken $\bmod \phi$)

$$
a^{\prime}(u, v)=\alpha(p-u, v) / p=R(u v) / p(1 \leqq u, v \leqq p-1) .
$$

We investigate the fundamental properties of the coefficient matrix $A_{p}=(a(u, v))$ of (2). Replace $A_{p}^{\prime}=\left(a^{\prime}(u+1, v+1)\right)=(R((u+1)(v+1)) / p)$ by $C_{p}=\left(c_{u+1, v+1}\right)=I_{1} A_{p}^{\prime} I_{2}$, where I_{1} and I_{2} are the permutation matrices corresponding to the permutation $I_{1}: r_{u} \rightarrow u+1$ and $I_{2}: r_{\phi-v} \rightarrow v+1$ for $0 \leqq u, v \leqq \phi-1\left(r_{0}=r_{\phi}=1\right)$. Then $c_{u+1, v+1}=R\left(r_{u} r_{\phi-v}\right) / p=r_{\phi+u-v} / p$. Hence (2) is reduced to

$$
\sum_{v=0}^{\phi-1}\left(r_{\phi+u-v} / p\right) t\left(r_{\phi-v}\right)=n\left(p-r_{u}\right)+1-g^{\prime} \quad(0 \leqq u \leqq \phi-1)
$$

Since

$$
\begin{equation*}
r_{v}+r_{s+v}=p \quad(0 \leqq v \leqq s-1) \quad([10, \text { p. } 11 \text { Hilfssatz 2] }), \tag{7}
\end{equation*}
$$

we have

$$
\begin{equation*}
T=\sum_{v=0}^{\phi-1} t\left(r_{\phi-v}\right)=n\left(p-r_{u}\right)+n\left(p-r_{s+u}\right)+2-2 g^{\prime} \quad(0 \leqq u \leqq s-1) \tag{8}
\end{equation*}
$$

It follows from (2^{\prime}), (7) and the Riemann-Hurwitz relation that

$$
\begin{equation*}
g=p g^{\prime}+s(T-2)=g^{\prime}+\sum_{u=0}^{\phi-1} n\left(p-r_{u}\right) . \tag{9}
\end{equation*}
$$

For a fixed $\quad T>0, \quad T \leqq p\left\{n\left(p-r_{u}\right)+1-g^{\prime}\right\} \leqq(p-1) T \quad(0 \leqq u \leqq \phi-1) \quad$ hold. Since $\left\{r_{0}, r_{1}, \ldots, r_{\phi-1}\right\}=\{1,2, \ldots, p-1\}$ it follows that

$$
\left.\begin{array}{l}
T / p \leqq M\left(p-r_{u}\right) \leqq T-T / p \quad \text { if } \quad T \equiv 0(\bmod p) \tag{10}\\
{[T / p]+1 \leqq M\left(p-r_{u}\right) \leqq T-[T / p]-1 \quad \text { if } \quad T \not \equiv 0(\bmod p),} \\
\text { where } M\left(p-r_{u}\right)=n\left(p-r_{u}\right)+1-g^{\prime}(0 \leqq u \leqq \phi-1)([12, \mathrm{p} .239]) .
\end{array}\right\}
$$

The eigenvalues of the cyclic matrix $C_{p}=\left(r_{\phi+u-v} / p\right)$ are given by

$$
\Lambda_{u}=\sum_{v=0}^{\phi-1}\left(r_{v} / p\right) \omega_{\phi}^{u v} \quad(0 \leqq u \leqq \phi-1)
$$

Lemma 4.

(i) $\Lambda_{0}=s$,
(ii) $\Lambda_{2 u}=0 \quad(1 \leqq u \leqq s-1)$,
(iii) $\Lambda_{2 u+1}=\left\{\sum_{v=0}^{s-1}\left(2 r_{v}-p\right) \omega_{\phi}^{(2 u+1) v}\right\} / p \quad(0 \leqq u \leqq s-1)$.

Proof. The relations

$$
\begin{equation*}
\sum_{v=0}^{s-1} \omega_{\phi}^{2 u v}=0 \quad(1 \leqq u \leqq s-1) \quad \text { and } \quad \omega_{\phi}^{(2 u+1) v}=-\omega_{\phi}^{(2 u+1)(s+v)} \quad(0 \leqq u, v \leqq s-1) \tag{11}
\end{equation*}
$$

hold ([10, p. $15(3.5),(3.6)])$. It follows from (3^{\prime}), (7) and (11) that

$$
\Lambda_{0}=\sum_{v=0}^{s-1}\left(r_{v}+r_{s+v}\right) / p=s, \Lambda_{2 u}=\sum_{v=0}^{s-1}\left\{\left(r_{v} / p\right) \omega_{\phi}^{2 v u}+\left(\left(p-r_{v}\right) / p\right) \omega_{\phi}^{2(s+v) u}\right\}=0
$$

and

$$
\Lambda_{2 u+1}=\sum_{v=0}^{s-1}\left\{\left(r_{v} / p\right)-\left(1-r_{v} / p\right)\right\} \omega_{\phi}^{(2 u+1) v}=\sum_{v=0}^{s-1}\left\{\left(2 r_{v}-p\right) / p\right\} \omega_{\phi}^{(2 u+1) v}
$$

It is well known that $H_{1}(p)$ is given by

$$
\begin{aligned}
H_{1}(p) & =(-1)^{s} 2^{1-s} p \prod_{u=0}^{s-1}\left\{\sum_{v=0}^{s-1}\left(2 r_{v}-p\right) \omega_{\phi}^{(2 u+1) v} / p\right\} \\
& =(-1)^{s} 2^{1-s} p \prod_{u=0}^{s-1} \Lambda_{2 u+1}>0 \quad([1,(2.12)])
\end{aligned}
$$

Thus the assertions hold.
As a consequence of Lemma 4, we get the following
Proposition 1. Rank $A_{p}=s+1$.
Hence (2') yields

$$
\sum_{v=0}^{s-1} \omega_{\phi}^{(2 u+1) v}\left\{t\left(r_{\phi-v}\right)-t\left(r_{s-v}\right)\right\}=\left\{\begin{array}{l}
\phi-1 \\
\left.\sum_{w=0} \omega_{\phi}^{(2 u+1) w} M\left(p-r_{w}\right)\right\} / \Lambda_{2 u+1} \quad(0 \leqq u \leqq s-1) . ~
\end{array}\right.
$$

Taking into consideration that $n=s$ and $x_{v}=\omega_{\phi}^{2 v+1}(0 \leqq v \leqq s-1)$ in Lemma 1, we can conclude from ($2^{\prime \prime}$) that

$$
t\left(r_{\phi-u}\right)-t\left(r_{s-u}\right)=\sum_{v=0}^{s-1}\left\{\sum_{w=0}^{\phi-1} \psi(u, 2 v+1) \omega_{\phi}^{(2 v+1) w} M\left(p-r_{w}\right)\right\} / \Lambda_{2 v+1} F^{\prime}\left(\omega_{\phi}^{2 v+1}\right) \quad(0 \leqq u \leqq s-1)
$$

Using a similar method as in the proof of (6), we get the following identities.

Lemma 5. Let an integer $j(0 \leqq j \leqq s-1)$ be fixed. Then

$$
\left.\begin{array}{l}
\sum_{v=0}^{s-1} \sum_{w=0}^{\phi-1}\left\{\psi(u, 2 v+1) \omega_{\phi}^{(2 v+1) w} r_{\phi+w-j} / p \Lambda_{2 v+1} F^{\prime}\left(\omega_{\phi}^{2 v+1}\right)\right\}=\delta_{j u} \\
\sum_{v=0}^{s-1} \sum_{w=0}^{\phi-1}\left\{\psi(u, 2 v+1) \omega_{\phi}^{(2 v+1) w} r_{s+w-j} / p \Lambda_{2 v+1} F^{\prime}\left(\omega_{\phi}^{2 v+1}\right)\right\}=-\delta_{j u} \quad(0 \leqq u \leqq s-1)
\end{array}\right\}
$$

Proposition 2. If $T \equiv 0(\bmod 2)$ and $T \geqq 2$, then the following statements (i) and (ii) are equivalent:
(i) $t\left(r_{\phi-v}\right)=t\left(r_{s-v}\right) \quad(0 \leqq v \leqq s-1)$
(ii) $n\left(r_{v}\right)=n\left(r_{s+v}\right)=T / 2+g^{\prime}-1 \quad(0 \leqq v \leqq s-1)$.

Proof. Using (7), we see that (2') can be written as

$$
\sum_{v=0}^{s-1}\left\{t\left(r_{\phi-v}\right)+r_{s+u-v}\left(t\left(r_{s-v}\right)-t\left(r_{\phi-v}\right)\right)\right\}=n\left(p-r_{u}\right)+1-g^{\prime} \quad(0 \leqq u \leqq \phi-1)
$$

Thus if (i) holds, then (ii) follows. Conversely, if $n\left(r_{\phi-v}\right)=$ constant $(0 \leqq v \leqq s-1)$, then (i) follows from (5^{\prime}). Then (2^{\prime}) yields $n\left(r_{\phi-v}\right)=T / 2+g^{\prime}-1 \quad(0 \leqq v \leqq \phi-1)$.

By a similar method as in Corollary 2 we get the following
Proposition 3. The linear equations (2) have an integral solution $\left\{t\left(r_{\phi-u}\right)-t\left(r_{s-u}\right)\right.$; $0 \leqq u \leqq s-1\}$ if and only if $M\left(r_{w}\right) \in \mathbb{Z}_{0}^{+}(1 / p) \cdot$ for every $w(0 \leqq w \leqq \phi-1)$ and $\sum_{w=0}^{\phi-1} M\left(r_{w}\right) \in \mathbb{Z}_{0}^{+} p$.

Example 1. We give an example that (2") has an integral solution even if $M\left(r_{w}\right) \notin \mathbb{Z}_{0}^{+}$. Consider the case $p \nmid H_{1}(p)$, in which p is a regular prime [13, pp. 61-62]. Putting $T=H_{1}(p)$ and $M\left(r_{w}\right)=r_{w} H_{1}(p) / p$ for every $w(0 \leqq w \leqq \phi-1)$, we can easily verify that they satisfy the conditions of the above Proposition 3. Then it follows from ($5^{\prime \prime}$) and (6^{\prime}) that ($2^{\prime \prime}$) has the solution $t(1)-t(p-1)=H_{1}(p)$ and $t\left(r_{\phi-u}\right)-t\left(r_{s-u}\right)=0(1 \leqq u \leqq s-1)$.
4.

We are ready to answer the problem (I). Let $\Omega(p)=\left\{T, M\left(r_{w}\right) ; 0 \leqq w \leqq s-1\right\}$ be a set of $s+1$ nonnegative integers satisfying the conditions (8), (9) and (10). It should be remarked that the remaining $\left\{g, M\left(r_{w}\right) ; s \leqq w \leqq \phi-1\right\}$ is determined by (8) and (9). Putting $\Omega^{*}(p, g)=\left\{g, g^{\prime}, T, M\left(r_{w}\right) ; 0 \leqq w \leqq \phi-1\right\}$, we have

Theorem 2. Suppose that a set $\Omega^{*}(p, g)$ is given. Then the corresponding Riemann surface (and so θ_{p}) exists if and only if the linear equations (2) have a nonnegative integral solution.

Proof. If there exist a nonnegative integral solution $\{t(v)\}$ of (2), then

$$
\sum_{v=1}^{p-1} a(p-1, v) t(v)=\sum_{v=1}^{p-1} v t(v) \equiv 0(\bmod p)
$$

It follows from the result of W. J. Harvey [4, Lemma 6] that there really exists θ_{p}. The inverse is obvious.

There does not necessarily exist a nonegative integral solution of (2) corresponding to a $\Omega^{*}(p, g)$, because $M\left(r_{w}\right) \in \Omega^{*}(p, g) \quad(0 \leqq w \leqq \phi-1)$, does not necessarily imply $M\left(r_{w}\right) \in \mathbb{Z}_{0}^{+}(1 / p)$ or $\sum_{w=0}^{\phi-1} M\left(r_{w}\right) \in \mathbb{Z}_{0}^{+} p$.

Let $W(p, g)=\left\{\Omega^{*}(p, g) ; M\left(r_{w}\right) \in \mathbb{Z}_{0}^{+}(1 / p)\right.$ for $0 \leqq w \leqq \phi-1$ and $\left.\sum_{w=0}^{\phi-1} M\left(r_{w}\right) \in \mathbb{Z}_{0}^{+} p\right\}$. Then the above Proposition 3 tells us that there exists a compact Riemann surface corresponding to $\Omega^{*}(p, g)$ if and only if $\Omega^{*}(p, g) \in W(p, g)$.

Theorem 3. Let the nonnegative integers g^{\prime} and $T=\xi p+\zeta>4(\zeta=0, \zeta=p+1$ or $2 \leqq \zeta \leqq p-1)$ be given and let ξ and ζ have nonnegative partitions $\xi=\sum_{j=0}^{\phi=1} b\left(r_{j}\right)$ and $\zeta=\sum_{j=0}^{\phi-1} b^{\prime}\left(r_{j}\right)$ respectively. Put

$$
\begin{equation*}
M\left(r_{w}\right)=\sum_{j=0}^{\phi-1} b\left(r_{j}\right) r_{\phi+w-j}+\left\{\sum_{j=0}^{\phi-1} b^{\prime}\left(r_{j}\right) r_{\phi+w-j}\right\} / p \quad(0 \leqq w \leqq \phi-1) \tag{13}
\end{equation*}
$$

and $g=p g^{\prime}+s(T-2)$. Then $\Omega^{*}(p, g)=\left\{g, g^{\prime}, T, M\left(r_{w}\right) ; 0 \leqq w \leqq \phi-1\right\} \in W(p, g)$ if and only if

$$
\begin{equation*}
\sum_{j=0}^{\phi-1} b^{\prime}\left(r_{j}\right) r_{j} \equiv 0(\bmod p)\left(\sum_{j=0}^{s-1} b^{\prime}\left(r_{j}\right) r_{j} \equiv \sum_{j=0}^{s-1} b^{\prime}\left(r_{s+j}\right) r_{j}(\bmod p)\right) . \tag{14}
\end{equation*}
$$

Moreover in this case the linear equations ($2^{\prime \prime}$) have a nonnegative integral solution

$$
\left.\begin{array}{l}
t\left(r_{\phi-u}\right)=b\left(r_{u}\right) p+b^{\prime}\left(r_{u}\right) \tag{15}\\
t\left(r_{s-u}\right)=b\left(r_{s+u}\right) p+b^{\prime}\left(r_{s+u}\right)
\end{array} \quad(0 \leqq u \leqq s-1) .\right\}
$$

Proof. Since $r_{\phi+w-j} \equiv r_{\phi-j} r_{w}(\bmod p)$ for $0 \leqq w, j \leqq \phi-1$, the conditions $M\left(r_{w}\right) \in \mathbb{Z}_{0}^{+}(1 / p)$ for every w and $\sum_{w=0}^{\phi-1} M\left(r_{w}\right) \in \mathbb{Z}_{0}^{+} p$ are equivalent to (14). Then it follows from ($5^{\prime \prime}$) and (6^{\prime}) that

$$
\begin{aligned}
t\left(r_{\phi-u}\right)-t\left(r_{s-u}\right)= & \sum_{j=0}^{\phi-1}\left(b\left(r_{j}\right) p+b^{\prime}\left(r_{j}\right)\right) \sum_{v=0}^{s-1} \\
& \left\{\sum_{w=0}^{\phi-1} \psi(u, 2 v+1) \omega_{\phi}^{(2 v+1) w} r_{\phi+w-j} / p \Lambda_{2 v+1} F^{\prime}\left(\omega_{\phi}^{2 v+1}\right)\right\} \\
= & \sum_{j=0}^{s-1}\left\{\left(b\left(r_{j}\right) p+b^{\prime}\left(r_{j}\right)\right)-\left(b\left(r_{s+j}\right) p+b^{\prime}\left(r_{s+j}\right)\right)\right\} \delta_{u j} \\
= & b\left(r_{u}\right) p+b^{\prime}\left(r_{u}\right)-\left(b\left(r_{s+u}\right) p+b^{\prime}\left(r_{s+u}\right)\right) \quad(0 \leqq u \leqq s-1)
\end{aligned}
$$

According to Proposition 1, we regard $\left\{t\left(r_{s-u}\right) ; 1 \leqq u \leqq s-1\right\}$ as the parameters and take $t\left(r_{s-u}\right)=b\left(r_{s+u}\right) p+b^{\prime}\left(r_{s+u}\right)$ for $1 \leqq u \leqq s-1$. Then we have $t\left(r_{\phi-u}\right)=b\left(r_{u}\right) p+b^{\prime}\left(r_{u}\right)$ for $1 \leqq u \leqq s-1$. Since

$$
T=\sum_{u=0}^{s-1}\left\{p\left(b\left(r_{u}\right)+b\left(r_{s+u}\right)\right)+b^{\prime}\left(r_{u}\right)+b^{\prime}\left(r_{s+u}\right)\right\}=\sum_{u=0}^{s-1}\left\{t\left(r_{\phi-u}\right)+t\left(r_{s-u}\right)\right\}
$$

we have

$$
t\left(r_{\phi}\right)+t\left(r_{s}\right)=t(1)+t(p-1)=p b(1)+b^{\prime}(1)+p b(p-1)+b^{\prime}(p-1)
$$

On the other hand

$$
t(1)-t(p-1)=p b(1)+b^{\prime}(1)-\left\{p b(p-1)+b^{\prime}(p-1)\right\} .
$$

Hence $t(1)=p b(1)+b^{\prime}(1)$ and $t(p-1)=p b(p-1)+b^{\prime}(p-1)$.
Remark. It is possible that (15) is not the only solution for ($2^{\prime \prime}$), corresponding to (13), but we want to remark here that at least (15) can be given as a solution.

Looking at the above Theorems 2 and 3 , we see that our problem (I) is completely solved.

5.

Throughout this section we consider a set $\Omega^{*}(p, g)=\left\{g, g^{\prime}=0, T>4, M\left(r_{w}\right) ; 0 \leqq w \leqq\right.$ $\phi-1\} \in W(p, g)$. Let $\left\{t\left(r_{w}\right) ; 0 \leqq w \leqq \phi-1\right\}$ be a nonnegative integral solution ($2^{\prime \prime}$) corresponding to $\Omega^{*}(p, g)$. The condition $T>4$ means that every fixed point Q of an automorphism h on S (which is determined by $\left\{t\left(r_{w}\right)\right\}$) is a Weierstrass point (see [6]). Let $\gamma(Q)$ denote the Weierstrass gap sequence at Q. If $t\left(r_{\phi-v}\right) \neq 0$ i.e., if there exists $X_{j} \in \Gamma$ satisfying $r_{\phi-v}=\theta_{p}\left(X_{j}\right)$ for a certain $j(1 \leqq j \leqq T)$, then h^{-1} is locally represented as

$$
\begin{equation*}
z \rightarrow \exp \left(2 \pi i r_{v} / p\right) \text { at } Q\left(r_{\phi-v}\right) \tag{16}
\end{equation*}
$$

where $Q\left(r_{\phi-v}\right)$ is a fixed point on $S=D / K$ corresponding to $t\left(r_{\phi-v}\right)$ (or $\left.X_{j}\right)$ ([4, Theorem 7]).
We define the number J as follows:

$$
J=\left\{\begin{array}{l}
1 \text { if } \zeta=0, \\
p-1 \quad \text { if } \zeta=1, \\
p-\zeta+1 \quad \text { if } 2 \leqq \zeta \leqq p-1, \text { where } T=\xi p+\zeta>4 \text { and } 0 \leqq \zeta<p
\end{array}\right.
$$

Let a natural number $r_{w}(0 \leqq w \leqq \phi-1)$ be given, and let $r_{v(k)}(1 \leqq k \leqq J, 0 \leqq v(k) \leqq \phi-1)$ be the solution of

$$
k r_{v(k)} \equiv r_{w}(\bmod p)
$$

We consider the following condition

$$
\left(A_{0}\right)\left\{\begin{array}{l}
T=\sum_{k=1}^{J} t\left(r_{\phi-v(k)}\right)>4, \quad \text { and } \\
J-1=\sum_{k=2}^{J}(k-1) t\left(r_{\phi-v(k)}\right) \quad \text { if } \quad T \not \equiv(\bmod p), \\
p-1=\sum_{k=2}^{J}(k-1) t\left(r_{\phi-v(k)}\right) \quad \text { if } \quad T \equiv 1(\bmod p),[12, \mathrm{p} .240] .
\end{array}\right.
$$

Then we have
Theorem 4. Assume $t\left(r_{\phi-v}\right) \neq 0$ for a certain $v(0 \leqq v \leqq \phi-1)$.
(i) If $T>p$ for $p>3$ and $T>4$ for $p=3$, then

$$
\begin{equation*}
\gamma\left(Q\left(r_{\phi-v}\right)\right)=\left\{l p+r_{\phi+u-v} ; 0 \leqq l \leqq n\left(r_{u}\right)-1,0 \leqq u \leqq \phi-1\right\} . \tag{17}
\end{equation*}
$$

(ii) If $4<T \leqq p$ and the automorphism h does not satisfy the condition $\left(A_{0}\right)$, then $\gamma\left(Q\left(r_{\phi-v}\right)\right)$ is also given by (17).
(iii) If $4<T \leqq p$ and h satisfies the condition $\left(A_{0}\right)$, then

$$
\begin{aligned}
\gamma\left(Q\left(r_{\phi-u}\right)\right)=\left\{l p+r_{\phi+u-v} ; 0 \leqq l \leqq n\left(r_{u}\right)-1, \text { where } u\right. \text { runs through } \\
\text { all } \left.u(0 \leqq u \leqq \phi-1) \text { satisfying } n\left(r_{u}\right) \neq 0\right\} .
\end{aligned}
$$

Proof.

(i) Through this assumption we see that p is the first nongap value at $Q\left(r_{\phi-v}\right)$ [12, Prop. 2]. This means that $n\left(r_{u}\right) \neq 0$ for $0 \leqq u \leqq \phi-1$. Using the same notation as [12, pp.236-237], we get $\beta_{j} \equiv r_{v}$ (compare (16) with [12, p. 236 (3)]), $\alpha_{j}(1)=p-\delta_{j}=$ $r_{\phi-v}$ and $\alpha_{j}\left(r_{u}\right) \equiv r_{u} \alpha_{j}(1)=r_{u} r_{\phi-v} \equiv r_{\phi+u-v}(\bmod p)([12,(14)])$. Then $\beta_{j} \cdot \alpha_{j}\left(r_{u}\right)=$ $r_{v} r_{\phi+u-v} \equiv r_{u}(\bmod p)$. Thus (17) follows from [12, Lemma 2(i)].
(ii) The assumption shows that $n\left(r_{u}\right) \neq 0$ for every $0 \leqq u=\phi-1$ (see [12, Theorem 1] and $[12,(13)])$. By arguments similar to the ones which were used above, we get (ii).

Example 2. We will give all sets $\Omega^{*}(3, g)=\left\{g, g^{\prime}=0, T>4, M\left(r_{w}\right) ; w=0,1\right\} \in W(3, g)$. Then $r_{0}=1$ and $r=r_{1}=2$. Put $M\left(3-r_{0}\right)=M(2)=b(1)+2 b(2)+\left\{b^{\prime}(1)+2 b^{\prime}(2)\right\} / 3$ and $M(1)=2 b(1)+b(2)+\left\{2 b^{\prime}(1)+b^{\prime}(2)\right\} / 3$. For any natural number m we take

	T	$b(1)$	$b(2)$	$b^{\prime}(1)$	$b^{\prime}(2)$	$n(1)$	$n(2)$	g	
(i)	$3 m+2$	$m-k$	k	1	1		$2 m-k$	$m+k$	$3 m$
(ii)	$3 m+3$	$m-k$	k	0	3	i.e.	$2 m-k$	$m+k+1$	$3 m+1$
(iii)	$3 m+4$	$m-k$	k	2	2		$2 m+1-k$	$m+k+1$	$3 m+2$
								$(0<k \leqq m)$.	

In each case (2') has a solution
$\begin{array}{cc}t(1) & t(2) \\ m-k)+1 & 3 k+1\end{array}$

$t(1)$	$t(2)$
$3(m-k)+1$	$3 k+1$,
$3(m-k)$	$3(k+1)$,

(iii) $\quad 3(m-k)+2 \quad 3 k+2$.

In each case the gap sequence at a fixed point $Q(j)$ (of h) corresponding to $t(j)$ are as follows:

$$
\begin{aligned}
& \gamma(Q(1))=\{3 l+1 ; 0 \leqq l \leqq n(1)-1\} \cup\{3 l+2 ; 0 \leqq l \leqq n(2)-1\} \\
& \gamma(Q(2))=\{3 l+1 ; 0 \leqq l \leqq n(2)-1\} \cup\{3 l+2 ; 0 \leqq l \leqq n(1)-1\} .
\end{aligned}
$$

In this connection see [5, Lemma 6]. We emphasize that all types of the Weierstrass gap sequences which appear at the fixed points of h are determined explicitly by Theorems 3 and 4. We give another example.

Example 3. Consider the case $T=\xi p+2=p \sum_{j=0}^{\phi-1} b\left(r_{j}\right)+2 \quad(\xi>0)$.
Then $\sum_{j=0}^{\phi-1} b^{\prime}\left(r_{j}\right) r_{j} \equiv 0(\bmod p)$ and $\sum_{j=0}^{\phi-1} b^{\prime}\left(r_{j}\right)=2$ have the solution $b^{\prime}\left(r_{s+j}\right)=b^{\prime}\left(r_{j}\right)=1$ for a certain $j(0 \leqq j \leqq s-1)$. Hence for

$$
\begin{equation*}
n\left(p-r_{w}\right)=\sum_{v=0}^{\phi-1} b\left(r_{v}\right) r_{\phi+w-v} \quad(0 \leqq w \leqq \phi-1) \tag{18}
\end{equation*}
$$

(2') has a solution $t\left(r_{\phi-j}\right)=b\left(r_{j}\right) p+1, t\left(r_{s-j}\right)=b\left(r_{s+j}\right) p+1$ and $t\left(r_{\phi-v}\right)=b\left(r_{v}\right) p$ for every $v(v \neq j, 0 \leqq v \leqq s-1)$. All types of the Weierstrass gap sequences which appear at the fixed points of h are determined explicitly by (17) and (18). Indeed, if $j=0$, then

$$
\gamma(Q(1))=\left\{l p+r_{u} ; 0 \leqq l \leqq n\left(r_{u}\right)-1,0 \leqq u \leqq \phi-1\right\}
$$

and

$$
\gamma\left(Q\left(r_{s}\right)\right)=\gamma(Q(p-1))=\left\{l p+r_{s+u} ; 0 \leqq l \leqq n\left(r_{u}\right)-1,0 \leqq u \leqq \phi-1\right\} .
$$

REFERENCES

1. L. Carlitz and F. R. Olson, Maillet's determinant, Proc. Amer. Math. Soc. (1955), 265-269.
2. L. Carlitz, A generalization of Maillet's determinant and a bound for the first factor of the class number, Proc. Amer. Math. Soc. 12 (1961), 256-261.
3. W. J. Harvey, Cyclic groups of automorphisms of a compact Riemann surface, Quart, J. Math. Oxford 17 (1966), 86-97.
4. W. J. Harvey, On branch loci in Teichmüller space, Trans. Amer. Math. Soc. 153 (1971), 387-399.
5. T. Kato, Non-hyperelliptic Weierstrass points of maximal weight, Math. Ann. 239 (1979, 141-147.
6. J. Lewittes, Automorphisms of compact Riemann surfaces, Amer. J. Math. 84 (1963), 734-752.
7. E. K. Lloyd, Some combinatorial problems in the theory of Riemann surface transformation groups (Ph.D. Thesis, Birmingham, 1967).
8. A. M. Macbeath, On a curve of genus 7, Proc. London Math. Soc. 15 (1965), 527-542.
9. C. Maclachlan, Weierstrass points on compact Riemann surfaces, J. London Math. Soc. 3 (1971), 722-724.
10. T. Metsänkylä, Über den ersten Faktor der Klassenzahl des Kreiskörpers, Ann, Acad. Sci. Fenn. AI 416, (1967).
11. O. Ore, Some studies on cyclic determinants, Duke Math. J. 18 (1951), 343-354.
12. N. Takigawa, Weierstrass points on compact Riemann surfaces with nontrivial automorphisms, J. Math. Soc. Japan 33 (1981), 235-246.
13. L. C. Washington, Cyclotomic fields (Springer verlag, 1982).

Department of Applied Mathematics
Okayama University of Science
Ridai-cho, Okayama, 700
Japan

