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Abstract

Let p be a prime = 1 (mod 4) and put v — p(p + l)/2. It is proved in this paper that there exist
four symmetric circulant matrices A, B, C, D of order v such that

A2 + B2 + C2 + D2 = 4D/U,

where /„ is the identity matrix of order v. This result is used to construct Hadamard matrices of order
4t) that are of the type originally prescribed by Williamson.

1. Introduction

An Hadamard matrix H = [h,,] is a square matrix of order v with hi, = ± 1
which satisfies the matrix equation HHT = HTH = vlv. Here HT denotes the
transpose of H and /, is the identity matrix of order v. It is known that the order
v of an Hadamard matrix is necessarily 1,2 or a multiple of 4, and it is
conjectured that Hadamard matrices for all these orders exists. For a definitive
account of the extensive literature on this conjecture see Wallis, Street and
Wallis (1972).

In 1944 Williamson (1944) introduced a special type of Hadamard matrix
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whose structure is based on a matrix representation of quaternions. Williamson
noted that if A, B, C, D are circulant and symmetric (1, - 1) matrices of order v
for which the matrix equation

(2) A2+B2+C2+D2 =

is satisfied, then H is an Hadamard matrix of order 4v.
Hadamard matrices of the type prescribed by Williamson are known to exist

(i) for all odd v S 29 and v = 37 and 43.
(ii) for v = (q + l)/2, where q is a prime power and q = 1 (mod 4). The

matrices in class (i) are listed in Appendix II of Hall's book (1967, pp. 299-300),
and are also tabulated in the book by Wallis, Street and Wallis (1972, pp.
388-389). These matrices were constructed mainly by Williamson but some are
due to Baumert, Golomb and Hall. Class (ii) is a remarkable infinite family of
Hadamard matrices discovered by Richard Turyn (1972). For an alternate
derivation of Turyn's result see Whiteman (1973).

Recent advances in the construction of Hadamard matrices have em-
ployed four (1, - 1) matrices A, B, C, D of order v satisfying

(3) MNT = NMT(M, N £ {A, B, C, D}),

and

(4) AAT + BBT + CCT + DDT = 4«/u.

When such matrices exist the matrix H in (1) is an Hadamard matrix of order 4v.
If A, B, C, D are symmetric and circulant the condition (3) is automatically
satisfied and (4) reduces to (2).

The following result is due to Wallis (1973): If q is a prime power and q = 1
(mod 4), then there exist four (1,-1) matrices A, B, C, D of order v = q(q + l)/2
satisfying the conditions (3) and (4). The matrices A, B, C, D of this construction
are not circulant and need not be symmetric. In the present paper we give an
alternative construction in which A, B, C, D are not only circulant but are
symmetric as well. The construction is applicable whenever q is a prime (but not
a prime power). Specifically, we prove that if v = p(p + l)/2, where p is a prime
= 1 (mod4), then there exist four circulant and symmetric (1,-1) matrices
A, B, C, D of order v which satisfy condition (2). The corresponding matrix H in
(1) is an Hadamard matrix of order 4u.

This result yields new orders of Hadamard matrices of Williamson's original
type. The first five orders not produced by classes (i) or (ii) correspond to
v = 153, 435, 703, 1891, 2415.
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2. Two Lemmas

Let p be an odd prime. The p-th roots of unity are the numbers
exp(27n7i/p), h - 0. 1, • • -,p - 1. Let e be any root of the equation ep = 1 other
than e = 1. We shall require the following elementary lemma (see for example
the book by Landau (1927), vol. 1, p. 156).

LEMMA 1. The familiar Gauss sum

(5) G

where x(s) denotes the Legendre symbol (s \p), satisfies the relation

(6) G2 = * ( - l ) p .

Let GF(p) denote the residue class field of p incongruent numbers modulo
p. If w is a quadratic non-residue of p, then the polynomial P(x) = x2 — w is
irreducible over GF(p) and the polynomials ax + b(a, b G GF(p)) modulo P(x)
form a finite field GF(p2) of order p2. This concrete representation of GF{p2) is
used in the next lemma (compare Theorem 1 in Whiteman (1973)).

LEMMA 2. Let p be a prime = 1 (mod 4) and put n = (p + l)/2. Let y be a

primitive element of GF(p2). Put y' = ax + b(a, b G GF{p)) and define ar =
x(a), br = x(b)- Then the sums

satisfy the identity

(8) /2(ms2(<r) = P-
for each n-th root of unity £ including £ = 1.

With the exception of a» = 0, the coefficients air, b4r of the polynomials /(£),
g(£)are + 1 or - 1. Furthermore, it is proved in [Whiteman (1973), p. 338] that

(9) aMn-r) = ain biin-r) = b4r(r = 0 ,1 , • • •, n - 1).

Note that for £ = 1 the identity (8) reduces to the classical result that every
prime p = 1 (mod 4) is the sum of two squares of integers.

3. The Main Theorem

: The main feature of Williamson's method may be summarized as follows.
Williamson associated with the circulant matrices A, B, C, D of order v in (1) the
polynomials

https://doi.org/10.1017/S1446788700019327 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700019327


484 Albert Leon Whiteman [4]

t//,(a) = aQ+ a , a + • • • + av~ia"~',

i/»2(a) = bn+ b,a + • • • + b^ta"\

tA3(a) = c o + Cia + • • • + eu- ia°~V

<M«) = do+dta + •• • + do-ta
v'\

where a is a u-th root of unity. The coefficients a,, bh c,, di(i = 0,1, • • •, v - 1)
comprise the first rows of A, B, C, D respectively. The condition that the
matrices A, B, C, D be symmetric requires that

(10) av-< = a,, &„-,- = b,, C-, = c, dv-i = d,(i = 1,2, • • •, u - 1).

Consequently the numbers ip,(a), ip2(a), i/»3(a), ^ ( a ) are actually real numbers.
From the finite Parseval relation it follows that the identity

2 (aiai+k + bibi+k + ctci+k + didi+k)

holds for each integer k. Hence the matrix H in (1) is an Hadamard matrix of
order 4u if the elements of A, B, C, D are + 1 or - 1 and if the identity

prevails for each D-th root of unity a including a = 1.
We now state the main theorem of this paper.

THEOREM. Let v = p(p + l)/2, where p is a prime = 1 (mod4). Then there
exist four circulant and symmetric ( 1 , - 1) matrices A,B, C,D of order v that
satisfy equation (2.) The corresponding matrix H in (1) is an Hadamard matrix oj
order 4v of Williamson's original type.

PROOF. For a prime p = 1 (mod 4) put n = (p + l)/2 and v = np. The four
matrices A, B, C, D of the theorem are determined by means of the following
four associated polynomials

il>i(a), 4>2((*), "/^(oO* W a r ) :
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r - 1 s = l

4>i(a) = — 2J bt,a
rp + 2^ bt,

The coefficients a4r, biT appearing in these polynomials are + 1 or - 1 and are
the same as the coefficients of the polynomials /(£), g(£) in (7). Since the v = np
numbers

rp + sn(r = O , l , - - - , n - l ; s = 0,1, • •-,p - 1)

constitute a complete residue system modulo v it is clear that each of the four
polynomials is actually of degree v — 1. Moreover, the polynomials are un-
changed when r is replaced by n - r and J by p - s. Since ^ ( - 1) = 1 for p = 1
(mod 4) it follows from (9) that the symmetry property (10) holds.

It remains to prove that the four polynomials satisfy the identity (11) for
each u-th root of unity a including a = 1. Since a" = (a")p = (a p )" = 1 the
number a" is a p-th root of unity, and the number ap is an n-th root of unity
whenever a is a u-th root of unity. In agreement with the notation of Lemma 1
put a" = e; in agreement with the notation of Lemma 2 put a" = f. We consider
two cases according as a" = 1 or a"/ 1. In view of Lemmas 1 and 2 the four
polynomials reduce to

(«" = 1),
(«" = 1),

The number G is the Gauss sum defined in (5). If a" = 1 the sum of four squares
in (11) reduces to 2p(p + 1) because of the identity (8). If a"/ 1 the sum again
reduces to 2p(p + 1) because of the identity (6). In either event we have
established that (11) holds for each u-th root of unity a including a = 1. The
proof of the theorem is thus complete.
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