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Banaschewski (1963) and Frink (1964) generalized the compactification
procedure of Wallman to obtain Hausdorff compactifications of Tychonoff
spaces. Numerous papers have been devoted to the problem whether all Hausdorff
compactifications may be obtained in this way, and for many classes of com-
pactifications an affirmative answer has been given. This note is a contribution
in this direction. We show that if a (Hausdorff) compactification ccX of X is the
quotient space of a Wallman compactification yX in such a way that the set of
multiple points of aX with respect to yX is not too large, then a.X too is a Wallman
compactification. The results are generalizations of earlier results of Steiner and
Steiner (1968) and by the author (1966) for the special case that yX is the Stone-
Cech-compactification.

1. Preliminaries

Let aX be an arbitrary (Hausdorff) compactification of the (Tychonoff)
space X. We shall identify X with a subset of a.X. Interior, closure, and boundary
in aX are denoted by °, ~, and d.

We start by presenting some general auxiliary results.

LEMMA 1.1. If G is open in ocX, then G <= (GnX)~°.

PROOF. Let x e G, and let U be an arbitrary neighbourhood of x. Then Go U
is a neighbourhood of x, and hence contains a point y e X, since X is dense in
aX. Clearly y e G O X, and so xe(GnX)~ . This means that G cz(G n X)~ ,
from which follows that G c ( G n X ) " 0 , since G is open.

COROLLARY 1.2. / /F is closed in aX, then (F° n X)~° = (F n X)~° = F°.

PROOF. Obviously (F° r\X)~ c (F OX)" <=F, hence (F° r\X)-° <=
) ' 1 cF°.
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On the other hand, F° c (F° r\X)~° by Lemma 1.1, from which the result
follows.

COROLLARY 1.3. IfF is closed in <xX, then d[(F° n X)~~\ <= d[(F n X)~] c dF

PROOF. By Corollary 1.2 we have <5[(F° OX)"] = ( F ° n l ) - - ( F ° n i ) - ° =
(F° n x)~ - F° <=(F n Z)~ - F° = (F n Z) - - (F nX) - ° = 3[(F n Z ) ~ ] .
Similarly we have 3 [ ( f n l ) - ] = (F nX)~ - F° c F - F° = dF.

A fcase on a space shall always mean a base for the closed sets. A n'rcg ftase
is a base which is closed under finite unions and intersections.

PROPOSITION 1.4. If SB is a base on <xX, then 3B' = [ « n i ] - is also a
base on a.X.

PROOF. Let H be closed in aX and x $ H. Since ocX is a normal space, there
is a closed set F such that x$F, H c f ° . Let BeSS be such that F cB, x$B.
Then x^(BnX)~, since ( B O l ) ' <=B. According to Corollary 1.2 we have
(BnX)-^B0, and B° z> F° ^ H. Since (BnX)~e^', this completes the
proof.

(From Corollary 1.2 follows that if F is regular, then F = ( F n Z ) - .
So SS' = 8& \{ 3) consists of regular sets.)

Now let yX be a compactification of X such that yX ^ aZ, and let rc be the
natural map of yX onto OLX . (That is: n is a continuous, hence closed, map of
yX onto OLX which reduces to the identity on X.)

PROPOSITION 1.5. Let 38 be a ring base on yX. If N is a neighbourhood
of the closed set F in aX, then there is a set Be SB such that F c n(B) <= JV
(In particular n(@) is a base on <xX.)

PROOF. Let N be an open neighbourhood of the closed set F in aX. Then
n~1(F) and 7c~1(—N) are disjoint compact sets in yX. Since the base SB is a ring,
there is a set BeSS such that n~l(F) <= B, B r\n~l(-N) = 0. Clearly F c n{B)
and n(B) cN .By applying this result to the situation that N = aX — {x}, where
x $ F, we conclude that n(S§) is a base.

COROLLARY 1.6. If 31 is a ring base on yX, then3§' = \3BC\XY' IS a oase on a-^-

PROOF. Clearly J n X = n(SS) n X, and so the result follows from Propo-
tion 1.4 and Proposition 1.5.

2. Multiple points and reduced bases

In the following we assume that yX is a Wallman compactification, and wish
to show that under certain conditions ocX is a Wallman compactification too.
It suffices to show that aX has a base 38 with the trace property with respect to X.
(That is: If f)UiBt ¥= 0, then ( n i = i - B j ) n Z # 0, for every finite col-
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lection Bl,---,Bne88.) Then the ring generated by SB C\X is a normal base on X
corresponding to aX. See for example Steiner (1968) and Steiner and Steiner
(1969). Furthermore we know that since yX is a Wallman compactification, yX
has a ring base iV with the trace property with respect to X (f. ex. iV = clyXif,
where 3? is a normal base on X corresponding to aX). See for example Steiner
(1968). In the following we consider one fixed such base on yX.

We define the reduced base W* on aX corresponding to W by

W* = {Z~: Z e (ir n X) &n-\Z~) <= B

for some B e W for which Z = B r\X}.

LEMMA 2.1. #"* has the trace property with respect to X.

PROOF. Let Zf e#"* and let B^W such that Z, = B{,nl, Tr-^ZD c #<»
j = l,.. . ,n. Then n . " = i ^ ( Z f ) <= n?=i^> and I n n ? = i ^ = Di"=i Zf
= X n n;n=iZf. Now assume that X O n"=iZf = 0 . It follows that
f l ^ iB j = 0 , since •#" has the trace property. Thus n"=it~1(ZD = 0 ,
and hence f| "= t Z,~ = 0 . This completes the proof.

We shall say that a point x in aX is a multiple point with respect to yX if
Tt"1^) consists of more than one point. The set of such points will be denoted
by Mya. (This generalizes the concept of multiple point in Njastad (1966), where
yX is assumed to be the Stone-Cech-compactification.)

PROPOSITION 2.2. LetZ eW OX, and assume that 8Z~ <~)My0L = 0 . Then
Z~

PROOF. Let B be an arbitrary set in W such that BOX = Z.By Lemma 1.1,
n~\Z-°) c CI^TT-^Z-0] nX) = dyX(Z-° C\X)cc\yX(Z- nX) = c\yXZcB.
Next let x e r ' ( f f i " ) . We observe that n(B) => Z~ since n is a closed mapping.
So ?r(x) is the image of some point y in B. But 7t(x) $ Mr7 since 5Z~ O M7, = 0 ,
hence x must be equal to y. This means that n~1(dZ~) cz B.

Thus we have shown that both n~1{dZ~) cB and n~1(Z~°) <=B, which
means that n~1(Z~) c B . This completes the proof.

(We observe that n~l(Z-) c B for every BeW for which BnX = Z.)

3. Zero-dimensional embedding of the multiple points

Let 88 be a family of closed sets in a space Y. We shall say that a subset A
of Yis ^-embedded {SS-zero-dimensionally embedded) in Y if Si contains a base
^ 0 for 7 such that dB c Y— ,4 for every B s f 0 . Thus zero-dimensional em-
bedding means ^"-embedding, where J5" is taken to be the family of all closed
sets. The condition of zero-dimensional embedding generally is weaker than
that of ^-embedding. We notice that every subset of a ^-embedded set is J'-em-
bedded.
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THEOREM 3.1. Let if be a ring base on yX with the trace property with
respect to X. Assume that Mya, is ^-embedded in aX, where 89 is some (closed)
family on aX such that 88 C\X <=.if C\X. Then if* is a base on aX, and
<xX is a Wallmann compactification.

PROOF. Since if* has the trace property with respect to X (Lemma 2.1),
it suffices to show that if* is a base in order to know that aX is a Wallman
compactification. By assumption 88 contains a base 8S0 such that dB c aX — Mya

for every Be880. For every such B, B C\Xeif nX, and 5 [ ( B n l ) " ] c dB
according to Corollary 1.3. From Proposition 2.2 follows that (B n l ) " eif*,
and from Proposition 1.4 follows that (8S0 n l ) " is a base on aX. Hence if*
is a base on aX, which completes the proof.

COROLLARY 3.2. If Myx is n(if)-embedded in aX, then ocX is a Wallman
compactification.

PROOF. The result follows immediately from Theorem 3.1 and the obser-
vation that n(if) nX = if nX.

As usual, fSX shall denote the Stone-Cech-compactification of X,

PROPOSITION 3.3. / / X is a normal space and M^x is zero-dimensionally
embedded in aX, then aX is a Wallman compactification.

PROOF. Let if denote the family of all sets of the form cl^C, C closed in X.
Then if n X consists of all closed sets in X. if is a base on fix and has the trace
property with respect to X, since X is normal. Let 88 denote the family of all
closed sets in a.X. By assuptionM^ is J'-embedded in aX, and 8fi C\X = if n l .
So the result follows by Theorem 3.1.

We recall that two sets in aX are said to be far (with respect to the corres-
ponding proximity) if their closures in aX are disjoint. We shall say that a set A
is weakly p-embedded in oiX if every two disjoint (open-closed) sets in a partition
of A are far. Clearly every closed set (and every connected set) is weakly
p-embedded.

LEMMA. 3.4. Let 88 be a base on aX such that if N is a neighbourhood of
a closed set C then there is a set Be88 such that C a B c N. If a set Q. is weakly
p-embedded in aX, then Cl is ^-embedded in a.X.

PROOF. Let A be a closed set in aX and let x $ A. Then there is a closed set F
such that A n F°, x $ F, and by the zero-dimensional embedding there is a
closed set H such that F <=H°, x£H, dHnQ = 0 . Now consider the sets
B = Q n H , C = fi - H. B and C are closed in Q, hence B~ nC~ = 0 by
the weak p-embedding. We have (xU C)~ n(AU B)~ = (x\J C~) n(B~ U A) =
(x nB~) U(C~ OB~) U(x n A) U(C~ O A). Obviously x C\B~ = 0 , xC\A
= 0 . Thus (A KJ B)~ c aX — [(x UC)~], and so there is by assumption (and
the normality of a.X) a set K in 88 such that (A u B)~ <= K°, K c ocX - [(x U C)~].
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It follows that K ° n Q 3 ( 4 u B ) n n = B, (<xX-K) nfiz> (x UC~) nfi=> C.
This means that 3 K n Q = 0 . Since A<=K, x$K, this shows that Q is J'-em-
bedded in aX, which was to be proved.

THEOREM 3.5. If yX is a Wallman compactification and Myx is contained
in a weakly p-embedded and zero-dimensionally embedded subset Q of a.X,
then aX is a Wallman compactification.

PROOF. According to Lemma 3.4 and Proposition 1.5, fl and hence Myx

is 7tC#0-embedded in aX, where if is a ring base on yX wiht the trace property
with respect to X. So the result follows by Corollary 3.2.

COROLLARY 3.6. IfyXis a Wallman compactification, and Myais contained
in a set Q which is normally and zero-dimensionally embedded in ccX, then
aX is a Wallman compactification.

PROOF. Let A and B be disjoint open-closed sets in Q. The function / which
is 1 on A, 0 on Q — A, is continuous on Q. The normal embedding of Q implies
that/has a continuous extension to aX. From this follows that A~ C\B~ = 0 .
Thus Q is weakly p-embedded in aX, and the result follows from Theorem 3.5.
(This result is in Njastad (1966) for the case that yX = f!X.)

4. Countable sets of multiple points

A family J of continuous functions on a set Y is said to be separating if
for every closed set F and point x not in F there is a function fe J such that
f(F) = {0}, f{x) = 1, f(Y) <= [0,1]. In particular ^(aX) is a separating family
on aX. For every real number r we write Zr(/) = {z:f(z) g r} , and we denote
by &\/\ the family of all sets Z r ( / ) , / e J. We denote by <f(X,aX) the family
of all functions on X which are continuously extendable to aX. It is easily seen
that #X«f(X,aX)] = ^ ( a I ) n X .

LEMMA 4.1. A countable set M in a space Y is !F[J~\-embedded for every
separating family J.

PROOF. Let F be closed in Y, x$F, and le t /be a function in J such that
fix) = 1, f(F) = {0}, fiY) cz [0,1]. We observe that 8Z,if) c {z:/(z) = r},
hence the sets dZrif) are disjoint. So M ndZrif) = 0 for at least one r,
since M is countable. This shows that M is ,^[./]-embedded in Y, which was
to be proved.

The spaces which admit separating families are the completely regular ones,
so in particular we conclude that every countable set in ocX is zero-dimensionally
embedded.

PROPOSITION 4.2. Let W be a ring base on yX with the trace property with
respect to X, and assume that there is a separating family J on aX such that

https://doi.org/10.1017/S1446788700020620 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020620


[6] Wallman compactifications 279

f [ / ] n X c f n X . Then aX is a Wallman compactification if Myx is
countable.

PROOF. The result follows from Theorem 3.1, since by Lemma 4.1, Myx is

PROPOSITION 4.3. IfyX is a Wallman compactification, and Myx is count-
able and weakly p-embedded in aX, then <xX is a Wallman compactification.

PROOF. From Lemma 4.1 follows that Myx is zero-dimensionally embedded
in aX, and so the result follows by Theorem 3.5.

COROLLARY 4.4. IfyX is a Wallman compactification and Myx is countable
and closed (in particular if Myx is finite), then aX is a Wallman compactifi-
cation.

PROOF. Every closed set is weakly p-embedded, and Proposition 4.3 applies.

PROPOSITION 4.5. Let W be a ring base on yX with the trace property
with respect to X, and assume that &r[£(X,aX)'] cW nX. Then ccX is a
Wallman compactification if Myx is countable.

PROOF. Myx is ^["^(aZ^-embedded in aX by Lemma 4.1, and so the result
follows by Theorem 3.1 and fact that ^ [ ^ ( a X ) ] n X = &\£(X,u.X)\.

COROLLARY 4.6. Assume that W is a ring base on yX with the trace property
with respect to X, and that iT nX-=> &\£(X,yX)~\. Then aX is a Wallman
compactification if Myx is countable.

PROOF. The result immediately follows from Proposition 4.5, since
(X,aX)] <= &[S(X,yX)~\.
We remark that if yX = fiX, then by choosing

we have "W C\X = &\£(X, J?X)]. Hence it follows that if Mfix is a countable
set, then aX is a Wallman compactification. (This is the result of Steiner and
Steiner (1969)).

5. Conclusion

Important classes of compact spaces which are Wallman compactincations
(of their dense subspaces) are the compact metric spaces (see, for example,
Aarts (1968), Steiner and Steiner (1969)) and the compact linearly ordered spaces
(see, for example, Biles (1970), Hamburger (1971)). Let T be such a compact
space, and X a dense subspace. Then the compactification yX = T is usually not
the Stone-tech-compactification of X. Let aX be a compactification of X such
that aX ^ yX. Then Myx may be sufficiently small (with respect to the con-
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ditions of the theorems in this note) to insure that <xX is a Wallman compactifi-

cation, while MPa may be rather large. Thus in some situations it is possible

to conclude from properties of Myx that ccX is a Wallman compactiffication,

while the same conclusion may not be obtained by considering MPo[. Simple

examples are obtained for example by identifying a finite number of points in a

closed subset of a Euclidean space (the closed set being a compactification of

some dense subset not containing the identified points).
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