Second Meeting, 9th December 1904.
Mr W. L. Thomson, President, in the Chair.

The Proof by Projection of the Addition Theorem in Trigonometry.

By D. K. Picken, M.A.

The object of this paper is to remove the difficulty that arises in giving a general proof by projection methods of this theorem, without in any way interfering with the single-valuedness of the position of a radius vector tracing out angles from a given initial position, when the values of the trigonometrical ratios are given.

It is necessary, first of all, to give a clear statement of the definitions and theorems in Projection.

Definition: The projection of a point S on a straight line XY is the foot Z of the perpendicular from S on $X Y$.

As the point S moves in any manner, the point Z moves backwards and forwards along XY. If we call the amount of a motion of Z from X towards Y a positive segment, and that of a motion in the opposite direction a negative segment, the total displacement of Z corresponding to a given motion of S is a positive or a negative segment, which is the algebraic sum of the alternately positive and negative segments which Z describes during the motion. Also, if S is given a succession of motions, the total displacement of Z is the algebraic sum of the displacements due to the several motions (vide Theorem IV. infra.).

Definition: If S moves along a straight line PQ from P to Q , the positive or negative segment MN described by Z is called the projection of $P Q$ on XY.

The following theorems are then obvious:-
I. The projection of QP on $\mathrm{XY}=-$ (the projection of PQ on XY).
II. If $U V$ is equal to, parallel to and in the same direction as $P Q$ the projection of $U V$ on $X Y=$ the projection of $P Q$ on $X Y$.
III. If R be any point of the unlimited line through \mathbf{P} and Q , so that $\mathrm{PR}=n . \mathrm{PQ}$ where n is any real number, the projection of PR on $\mathrm{XY}=n$ (the projection of PQ on XY); for the projection K of R lies between M and N, on $M N$ produced, or on NM produced, according as R lies between \mathbf{P} and Q , on PQ produced, or on QP produced.
IV. If P and Q be joined by a succession of straight lines

$$
P Q_{1}, Q_{1} Q_{2}, \ldots Q_{r-1} Q
$$

the projection of $P Q$ on $X Y$
$=$ the sum of the projections of $P Q_{1}, Q_{1} Q_{2}, \ldots Q_{r-1} Q$ on $X Y$.
The generality of the proof given below of the Addition Theorem depends on Theorem III.

The Trigonometrical Ratios.

Let angles θ be described by the turning in one plane of a straight line OP about a fixed point O in it, from a fixed initial position OA. The words positive and negative can then obviously be applied to distinguish the two kinds of turning. Let $O B$ be the position of OP when θ is a positive right angle, and let AO, BO produced meet the circle described by P in A^{\prime} and B^{\prime}.

Definitions:

The ratio (projection of $O P$ on $B^{\prime} O B$: length of $O P$) is called the sine of θ.

The ratio (projection of OP on $A^{\prime} O A$: length of $O P$) is called the cosine of θ; etc., etc.
It follows that these trigonometrical ratios are single-valued functions of the position of the vector $O P$, and that when $\sin \theta$ and $\cos \theta$ are given the position of $O P$ is uniquely defined.

If $O Q, \mathrm{OQ}^{\prime}, \mathrm{OQ}^{\prime \prime}$ are the positions of OP when $\theta=\alpha,-\alpha$ and $\left(a+\frac{\pi}{2}\right)$, it is easy to obtain from consideration of the relative positions of $\mathbf{Q}, \mathrm{Q}^{\prime}, \mathrm{Q}^{\prime \prime}$ on the circle, general proofs of the formulae :

$$
\begin{aligned}
& \sin (-\alpha)=-\sin \alpha ; \cos (-\alpha)=\cos \alpha \\
& \sin \left(\alpha+\frac{\pi}{2}\right)=\cos \alpha ; \cos \left(\alpha+\frac{\pi}{2}\right)=-\sin \alpha
\end{aligned}
$$

The Addition Theorem. (Fig. 27.)
Let OA_{1} be the position of OP when $\theta=a, \mathrm{OB}_{1}$ when $\theta=a+\frac{\pi}{2}$; and let angles ϕ be measured by the turning of $O P$ from the initial position OA_{1}. Let OQ be the position of OP when $\phi=\beta$; then OQ is the position of OP when $\theta=\alpha+\beta$. Let $\mathrm{M}_{1}, \mathrm{~N}_{1}$ be the projections of Q on $A_{1}{ }^{\prime} O A_{1}$ and $B_{1}{ }^{\prime} O B_{1}$.

We have then
OQcos $(\alpha+\beta)$
$=$ projection of $O Q$ on $A^{\prime} O A$
$=\left(\right.$ projection of $\mathrm{OM}_{1}+$ projection of $\mathrm{M}_{1} \mathbf{Q}$) on $\mathrm{A}^{\prime} \mathrm{OA}$ [Thm. IV.]
$=\left(\right.$ projection of $O M_{1}+$ projection of ON_{1}) on $\mathrm{A}^{\prime} \mathrm{OA}$ [Thm. II.]
$=\left\{\right.$ projection of $\left(\cos \beta \cdot \mathrm{OA}_{1}\right)+$ projection of $\left.\left(\sin \beta . \mathrm{OB}_{1}\right)\right\}$ on $\mathrm{A}^{\prime} \mathrm{OA}$
$=\left\{\cos \beta\left(\right.\right.$ projection of $\left.\mathrm{OA}_{1}\right)+\sin \beta\left(\right.$ projection of $\left.\left.\mathrm{OB}_{1}\right)\right\}$ on $\mathrm{A}^{\prime} \mathrm{OA}$
[Thm. III.]

$$
\begin{aligned}
=\cos \beta \cdot\left(\mathrm{OA}_{1} \cos \alpha\right)+ & \sin \beta\left\{\mathrm{OB}_{1} \cos \left(a+\frac{\pi}{2}\right)\right\} ; \\
\therefore \quad \cos (a+\beta) & =\cos \alpha \cos \beta+\cos \left(a+\frac{\pi}{2}\right) \sin \beta \\
& =\cos \alpha \cos \beta-\sin \alpha \sin \beta .
\end{aligned}
$$

Similarly, by projecting on $\mathrm{B}^{\prime} \mathrm{OB}$, we get

$$
\begin{aligned}
\sin (\alpha+\beta) & =\sin \alpha \cos \beta+\sin \left(\alpha+\frac{\pi}{2}\right) \sin \beta \\
& =\sin \alpha \cos \beta+\cos \alpha \sin \beta
\end{aligned}
$$

and the theorems are true whatever be the sign and whatever the magnitude of the angles α and β.

