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The Proof by Projection of the Addition Theorem in
Trigonometry.

By D. K. PICKEN, M.A.

The object of this paper is to remove the difficulty that arises in
giving a general proof by projection methods of this theorem, without
in any way interfering with the single-valuedness of the position of
a radius vector tracing out angles from a given initial position, when
the values of the trigonometrical ratios are given.

It is necessary, first of all, to give a clear statement of the
definitions and theorems in Projection.

Definition : The projection of a point S on a straight line XY is
the foot Z of the perpendicular from S on XY.

As the point S moves in any manner, the point Z moves back-
wards and forwards along XY. If we call the amount of a motion
of Z from X towards Y a positive segment, and that of a motion in
the opposite direction a negative segment, the total displacement of
Z corresponding to a given motion of S is a positive or a negative
segment, which is the algebraic sum of the alternately positive and
negative segments which Z describes during the motion. Also, if
S is given a succession of motions, the total displacement of Z is
the algebraic sum of the displacements due to the several motions
(vide Theorem IV. injra.).

Definition: If S moves along a straight line PQ from P to Q,
the positive or negative segment MN described by Z is called the
projection of PQ on XY.

The following theorems are then obvious:—

I. The projection of QP on XY = - (the projection of PQ on XY).

II. If UV is equal to, parallel to and in the same direction as PQ
the projection of UV on XY = the projection of PQ on XY.
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III. If R be any point of the unlimited line through P and Q, so
that PR = n. PQ where n is any real number,
the projection of PR on XY = n (the projection of PQ on XY);
for the projection K of R lies between M and N, on MN
produced, or on NM produced, according as R lies between
P and Q, on PQ produced, or on QP produced.

IV. If P and Q be joined by a succession of straight lines

PQ,, Q1Q2, .. Q,_!Q,

the projection of PQ on XY

= the sum of the projections of PQu Q1Q0, ... Qr_iQ on XY.

The generality of the proof given below of the Addition Theorem
depends on Theorem III .

The Trigonometrical Ratios.

Let angles 0 be described by the turning in one plane of a
straight line OP about a fixed point O in it, from a fixed initial
position OA. The words positive and negative can then obviously
be applied to distinguish the two kinds of turning. Let OB be the
position of OP when 0 is a positive right angle, and let AO, BO
produced meet the circle described by P in A' and B'.

Definitions:

The ratio (projection of OP on B'OB: length of OP) is called
the sine of 9.

The ratio (projection of OP on A'OA: length of OP) is called
the cosine of 0 ; -etc., etc.

It follows that these trigonometrical ratios are single-valued functions
of the position of the vector OP, and that when sin0 and cos© are
given the position of OP is uniquely defined.

If OQ, OQ', OQ" are the positions of OP when 0 = o, - a and

1 a + "o" 1> it is easy to obtain from consideration of the relative

positions of Q, Q', Q" on the circle, general proofs of the formulae :

sin( - a) = - sino ; cos( — a) = cosa ;

• / * \ t r \ •
sinla + — I = cosa; cosla + — 1= — sina.
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The Addition Theorem. (Fig. 27.)
7T

Let OAj be the position of OP when 0 = o, OBj when 0 = o + —;
and let angles <f> be measured by the turning of OP from the initial
position OAa. Let OQ be the position of OP when <£ = /? ; then OQ
is the position of OP when 9 = a + /3. Let M,, N, be the projections
of Q on A,'OA, and B/OB,.

We have then

OQcos(o + /8)

= projection of OQ on A'OA

= (projection of OMj + projection of M,Q) on A'OA [Thm. IV.]

= (projection of OM1 + projection of ON,) on A'OA [Thm. II.]

= {projection of (cos/3.OAi) + projection of (sin/8.OB,)} on A'OA

= {cos/3(projection of OA,) + sin/3(projection of OB,)} on A'OA
[Thm. III.]

= cos/3.(OAjCosa) + sin/?-! OB^osla + -^-) !• ;

.-. cos(a + P) — cosacosfi + cosla + — Isin̂ S

= cosa cos/3 - sin a sin/3.

Similarly, by projecting on B'OB, we get

sin(a + /?) = sina cos/3 + sinl a + — jsin/3

= sin a cos/3 + cosa sin/3

and the theorems are true whatever be the sign and whatever the
magnitude of the angles a and /3.
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