ON THE HOMOLOGY OF THE GENERAL LINEAR GROUPS OVER Z/4

VICTOR SNAITH

1. Introduction. Let p be a prime. The algebraic K-theory of Z / p^{2} is unknown. However it is easy to show that $K_{i}\left(Z / p^{2}\right)$ is finite if $i>0$ and that it differs only in its p-torsion from $K_{i}(Z / p)$ which was computed in [2]. To proceed further one surely needs the $\bmod p(c o-)$ homology of $G L Z / p^{2}$. There is an exact sequence
(1.1) $\quad 1 \rightarrow M_{n} Z / p \xrightarrow{i_{n}} G L_{n} Z / p^{2} \xrightarrow{j_{n}} G L_{n} Z / p \rightarrow 1$.

In (1.1) j_{n} is reduction $\bmod p, M_{n} Z / p$ is the additive group of $n \times n$ matrices with entries in Z / p and if ϕ is the canonical inclusion of Z / p into Z / p^{2} then $i_{n}(A)=I+\phi(A)$. Since $B G L Z / p$ is a p-local homology point [2] one might expect the following to be true:
1.2. Conjecture. Let $k_{n}: G L_{n} Z / p^{2} \rightarrow G L Z / p^{2}$ be the canonical inclusion and let i_{n} be as in (1.1). Then

$$
\operatorname{im}\left(k_{n} \circ i_{n}\right)_{*}=\operatorname{im}\left(k_{n}\right)_{*} \subset H_{*}\left(B G L Z / p^{2} ; Z / p\right)
$$

where $(-)_{*}$ denotes the induced map in mod p homology.
In this note I will prove the following general results, which are applied below to verify Conjecture 1.2 when $p=2$ and $n=1$ or 2 .

Theorem A. The image of $H_{*}\left(T_{n} Z / 4\right) \rightarrow H_{*}\left(G L_{\infty} Z / 4\right)$ lies in the image of $H_{*}\left(M_{\infty} Z / 2\right) \rightarrow H_{*}\left(G L_{\infty} Z / 4\right)$ for any $n \geqq 1$.

Theorem B. The homomorphism $\widetilde{H}_{*}\left(U_{n} Z / 4\right) \rightarrow \widetilde{H}_{*}\left(G L_{\infty} Z / 4\right)$ is zero for any $n \geqq 1$.

In Theorems A and B -and throughout the rest of this paper- $H_{*}(G)$ means the mod 2 singular homology of the classifying space of G. A similar convention for $H^{*}(G)$ is used. Also for any ring $A, D_{n} A, U_{n} A, T_{n} A$ and $R_{n} A$ are the following subgroups of the general linear group, $G L_{n} A . D_{n} A$ is the diagonal subgroup. $T_{n} A$ is the upper triangular subgroup and

$$
U_{n} A=\left\{\left(a_{i j}\right) \in T_{n} A \mid a_{k k}=1 \text { for } 1 \leqq k \leqq n\right\}
$$

$R_{n} A=\left\{\left(a_{i j}\right) \in T_{n} A \mid a_{k k}=1\right.$ for $2 \leqq k \leqq n, a_{i j}=0$ if $\left.2 \leqq i<j \leqq n\right\}$ is the first-row subgroup of $T_{n} A$.
1.3. Proposition. Conjecture 1.2 is true when $p=2$ and $n=1$ or 2 .

[^0]Proof. When $n=1 G L_{1} Z / p^{2} \cong M_{1} Z / p \times Z /(p-1)$ and there is nothing to prove.

When $n=2$ a Sylow 2 -subgroup, H, of $G L_{2} Z / 4$ consists of matrices of the form

$$
\left[\begin{array}{cc}
1+2 a & b \\
2 c & 1+2 d
\end{array}\right]
$$

with a, b, c and d being arbitrary elements of $Z / 4$. It is easy to show that H is a semi-direct product of the form $(Z / 2)^{4} \ltimes Z / 2$ where $Z / 2 \rightarrow$ Aut $\left((Z / 2)^{4}\right)$, given by conjugation, sends the generator to the involution $\tau\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=$ ($a_{3}, a_{4}, a_{1}, a_{2}$). The $(Z / 2)^{4}$ in H is just $M_{2} Z / 2$. It is well-known that the $\bmod 2$ cohomology of H is detected by the two subgroups $M_{2} Z / 2$ and $G \times Z / 2$ where $G \subset M_{2} Z / 2$ is the subgroup of matrices fixed under the $Z / 2$-action. However, in this case, $G \times Z / 2 \subset T_{2} Z / 4$. Hence we have an injection

$$
H^{*}\left(G L_{2} Z / 4\right) \rightarrow H^{*}\left(M_{2} Z / 2\right) \oplus H^{*}\left(T_{2} Z / 4\right)
$$

and by Theorem A we can detect $\operatorname{im}\left(k_{2}\right)^{*} \subset H^{*}\left(G L_{2} Z / 4\right)$ faithfully in $H^{*}\left(M_{2} Z / 2\right) \oplus H^{*}\left(D_{2} Z / 4\right)$. But $D_{2} Z / 4 \subset M_{2} Z / 2$ so

$$
\operatorname{im}\left(k_{2}\right) * \xrightarrow{i_{2}^{*}} \operatorname{im}\left(k_{2} \circ i_{2}\right)^{*} \subset H^{*}\left(M_{2} Z / 2\right)
$$

is an injection. The proof is completed by a simple computation using the duality between H^{*} and H_{*}.

Theorem A is proved in $\S 3.5$ and Theorem B in \S 3.6. The ideas in the proof are due to Quillen (c.f. $[\mathbf{1}, \S 4]$ and $[\mathbf{2}, \S 11]$). In § 2 are gathered together the exact sequences and the rings which will be needed later. The analogous results are also true when $Z / 4$ is replaced by Z / p^{2} for any prime p.
2. If $\alpha \in D_{n} A$ has entry t_{i} in the (i,i)-th place then $\alpha\left(a_{i j}\right) \alpha^{-1}=\left(t_{i} t_{j}^{-1} a_{i j}\right)$ for any $\left(a_{i j}\right) \in G L_{n} A$. Hence $R_{n} A \triangleleft T_{n} A, U_{n} A \triangleleft T_{n} A$ and every element in $A^{*}=\left\{\left(a_{i j}\right) \in D_{n} V \mid a_{j j}=1, j \geqq 2\right\}$ commutes with every element of $T_{n-1} A \cong$ $\left\{\left(a_{i j}\right) \in T_{n} V \mid a_{1 j}=0\right.$ for $\left.2 \leqq j \leqq n\right\}$. Note that

$$
R_{n} A \cap U_{n} A \cong \bigoplus_{1}^{n-1} A
$$

where the right hand group has the natural additive structure.
We have exact sequences

$$
\begin{equation*}
1 \rightarrow R_{n} A \rightarrow T_{n} A \rightarrow T_{n-1} A \rightarrow 1 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
1 \rightarrow\left({\underset{1}{n-1}}_{\oplus}^{1} A\right) \rightarrow R_{n} A \rightarrow A^{*} \rightarrow 1 \tag{2.2}
\end{equation*}
$$

where A^{*} is the group of units.

Consider now the Galois fields $G F\left(2^{d}\right)$. Choose an increasing sequence of odd integers $1=d_{1}<d_{2}<d_{3}<--$ such that $2^{d_{i}}-1$ is prime. This is possible by a result of Dirichlet. Set $k_{i}=G F\left(2^{d_{i}}\right)$ so that $k_{1}=Z / 2$ and

$$
k_{i} \cong Z / 2[X] / p_{i}(X)
$$

for some $p_{i}(X) \in Z / 2[X]$.
Set

$$
A_{i}=\frac{Z / 4[X]}{q_{i}(X)}
$$

where q_{i} reduces mod 2 to p_{i}. The additive group of A_{i} is just $\oplus_{1}^{d_{i}} Z / 4$ while $A_{i}{ }^{*}$ is isomorphic to $\left(\bigoplus_{1}^{d_{i}} Z / 2\right) k_{i}{ }^{*}$. Reduction mod 2 gives an epimorphism $\pi_{i}: A_{i} \rightarrow k_{i}$.
3. First we need a well-known result from Galois theory. Let \bar{k} be the algebraic closure of the field k.
3.1. Lemma. There is a ring isomorphism

$$
\phi: k_{i} \bigotimes_{k_{1}} \bar{k}_{1} \cong \bigoplus_{1}^{d_{i}} \bar{k}_{1} \quad(i \geqq 1)
$$

given by $\phi(x \otimes y)=\left(y, x^{2} y, x^{4} y, \ldots, x^{2^{d_{i}-1}} y\right)$.
3.2. Proposition. In dimensions $j<d_{i}$ the natural inclusion induces isomorphisms

$$
H^{j}\left(R_{n} A_{i}\right) \cong H^{j}\left(A_{i}^{*}\right) \quad \text { and } \quad H_{j}\left(R_{n} A_{i}\right) \cong H_{j}\left(A_{i}{ }^{*}\right)
$$

for all $n, i \geqq 1$.
Proof. From (2.2) we obtain a spectral sequence

$$
E_{2}^{p, q}=H^{p}\left(A_{i}^{*} ; H^{q}\left({\left.\left.\underset{1}{n-1} A_{i}\right)\right) \underset{k_{1}}{\otimes} \bar{k}_{1} \Rightarrow H^{p+q}\left(R_{n} A_{i}\right) \bigotimes_{k_{1}} \bar{k}_{i}}\right.\right.
$$

Now $\left.H^{*}\left(A_{i}\right) \cong \Lambda\left(A_{i}{ }^{*}\right) \otimes S\left(A_{i}\right)^{\#}\right)$, from the discussion in $\S 2$, where $A_{i}{ }^{*}=$ $\operatorname{Hom}_{k_{1}}\left(A_{i}, k_{1}\right) \cong k_{i}{ }^{\#}$. The generators of the exterior algebra $\Lambda\left(A_{i}{ }^{\#}\right)$ have dimension one while those of the symmetric algebra $S\left(A_{i}{ }^{*}\right)$ have dimension two. Hence

$$
\begin{equation*}
H^{*}\left(\bigoplus_{1}^{n-1} A_{i}\right) \otimes \bar{k}_{1} \cong \Lambda\left(\bigoplus_{1}^{n-1} k_{i}^{*}\right) \otimes S\left(\bigoplus_{1}^{n-1} k_{i}^{*}\right) \bigotimes_{k_{1}}^{*} \overline{k_{1}} \cong \Lambda(V) \otimes S(V) \tag{3.3}
\end{equation*}
$$

where, by Lemma 3.1,

$$
V \cong \bigoplus_{1}^{n-1}\left(\underset{1}{\oplus_{i}} \bar{k}_{1}^{\#}\right)
$$

The action of

$$
A_{i}^{*}=\left(\underset{1}{\oplus_{i}} Z / 2\right) \times k_{i}{ }^{*}
$$

(see § 2) factors through projection onto $k_{i}{ }^{*} . k_{i}{ }^{*}$ acts on each factor $\left(\oplus_{1}^{d}{ }^{i} \bar{k}_{1}{ }^{*}\right)$ by the dual of multiplication, since this is what conjugation does on the first row (see § 2). By Lemma 3.1 this action transforms to an action on each factor $\oplus_{1}^{d i} \bar{k}_{i}$ of V given by

$$
\begin{array}{r}
\lambda\left(x_{1}, \ldots, x_{d_{i}}\right)=\left(x_{1}, \lambda^{-2} x_{2}, \lambda^{-4} x_{3}, \ldots, \lambda^{-2^{d_{i}-1}} x_{d_{i}}\right) \\
\quad\left(\lambda, x_{1}, x_{2} \ldots \in \bar{k}_{1} \cong \bar{k}_{1}^{*}\right) .
\end{array}
$$

Hence we have a Kunneth isomorphism.

$$
H^{*}\left(A_{i}^{*} ; H^{*}\left(\bigoplus_{1}^{n-1} A_{i}\right)\right) \bigotimes_{k_{1}} \bar{k}_{i} \cong H^{*}\left(\bigoplus_{1}^{d_{i}} Z / 2\right) \bigotimes_{k_{1}} H^{*}\left(k_{i}^{*} ; H^{*}\left(\bigoplus_{1}^{n-1} A_{i}\right)\right)
$$

The first factor is $H^{*}\left(A_{i}{ }^{*}\right)$, since $\left|k_{i}{ }^{*}\right|$ is odd, and the second factor is $\operatorname{Hom}_{k i *}\left(\bar{k}_{1}, \Lambda(V) \otimes S(V)\right)$.

We conclude the proof with an argument from [1, §4].
There are no non-trivial $k_{i}{ }^{*}$-invariants in $\Lambda(V) \otimes S(V)$ in dimensions $<d_{i}$. For the eigenvalues of multiplication by a generator $\lambda \in k_{i}{ }^{*}$ in dimension n will be of the form $\left(\lambda^{-1}\right)^{s}$ where $s=e_{0}+2 e_{1}+4 e_{2}+\ldots+2^{d_{i-1}} e_{d_{i-1}}$ satisfying $n=l+2 m$ and $\sum_{t} e_{t}=l+m, e_{i} \geqq 0$. For an invariant subspace we must have $s \equiv o\left(2^{d_{i}}-1\right)$. Consider the set of positive integers $e_{1}{ }^{\prime}, e_{2}{ }^{\prime}, \ldots$, $e_{d_{i}-1}^{\prime}$ such that $\sum_{t} e_{t}^{\prime} 2^{t} \equiv 0\left(2^{d_{i}}-1\right)$ and $\sum e_{t}{ }^{\prime}$ is minimal. Then $e_{t}{ }^{\prime}=1$ for all t, since if $e_{t}^{\prime} \geqq 2$ replace $\left(e_{t}^{\prime}, e_{t+1}{ }^{\prime}\right)$ by ($e_{t}^{\prime}-2, e_{4+1}{ }^{\prime}+1$), so $\sum_{t} e_{t}^{\prime} 2^{t}$ is the dyadic expansion of $2^{d_{i}}-1$ and $d_{i}=\sum_{t} e_{t}{ }^{\prime} \leqq \sum_{t} e_{t}=l+m \leqq l+2 m=n$.

Hence in each total dimension $<d_{i} E_{2}{ }^{*, *}$ is isomorphic to $H^{*}\left(A_{i}{ }^{*}\right) \otimes_{k_{1}} \bar{k}_{1}$ in that dimension. From the spectral sequence when $r<d_{i}$,

$$
\operatorname{dim}_{k_{1}} H^{r}\left(A_{i}^{*}\right) \geqq \operatorname{dim}_{k_{1}} H^{r}\left(R_{n} A_{i}\right)
$$

But the inclusion $A_{i}^{*} \rightarrow R_{n} A_{i}$ is split, so by dimension-counting this inclusion induces an isomorphism in cohomology (and hence in homology).
3.4. Proposition. In dimensions $j<d_{i}$ the natural inclusion induces isomorphisms

$$
H^{j}\left(D_{n} A_{1}\right) \cong H^{j}\left(T_{n} A_{i}\right) \quad \text { and } \quad H_{j}\left(D_{n} A_{i}\right) \cong H_{j}\left(T_{n} A_{i}\right)
$$

for all $n, i \geqq 1$.
Proof. We use induction on n. The case $n=1$ is obvious. From (2.1) we have a spectral sequence

$$
E_{2}^{p, q}=H^{p}\left(T_{n-1} A_{i} ; H^{q}\left(R_{n} A_{i}\right)\right) \Rightarrow H^{p+q}\left(T_{n} A_{i}\right)
$$

In dimensions $p+q<d_{i} E_{2}^{p, q}$ is isomorphic, by Proposition 3.2, to

$$
H^{p}\left(T_{n-1} A_{i} ; H^{q}\left(A_{i}^{*}\right)\right) \cong H^{q}\left(A_{i}^{*}\right) \otimes H^{p}\left(T_{n-1} A_{i}\right)
$$

This last isomorphism follows from the conjugation action of $T_{n-1} A_{i}$ being trivial on $A_{i}{ }^{*}$ (see §2). From the multiplicative properties of the spectral sequence it is easy to see that in total degree $<d_{i}$,

$$
\begin{aligned}
\operatorname{dim}_{k_{1}} H^{*}\left(T_{n} A_{i}\right) & =\operatorname{dim}_{k_{1}}\left(H^{*}\left(A_{i}^{*}\right) \otimes H^{*}\left(T_{n-1} A_{i}\right)\right) \\
& =\operatorname{dim}_{k_{1}}\left(H^{*}\left(A_{i}^{*}\right) \otimes H^{*}\left(D_{n-1} A_{i}\right)\right) \\
& =\operatorname{dim}_{k_{1}}\left(H^{*}\left(D_{n} A_{i}\right)\right.
\end{aligned}
$$

Since $D_{n} A_{i} \rightarrow T_{n} A_{i}$ is split, the result follows by dimension counting.
The following proof is based on an argument of [2, § 11].
3.5. Proof of Theorem A. Suppose we have proved the result in dimensions $<m . H_{*}\left(G L_{\infty} A_{i}\right)$ and $H_{*}\left(D_{\infty} A_{i}\right)$ are Hopf algebra with diagonal ψ, induced by juxtaposition of matrices.

Suppose $x \in H_{m}\left(T_{n} Z / 4\right)$ maps to $y \in H_{*}\left(G L_{\infty} Z / 4\right)$ with $y \not \equiv 0(\bmod$ $\left.H_{*}\left(M_{\infty} Z / 2\right)\right)$. Then, by induction,

$$
\psi(y)=y \otimes 1+1 \otimes y \quad\left(\bmod H_{*}\left(M_{\infty} Z / 2\right)^{\otimes 2}\right) .
$$

Consider the diagram $\left(m<d_{i}\right)$

$$
\left.\begin{array}{rlll}
H_{m}\left(T_{n} Z / 4\right) & \rightarrow & H_{m}\left(G L_{\infty} Z / 4\right) \\
& \downarrow \alpha^{\prime} & & \downarrow \alpha \\
H_{m}\left(D_{n} A_{i}\right) \\
\downarrow \beta^{\prime \prime} & H_{m}\left(T_{n} A_{i}\right) & \rightarrow & H_{m}\left(G L_{\infty} A_{i}\right) \\
H_{m}\left(M_{n d} Z / 2\right) & \downarrow \beta^{\prime} & & \downarrow H_{m}\left(G L_{n d} Z / 4\right)
\end{array}\right) \underset{H_{m}\left(G L_{\infty} Z / 4\right)}{ }
$$

in which α, α^{\prime} are induced by $\left(-\bigotimes_{Z / 4} A_{i}\right)$ while $\beta, \beta^{\prime}, \beta^{\prime \prime}$ are induced by the forgetful map. Then

$$
\beta(\alpha(y)) \equiv d_{i} y \equiv y \quad\left(\bmod H_{m}\left(M_{\infty} Z / 2\right)\right)
$$

because y is primitive $\bmod H_{*}\left(M_{\alpha} Z / 2\right)$. However $\beta(\alpha(y))$ is the image of $\beta^{\prime}\left(\alpha^{\prime}(x)\right)$ which lies in the image of $H_{*}\left(M_{n d i} Z / 2\right)$.
3.6. Proof of Theorem B. The proof is entirely analogous to that of Theorem A. Throughout we replace $R_{n} A_{i}$ by its subgroup of matrices $\left(a_{i j}\right)$ with $a_{11} \in$ $k_{i}{ }^{*} \subset A_{i}{ }^{*}, D_{n} A_{i}=\oplus_{1}^{n} A_{i}{ }^{*}$ by its subgroups $C_{n} A_{i}=\oplus_{1}^{n} k_{i}{ }^{*}$. The proof then shows that im $\left(H_{*}\left(U_{n} Z / 4\right) \rightarrow H_{*}\left(G L_{\infty} Z / 4\right)\right)$ is contained in im $\left(H_{*}\left(C_{\infty} Z / 4\right) \rightarrow\right.$ $\left.H_{*}\left(G L_{\infty} Z / 4\right)\right)$. However $\tilde{H}_{*}\left(C_{n} Z / 4\right)=0$.

References

1. E. M. Friedlander, Computations of K-theories of finite fields, Topology 15 (1976), 87-109.
2. D. G. Quillen, On the cohomology and K-theory of the general linear group over a finite field, Annals of Math 96 (1972), 552-586.

The University of Western Ontario, London, Ontario

[^0]: Received May 16, 1977 and in revised form, September 16, 1977.

