ON THE HOMOLOGY OF THE GENERAL LINEAR GROUPS OVER Z/4

VICTOR SNAITH

1. Introduction. Let p be a prime. The algebraic K-theory of Z/p^2 is unknown. However it is easy to show that $K_i(Z/p^2)$ is finite if i > 0 and that it differs only in its p-torsion from $K_i(Z/p)$ which was computed in [2]. To proceed further one surely needs the mod p (co-)homology of GLZ/p^2 . There is an exact sequence

(1.1)
$$1 \to M_n Z/p \xrightarrow{i_n} GL_n Z/p^2 \xrightarrow{j_n} GL_n Z/p \to 1.$$

In (1.1) j_n is reduction mod $p, M_n Z/p$ is the additive group of $n \times n$ matrices with entries in Z/p and if ϕ is the canonical inclusion of Z/p into Z/p^2 then $i_n(A) = I + \phi(A)$. Since BGLZ/p is a *p*-local homology point [2] one might expect the following to be true:

1.2. CONJECTURE. Let $k_n: GL_nZ/p^2 \to GLZ/p^2$ be the canonical inclusion and let i_n be as in (1.1). Then

im
$$(k_n \circ i_n)_* = \operatorname{im} (k_n)_* \subset H_*(BGLZ/p^2; Z/p)$$

where $(-)_*$ denotes the induced map in mod p homology.

In this note I will prove the following general results, which are applied below to verify Conjecture 1.2 when p = 2 and n = 1 or 2.

THEOREM A. The image of $H_*(T_nZ/4) \to H_*(GL_{\infty}Z/4)$ lies in the image of $H_*(M_{\infty}Z/2) \to H_*(GL_{\infty}Z/4)$ for any $n \ge 1$.

THEOREM B. The homomorphism $\tilde{H}_*(U_nZ/4) \to \tilde{H}_*(GL_{\infty}Z/4)$ is zero for any $n \ge 1$.

In Theorems A and B—and throughout the rest of this paper— $H_*(G)$ means the mod 2 singular homology of the classifying space of G. A similar convention for $H^*(G)$ is used. Also for any ring A, D_nA , U_nA , T_nA and R_nA are the following subgroups of the general linear group, GL_nA . D_nA is the diagonal subgroup. T_nA is the upper triangular subgroup and

$$U_n A = \{ (a_{ij}) \in T_n A | a_{kk} = 1 \text{ for } 1 \leq k \leq n \}$$

 $R_n A = \{(a_{ij}) \in T_n A | a_{kk} = 1 \text{ for } 2 \leq k \leq n, a_{ij} = 0 \text{ if } 2 \leq i < j \leq n\}$ is the first-row subgroup of $T_n A$.

1.3. PROPOSITION. Conjecture 1.2 is true when p = 2 and n = 1 or 2.

Received May 16, 1977 and in revised form, September 16, 1977.

VICTOR SNAITH

Proof. When $n = 1 \ GL_1Z/p^2 \cong M_1Z/p \times Z/(p-1)$ and there is nothing to prove.

When n = 2 a Sylow 2-subgroup, H, of $GL_2Z/4$ consists of matrices of the form

$$\begin{bmatrix} 1+2a & b \\ 2c & 1+2d \end{bmatrix}$$

with a, b, c and d being arbitrary elements of Z/4. It is easy to show that H is a semi-direct product of the form $(Z/2)^4 \ltimes Z/2$ where $Z/2 \to \text{Aut } ((Z/2)^4)$, given by conjugation, sends the generator to the involution $\tau(a_1, a_2, a_3, a_4) =$ (a_3, a_4, a_1, a_2) . The $(Z/2)^4$ in H is just $M_2Z/2$. It is well-known that the mod 2 cohomology of H is detected by the two subgroups $M_2Z/2$ and $G \times Z/2$ where $G \subset M_2Z/2$ is the subgroup of matrices fixed under the Z/2-action. However, in this case, $G \times Z/2 \subset T_2Z/4$. Hence we have an injection

$$H^*(GL_2Z/4) \rightarrow H^*(M_2Z/2) \oplus H^*(T_2Z/4)$$

and by Theorem A we can detect in $(k_2)^* \subset H^*(GL_2Z/4)$ faithfully in $H^*(M_2Z/2) \oplus H^*(D_2Z/4)$. But $D_2Z/4 \subset M_2Z/2$ so

im
$$(k_2)^* \xrightarrow{i_2^*}$$
 im $(k_2 \circ i_2)^* \subset H^*(M_2Z/2)$

is an injection. The proof is completed by a simple computation using the duality between H^* and H_* .

Theorem A is proved in § 3.5 and Theorem B in § 3.6. The ideas in the proof are due to Quillen (c.f. [1, § 4] and [2, § 11]). In § 2 are gathered together the exact sequences and the rings which will be needed later. The analogous results are also true when Z/4 is replaced by Z/p^2 for any prime p.

2. If $\alpha \in D_n A$ has entry t_i in the (i, i)-th place then $\alpha(a_{ij})\alpha^{-1} = (t_i t_j^{-1} a_{ij})$ for any $(a_{ij}) \in GL_n A$. Hence $R_n A \triangleleft T_n A$, $U_n A \triangleleft T_n A$ and every element in $A^* = \{(a_{ij}) \in D_n V | a_{jj} = 1, j \ge 2\}$ commutes with every element of $T_{n-1}A \cong \{(a_{ij}) \in T_n V | a_{1j} = 0 \text{ for } 2 \le j \le n\}$. Note that

$$R_nA \cap U_nA \cong \bigoplus_{1}^{n-1} A$$

where the right hand group has the natural additive structure.

We have exact sequences

$$(2.1) \quad 1 \to R_n A \to T_n A \to T_{n-1} A \to 1$$

and

(2.2)
$$1 \to \left(\bigoplus_{1}^{n-1} A \right) \to R_n A \to A^* \to 1$$

where A^* is the group of units.

852

Consider now the Galois fields $GF(2^d)$. Choose an increasing sequence of *odd* integers $1 = d_1 < d_2 < d_3 < \cdots$ such that $2^{d_i} - 1$ is prime. This is possible by a result of Dirichlet. Set $k_i = GF(2^{d_i})$ so that $k_1 = Z/2$ and

$$k_i \cong Z/2[X]/p_i(X)$$

for some $p_i(X) \in \mathbb{Z}/2[X]$. Set

$$A_i = \frac{Z/4[X]}{q_i(X)}$$

where q_i reduces mod 2 to p_i . The additive group of A_i is just $\bigoplus_{1}^{d_i} Z/4$ while A_i^* is isomorphic to $(\bigoplus_{1}^{d_i} Z/2)k_i^*$. Reduction mod 2 gives an epimorphism $\pi_i: A_i \to k_i$.

3. First we need a well-known result from Galois theory. Let \bar{k} be the algebraic closure of the field k.

3.1. LEMMA. There is a ring isomorphism

$$\phi: k_i \bigotimes_{k_1} \bar{k}_1 \stackrel{\cong}{\to} \bigoplus_{1}^{d_i} \bar{k}_1 \quad (i \ge 1)$$

given by $\phi(x \otimes y) = (y, x^2y, x^4y, \dots, x^{2^{d_i-1}}y).$

3.2. PROPOSITION. In dimensions $j < d_i$ the natural inclusion induces isomorphisms

$$H^{j}(R_{n}A_{i}) \cong H^{j}(A_{i}^{*})$$
 and $H_{j}(R_{n}A_{i}) \cong H_{j}(A_{i}^{*})$

for all $n, i \geq 1$.

Proof. From (2.2) we obtain a spectral sequence

$$E_2^{p,q} = H^p\left(A_i^*; H^q\left(\bigoplus_{1}^{n-1} A_i\right)\right) \bigotimes_{k_1} \bar{k}_1 \Longrightarrow H^{p+q}(R_nA_i) \bigotimes_{k_1} \bar{k}_i.$$

Now $H^*(A_i) \cong \Lambda(A_i^{\#}) \otimes S(A_i^{\#})$, from the discussion in § 2, where $A_i^{\#} = \text{Hom}_{k_1}(A_i, k_1) \cong k_i^{\#}$. The generators of the exterior algebra $\Lambda(A_i^{\#})$ have dimension one while those of the symmetric algebra $S(A_i^{\#})$ have dimension two. Hence

(3.3)
$$H^*\left(\bigoplus_{i=1}^{n-1} A_i\right) \bigotimes_{k_1} \bar{k}_1 \cong \Lambda\left(\bigoplus_{i=1}^{n-1} k_i^{\#}\right) \otimes S\left(\bigoplus_{i=1}^{n-1} k_i^{\#}\right) \bigotimes_{k_1} \bar{k}_1 \cong \Lambda(V) \otimes S(V)$$

where, by Lemma 3.1,

$$V \cong \bigoplus_{1}^{n-1} \left(\bigoplus_{1}^{d_i} \bar{k_1}^{\#} \right)$$

The action of

$$A_i^* = \left(\bigoplus_{1}^{d_i} Z/2 \right) \times k_i^*$$

(see § 2) factors through projection onto k_i^* . k_i^* acts on each factor $(\bigoplus_{1}^{d} i \bar{k}_1^*)$ by the dual of multiplication, since this is what conjugation does on the first row (see § 2). By Lemma 3.1 this action transforms to an action on each factor $\bigoplus_{1}^{d} \bar{k}_i$ of V given by

$$\begin{split} \lambda(x_1,\ldots,x_{d_i}) \ = \ (x_1,\,\lambda^{-2}x_2,\,\lambda^{-4}x_3,\ldots,\,\lambda^{-2^{d_i-1}}x_{d_i}) \\ (\lambda,\,x_1,\,x_2\ldots\,\in\,\bar{k}_1 \cong \bar{k}_1^{\#}). \end{split}$$

Hence we have a Kunneth isomorphism.

$$H^*\left(A_i^*; H^*\left(\bigoplus_{1}^{n-1} A_i\right)\right) \bigotimes_{k_1} \bar{k}_i \cong H^*\left(\bigoplus_{1}^{d_i} Z/2\right) \bigotimes_{k_1} H^*\left(k_i^*; H^*\left(\bigoplus_{1}^{n-1} A_i\right)\right) \\ \bigotimes_{k_1} \bar{k}_1$$

The first factor is $H^*(A_i^*)$, since $|k_i^*|$ is odd, and the second factor is $\operatorname{Hom}_{k_i^*}(\bar{k}_1, \Lambda(V) \otimes S(V))$.

We conclude the proof with an argument from $[1, \S 4]$.

There are no non-trivial k_i^* -invariants in $\Lambda(V) \otimes S(V)$ in dimensions $\langle d_i$. For the eigenvalues of multiplication by a generator $\lambda \in k_i^*$ in dimension n will be of the form $(\lambda^{-1})^s$ where $s = e_0 + 2e_1 + 4e_2 + \ldots + 2^{d_i - 1}e_{d_i - 1}$ satisfying n = l + 2m and $\sum_i e_i = l + m$, $e_i \ge 0$. For an invariant subspace we must have $s \equiv o(2^{d_i} - 1)$. Consider the set of positive integers $e_1', e_2', \ldots, e'_{d_i-1}$ such that $\sum_i e_i' 2^i \equiv 0(2^{d_i} - 1)$ and $\sum_i e_i'$ is minimal. Then $e_i' = 1$ for all t, since if $e_i' \ge 2$ replace (e_i', e_{i+1}') by $(e_i' - 2, e_{4+1}' + 1)$, so $\sum_i e_i' 2^i$ is the dyadic expansion of $2^{d_i} - 1$ and $d_i = \sum_i e_i' \le \sum_i e_i = l + m \le l + 2m = n$.

Hence in each total dimension $\langle d_i E_2^{*,*}$ is isomorphic to $H^*(A_i^*) \bigotimes_{k_1} \bar{k}_1$ in that dimension. From the spectral sequence when $r \langle d_i$,

$$\dim_{k_1} H^r(A_i^*) \ge \dim_{k_1} H^r(R_nA_i).$$

But the inclusion $A_i^* \to R_n A_i$ is split, so by dimension-counting this inclusion induces an isomorphism in cohomology (and hence in homology).

3.4. PROPOSITION. In dimensions $j < d_i$ the natural inclusion induces isomorphisms

$$H^{j}(D_{n}A_{i}) \cong H^{j}(T_{n}A_{i})$$
 and $H_{j}(D_{n}A_{i}) \cong H_{j}(T_{n}A_{i})$

for all $n, i \geq 1$.

Proof. We use induction on n. The case n = 1 is obvious. From (2.1) we have a spectral sequence

$$E_{2}^{p,q} = H^{p}(T_{n-1}A_{i}; H^{q}(R_{n}A_{i})) \Longrightarrow H^{p+q}(T_{n}A_{i}).$$

854

In dimensions $p + q < d_i E_2^{p,q}$ is isomorphic, by Proposition 3.2, to

$$H^p(T_{n-1}A_i; H^q(A_i^*)) \cong H^q(A_i^*) \otimes H^p(T_{n-1}A_i).$$

This last isomorphism follows from the conjugation action of $T_{n-1}A_i$ being trivial on A_i^* (see § 2). From the multiplicative properties of the spectral sequence it is easy to see that in total degree $\langle d_i$,

$$\dim_{k_1} H^*(T_n A_i) = \dim_{k_1} (H^*(A_i^*) \otimes H^*(T_{n-1}A_i)) = \dim_{k_1} (H^*(A_i^*) \otimes H^*(D_{n-1}A_i)) = \dim_{k_1} (H^*(D_n A_i).$$

Since $D_nA_i \rightarrow T_nA_i$ is split, the result follows by dimension counting.

The following proof is based on an argument of $[2, \S 11]$.

3.5. Proof of Theorem A. Suppose we have proved the result in dimensions $\langle m, H_*(GL_{\infty}A_i) \rangle$ and $H_*(D_{\infty}A_i)$ are Hopf algebra with diagonal ψ , induced by juxtaposition of matrices.

Suppose $x \in H_m(T_nZ/4)$ maps to $y \in H_*(GL_{\infty}Z/4)$ with $y \neq 0 \pmod{H_*(M_{\infty}Z/2)}$. Then, by induction,

 $\psi(y) = y \otimes 1 + 1 \otimes y \pmod{H_{\boldsymbol{*}}(M_{\omega}Z/2)^{\otimes 2}}.$

Consider the diagram $(m < d_i)$

$$H_m(T_nZ/4) \to H_m(GL_{\infty}Z/4)$$

$$\downarrow \alpha' \qquad \qquad \downarrow \alpha$$

$$H_m(D_nA_i) \cong H_m(T_nA_i) \to H_m(GL_{\infty}A_i)$$

$$\downarrow \beta'' \qquad \qquad \downarrow \beta' \qquad \qquad \downarrow \beta$$

$$H_m(M_{nd_i}Z/2) \to H_m(GL_{nd_i}Z/4) \to H_m(GL_{\infty}Z/4)$$

in which α , α' are induced by $(-\bigotimes_{Z/4} A_i)$ while β , β' , β'' are induced by the forgetful map. Then

 $\beta(\alpha(y)) \equiv d_i y \equiv y \pmod{H_m(M_{\infty}Z/2)}$

because y is primitive mod $H_*(M_{\alpha}Z/2)$. However $\beta(\alpha(y))$ is the image of $\beta'(\alpha'(x))$ which lies in the image of $H_*(M_{nd_i}Z/2)$.

3.6. Proof of Theorem B. The proof is entirely analogous to that of Theorem A. Throughout we replace R_nA_i by its subgroup of matrices (a_{ij}) with $a_{11} \in k_i^* \subset A_i^*$, $D_nA_i = \bigoplus_{i=1}^n A_i^*$ by its subgroups $C_nA_i = \bigoplus_{i=1}^n k_i^*$. The proof then shows that im $(H_*(U_nZ/4) \to H_*(GL_{\infty}Z/4))$ is contained in im $(H_*(C_{\infty}Z/4) \to H_*(GL_{\infty}Z/4))$. However $\tilde{H}_*(C_nZ/4) = 0$.

References

1. E. M. Friedlander, Computations of K-theories of finite fields, Topology 15 (1976), 87-109.

 D. G. Quillen, On the cohomology and K-theory of the general linear group over a finite field, Annals of Math 96 (1972), 552-586.

The University of Western Ontario, London, Ontario