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Fine-scale flow motions are measured in a Newtonian and polymer drag-reduced turbulent
boundary layer (TBL) at a common momentum thickness Reynolds number Reθ of 2300.
Relative to the Newtonian TBL, the polymer-laden flow has a 33 % lower skin-friction
coefficient. Three-dimensional (3-D) particle tracking velocimetry is used to measure the
components of the velocity gradient tensor (VGT), rate of deformation tensor (RDT)
and rate of rotation tensor (RRT). The invariants in these tensors are then used to
distinguish the different types of fine-scale flow motions – a method called the Δ-criterion.
Joint probability density functions (j.p.d.f.s) of the VGT invariants, Q and R, for the
Newtonian TBL produce the familiar tear-drop pattern, commonly seen in direct numerical
simulations of Newtonian turbulence. Relative to the Newtonian TBL, the polymer-laden
flow has significantly attenuated values of R, implying an overall reduction in fluid
stretching. The invariants in the RDT, QD and RD, imply that straining motions of the
polymeric flow are more two dimensional compared with the Newtonian flow. Moreover,
j.p.d.f.s of QD and the invariant in the RRT QW , suggest that the flow consists of fewer
biaxial extensional events and more shear-dominated flow. Few, if any, experimental
investigations have measured the 3-D structure of fine-scale motions in a Newtonian
and polymer drag-reduced TBL using the Δ-criterion. We provide the first experimental
evidence that supports the notion that an attenuation of fluid stretching, particularly biaxial
straining motions, is central to the mechanism of polymer drag reduction.

Key words: drag reduction, turbulent boundary layers

1. Introduction

It is well known that turbulent wall-bounded flows of high molecular weight polymer
solutions can have significantly less skin-friction drag than Newtonian fluids at a similar
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Reynolds number. Since its discovery by Toms (1948), the phenomenon of polymer drag
reduction (DR) has garnered considerable attention (Lumley 1969; Procaccia, L’vov &
Benzi 2008; White & Mungal 2008; Graham 2014; Xi 2019); yet, the fundamental question
of how polymers reduce drag remains elusive. An incomplete understanding of the
mechanism of DR can be attributed to the complexity of the turbulent flow, coupled with
the complexity of the polymer solution and its non-Newtonian constitutive equation (White
& Mungal 2008). Revealing the mechanics of polymer DR requires comparisons between
experiments that accurately measure the fluctuating velocity field of polymer drag-reduced
wall flows, and numerical simulations that utilize non-Newtonian constitutive models.
Antiquated works generally involved interpretations of various ensemble statistics, such
as mean velocity and Reynolds stresses. While the focus of more recent investigations has
shifted towards understanding the distribution and evolution of coherent flow structures
– an analysis propelled almost entirely by works using numerical simulations (Xi 2019).
Experiments have trailed in this regard, most likely due to the tremendous difficulties
involved with measuring coherent structures. Therefore, the broad goal of the present
investigation is to determine the three-dimensional (3-D) topology of the turbulent motions
within a polymer-laden boundary layer using modern flow measurements.

There are several methods for identifying the topology of the turbulent motions. The
present work utilizes that of Chong, Perry & Cantwell (1990), herein referred to as the
Δ-criterion, where Δ is defined as the discriminant of the characteristic equation for the
velocity gradient tensor (VGT). The Δ-criterion utilizes the eigenvalues and invariants
of the VGT to identify the local topology and streamline patterns about critical points
within the flow. Examples of flow topologies include those that are focal (vortical) and
dissipative (saddle points), depending on the sign of the invariants and the real/complex
nature of the eigenvalues. Using the Δ-criterion, various works have demonstrated that
quasi-streamwise and hairpin vortices can be visualized in numerical simulations and flow
measurements of Newtonian wall-bounded turbulence (Blackburn, Mansour & Cantwell
1996). Furthermore, the joint probability density function (j.p.d.f.) of the invariants in the
VGT takes on a tear-drop or pear-shaped distribution. This tear-drop pattern in the j.p.d.f.
of the VGT invariants is not only found in wall-bounded turbulence (Blackburn et al. 1996;
Chacín, Cantwell & Kline 1996; Chong et al. 1998; Chacín & Cantwell 2000; Elsinga
& Marusic 2010), but also turbulent mixing layers (Soria et al. 1994; Buxton, Laizet &
Ganapathisubramani 2011), jets (da Silva & Pereira 2008; Buxton & Ganapathisubramani
2010) and isotropic turbulence (Martın et al. 1998; Ooi et al. 1999; Danish & Meneveau
2018), implying a universal distribution of topologies exists among different types of
Newtonian turbulence.

Few investigations have used the Δ-criterion to explore the distribution of flow
topologies in wall-bounded turbulence with non-Newtonian rheology (Mortimer &
Fairweather 2022). The work by Mortimer & Fairweather (2022) observed an
unambiguous change in the topology of a viscoelastic channel flow at a friction Reynolds
number Reτ of 180, and derived from direct numerical simulation (DNS) utilizing the
FENE-P constitutive model. Here, FENE-P stands for finitely extensible nonlinear elastic
dumbbells with the Peterlin approximation. Mortimer & Fairweather (2022) demonstrated
that drag-reduced channel flows have a narrower range in the third invariant of the VGT
and flow structures were more two dimensional, relative to Newtonian channel flows at a
similar Reτ . Despite these observations, the flows investigated by Mortimer & Fairweather
(2022) had very low DR percentages (less than 5 %) and modest non-Newtonian rheology,
with negligible shear thinning and relatively low amounts of elasticity compared with
other numerical investigations of drag-reduced flows (Xi 2019). Therefore, it is unclear
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Topology of a polymer-laden boundary layer

what the topology based on the Δ-criterion would look like for flows with larger amounts
of DR, let alone a flow that utilizes a realistic polymer solution that is shear thinning and
viscoelastic.

While the Δ-criterion has not been employed to investigate the topology of polymer
drag-reduced flows with large amounts of DR, it has been used to assess the topology
of low-Reynolds-number transitional channel flows exhibiting elasto-inertial turbulence
(EIT). Samanta et al. (2013) observed that below the critical Reynolds number for
laminar-turbulent transition, polymer-laden pipe and channel flows exhibit an early
transition to a different type of disordered motion referred to as EIT. Numerical simulations
of channel flows utilizing the FENE-P constitutive model have demonstrated that EIT is
inherently two dimensional and consists of alternating regions of vortical and dissipative
flow (i.e. positive and negative Δ) along the streamwise direction (Samanta et al. 2013).
In the j.p.d.f. of the VGT invariants, EIT reflects a symmetric ovular pattern that
is significantly different than the tear-drop pattern observed in Newtonian turbulence
(Dubief, Terrapon & Soria 2013). The connection between EIT and DR, and whether
it persists at much larger Reynolds numbers, is still unknown (Xi 2019). Therefore,
comparing the measured topology of a polymer drag-reduced flow with the known
topology of EIT derived from viscoelastic simulations could provide evidence that EIT
contributes to the dynamics at larger Reynolds numbers.

Although few works have used the Δ-criterion to characterize the topology of polymer
drag-reduced flows, observations of coherent structures have been performed using other
techniques. For example, Pereira et al. (2017) utilized a modified Q-criterion, or the
second invariant in the VGT (Hunt, Wray & Moin 1988; Martins et al. 2016), to discern
vortical and extensional structures in channel flow DNS with the FENE-P constitutive
model, an Reτ between 180 and 1000, and DR as large as 62 %. Pereira et al. (2017)
noted that both extensional and vortical flow motions in the drag-reduced channel flow
were weaker relative to Newtonian DNS, and the flow tended towards a more parabolic
(shear-dominant) state – a trend Pereira et al. (2017) referred to as ‘flow parabolization’.
An earlier investigation by Roy et al. (2006) similarly implied flow parabolization based on
channel flow simulation that utilized a simplified constitutive model of polymer stresses
(the retarded-motion expansion). Roy et al. (2006) more specifically asserted that the
non-Newtonian extensional viscosity opposed flow in both uniaxial and biaxial flow
regions, thus mitigating the strength and formation of quasi-streamwise vortices and
reducing drag. Many of the previously listed numerical investigations (Roy et al. 2006;
Pereira et al. 2017; Mortimer & Fairweather 2022) provide meaningful assertions about
the influence of polymer rheology on flow topology; however, all of these works utilize
constitutive models, such as FENE-P, that only approximate polymer-driven stresses (Xi
2019) and few experiments have measured the topology of a polymer drag-reduced flow to
corroborate these observations.

Early experimental investigations made inferences about the size of large-scale motions
in polymer drag-reduced flows based on measurements using two-dimensional (2-D)
particle image velocimetry (PIV) and two-point velocity statistics. One such notable
experimental work was that of White, Somandepalli & Mungal (2004), which investigated
a drag-reduced boundary layer with near-wall injection of a concentrated polymer solution,
a momentum thickness-based Reynolds number Reθ of 1300 to 1400 and DR between
33 % and 67 %. Within the buffer layer of the flow, White et al. (2004) observed visibly
wider and longer high- and low-speed velocity streaks for a flow with DR of 50 %
relative to water at a similar Reθ . Two-point spatial correlations of the streamwise velocity
fluctuations along the spanwise direction confirmed that the large-scale motions became
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increasingly wider as DR grew from 33 % to 67 %. A similar widening and elongation of
the large-scale motions was observed for drag-reduced boundary layers of homogeneous
polymer solutions (often referred to as a polymer ocean) by Farsiani et al. (2020), and
also homogeneous polymer drag-reduced channel flows by Warholic et al. (2001) and
Warwaruk & Ghaemi (2021). In addition to velocity correlations, White et al. (2004)
also observed a reduction in the strength and number of near-wall vortices, albeit inferred
from visualization of an instantaneous snapshot of the wall-normal vorticity. From an
experimental perspective, the natural progression to the work of White et al. (2004) is
to better quantify the near-wall vortical structures of a polymer drag-reduced flow using
3-D flow measurements and a suitable method for detecting such structures.

A limited number of experimental investigations have used 3-D flow measurements
to measure the velocity in polymer drag-reduced flows, let alone one that quantifies
the topology of fine-scale motions within the flow. Shah, Ghaemi & Yarusevych (2021)
performed 3-D tomographic PIV on a polymer drag-reduced boundary layer with
heterogeneous wall injection, an Reθ of 520 and DR of 20 %–30 %. Using a modified
Q-criterion (Hunt et al. 1988; Martins et al. 2016), Shah et al. (2021) demonstrated
that extensional and vortical flow regions weaken as drag was reduced, similar to the
findings of the numerical investigation by Pereira et al. (2017). Rather than Q-criterion,
the current work expands on the experimental findings of Shah et al. (2021) by utilizing
the Δ-criterion to obtain distributions, mainly j.p.d.f.s, of the different types of topologies
within a Newtonian and polymer-laden turbulent boundary later (TBL). Compared with
the Q-criterion, use of the Δ-criterion, as well as other deformation tensor invariants,
facilitates a more complete depiction of the topology of fine-scale motions within the
turbulent drag-reduced flow. Unlike the use of just Q, considering the other tensor
invariants and Δ can help distinguish structures that are in uniaxial or biaxial extension,
as well as focal or dissipative; some of which are significant to the mechanism for polymer
DR.

In the present investigation, the VGT of a polymer drag-reduced boundary layer will be
measured using state-of-the-art 3-D particle tracking velocimetry (3-D-PTV), from which
the local flow topology will be analysed using the Δ-criterion. Evidence is provided to test
a hypothesis regarding the mechanism of polymer DR. This hypothesis is inspired by the
works of Roy et al. (2006) and Lumley (1973) – that being, the large extensional viscosity
of polymer solutions strongly inhibits uniaxial and biaxial flow regions, thus mitigating
the strength and formation of quasi-streamwise vortices and reducing drag. It is clear that
even small amounts of DR will produce an unambiguous change in the topology of a TBL
(Pereira et al. 2017; Mortimer & Fairweather 2022); however, based on the findings of
Roy et al. (2006), it is expected that changes in the topology will predominately occur in
regions of strong uniaxial/biaxial extension. Uniaxial/biaxial flow regions are dissipative
with Δ < 0, and are strongly concentrated around the ‘tails’ in the j.p.d.f. of the VGT
invariants. They can also be identified from the invariants in the rate of deformation tensor
(RDT) or the symmetric component of the VGT, which will be elaborated upon more in
§ 2 to follow.

2. Theoretical background

The following section will serve to summarize the Δ-criterion of Chong et al. (1990). This
method utilizes the eigenvalues and invariants of the VGT to identify the local topology
and streamline patterns of the flow. The VGT is L = ∇U and U is the velocity vector. The
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Figure 1. Local topologies for different R and Q in an incompressible flow with P = 0 (Chong et al. 1990).

characteristic equation for the tensor L is

Λ3 + PΛ2 + QΛ + R = 0, (2.1)

where P, Q and R are the invariants of L. The eigenvalues are the roots to (2.1), and are
defined as Λ1, Λ2 and Λ3 in descending order of magnitude. Although the Δ-criterion
can be applied to both compressible and incompressible fluid flows, the present work
focuses only on those that are incompressible, thus narrowing down the number of flow
classifications. In an incompressible flow, the first invariant P = −tr(L) is equal to zero,
while Q and R are the only non-zero invariants of L and can be expressed as

Q = −1
2 tr(L2), (2.2a)

R = −det(L). (2.2b)

Here, tr(. . . ) represents the trace operator on a square matrix and det(. . . ) the determinant.
The nature of the eigenvalues of L are dictated by the sign convention of the discriminant
Δ of (2.1),

Δ = 27
4 R2 + Q3, (2.3)

where Δ > 0 produces one real and two complex eigenvalues, and Δ ≤ 0 produces three
real eigenvalues. Figure 1 describes the different possible local flow topologies that depend
on the sign convention of Δ and R (Chong et al. 1990). The lines corresponding to Δ = 0,
and shown in figure 1, are referred to as the Vieillefosse tail’s. Here, (Δ = 0, R < 0) is
the left-Vieillefosse tail and (Δ = 0, R > 0) is the right-Vieillefosse tail. Flow conditions
above the Vieillefosse tail’s with Δ > 0, consist of motions that are focal and primarily
vortical. Regions of the flow with Δ ≤ 0 take on a node-saddle-saddle streamline pattern.
Flow topology is also divided about the R = 0 axis, where flows with R < 0 are stable
(stretching) and R > 0 are unstable (compressing). The j.p.d.f.s of Q and R in various
Newtonian turbulent flows take on a tear-drop pattern (Soria et al. 1994; Blackburn et al.
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Figure 2. Ratios of eigenvalues for different RD and QD for an incompressible flow with P = 0. The
eigenvalues are listed in the descending order of Γ1 : Γ2 : Γ3 (Blackburn et al. 1996).

1996; Chong et al. 1998; Ooi et al. 1999; da Silva & Pereira 2008). The point or tip of the
tear-drop falls on the right-Vieillefosse tail (Δ = 0, R > 0), while the bulb of the tear drop
is situated in the quadrant of stable focus stretching (Δ > 0, R < 0).

The VGT indicated as L can be separated into a symmetric and antisymmetric
component, where L = D + W . Here the symmetric RDT is D = (∇U + ∇U†)/2, the
antisymmetric rate of rotation tensor (RRT) is W = (∇U − ∇U†)/2, and the dagger
symbol † represents the matrix transpose. Similar to L, the tensors D and W have their
own characteristic equation. For the tensor D, the characteristic equation is

Γ 3 + PDΓ 2 + QDΓ + RD = 0, (2.4)

where PD = −tr(D) = 0 for an incompressible flow, and the non-zero invariants are
defined according to

QD = −1
2 tr(D2), (2.5a)

RD = −det(D) = −1
3 tr(D3). (2.5b)

The roots of (2.4) are the eigenvalues of D and are defined as Γ1, Γ2 and Γ3 in descending
order of magnitude. Similar to (2.3) for L, the discriminant of (2.4) for D is

ΔD = 27
4 R2

D + Q3
D. (2.6)

Because D is a real and symmetric tensor, its eigenvalues will always be real and ΔD ≤ 0.
A plot of QD, RD space is shown in figure 2, where black solid lines represent curves
with the same ratio of principal strain rates or eigenvalue of D, defined as Γ1 : Γ2 : Γ3
(Blackburn et al. 1996). The ratio of principal strains are also used to distinguish possible
rheometric flows, e.g. uniaxial extension, biaxial extension, planar extension and shear. A
review of these basic rheometric flows is not presented, however deriving their respective
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Figure 3. Schematic of the different flow types in QW , QD space and for different kinematic vorticity
numbers K (Soria et al. 1994).

invariants in D and W is trivial; see e.g. pp. 73–75 of Macosko (1994). The different
rheological flows are labelled on the schematic of RD, QD space of figure 2. Uniaxial and
biaxial extensions correspond to the lines where ΔD = 0. Uniaxial extension flows have
an eigenvalue ratio of Γ1 : Γ2 : Γ3 = 2 : −1 : −1 (i.e. negative RD and ΔD = 0), while
biaxial extensional flows have an eigenvalue ratio of Γ1 : Γ2 : Γ3 = 1 : 1 : −2 (positive
RD and ΔD = 0). Shear and planar extension both exist on the RD = 0 axis and are 2-D
flows, with an eigenvalue ratio of Γ1 : Γ2 : Γ3 = 1 : 0 : −1.

Unlike tensors L and D, the RRT has only one non-zero invariant by definition, that
being the second invariant

QW = −1
2 tr(W 2). (2.7)

For any antisymmetric tensor, the determinant is equal to zero; therefore, the third invariant
of W , defined as RW , will always be zero. Also note that the second invariant of L can be
equally represented as Q = QD + QW . Values of QD are always negative, while values
of QW are always positive. The invariants, QD and QW , are also proportional with energy
dissipation ε = 2ν tr(D2) = −4νQD and enstrophy density φ = −2 tr(W 2) = 4QW , where
ν is the kinematic viscosity. Therefore, the ratio between QW and QD can indicate whether
the flow is more dominated by dissipation or enstrophy. Truesdell (1954) established a
kinematical vorticity number

K =
(

QW

−QD

)1/2

, (2.8)

which defines the local strength of rotation relative to stretching (Ooi et al. 1999). The
change in K is shown schematically in figure 3 for different QD and QW , similar to
the diagram provided in Soria et al. (1994). Regions of the flow with small QW and
K ≈ 0 are more irrotational and dominated by dissipative motions, while flow regions
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with negligible QD and large values of K that approach ∞ experience solid body rotation.
Regions with both large enstrophy density and dissipation fall on the line with K = 1,
where QW = −QD. From simulations of an incompressible mixing layer, Soria et al.
(1994) described how flow motions with K = 1 consist of vortex sheets and shear layers.
Comparing the invariants QW and QD is also commonly used to distinguish rheometric
flows. Astarita (1979) derived a criteria that was adapted from the work of Astarita (1967),
for distinguishing steady shear, extension and solid body rotation in non-Newtonian
flows and served functionally the same as the kinematical vorticity number K. Flow
regions that are extension dominant (K = 0), shear dominant (K = 1) or in rigid body
rotation (K = ∞) are annotated on the schematic of QD, QW space shown in figure 3.
Dimensionless indicators similar to K are generally referred to as a ‘flow type’ and can be
commonly found in a variety of works involving non-Newtonian flows (Haward, McKinley
& Shen 2016; Haward, Toda-Peters & Shen 2018; Ekanem et al. 2020; Walkama, Waisbord
& Guasto 2020; Kumar, Guasto & Ardekani 2022).

3. Experimental methodology

The invariants in the VGT of a Newtonian and polymer-laden TBL were computed using
velocity vectors measured from 3-D-PTV based on the shake-the-box (STB) algorithm
developed by Schanz, Gesemann & Schröder (2016). Newtonian and polymer-laden flows
were compared at a similar friction Reynolds number Reτ and momentum thickness
Reynolds number Reθ . A detailed description of the flow facility, polymer solution,
measurement apparatus and flow computations are provided in the following sections.

3.1. Flow facility
Newtonian and polymer-laden TBLs were formed along the floor of a closed-loop water
flume at the University of Alberta’s Laboratory of Turbulent Flows (Abu Rowin, Hou
& Ghaemi 2018; Elyasi & Ghaemi 2019). The flume consists of a 5 m long channel
that bridges two cubic reservoirs. The channel was 0.68 m in width W. The free surface
was situated at a height H that was 0.2 m above the bottom floor of the channel. The
total volume of liquid within the flume was 3500 l. The walls of the channel consist of
12.7 mm thick glass panels. Two centrifugal pumps (Deming 4011 4S, Crane Pumps and
Systems) in a parallel configuration were used to circulate the fluid within the flume.
Variable frequency drive’s enabled control of the rotational speed of each pump. In all
experiments both pumps were operated at the same rotational speed. Measurements of
the TBL of water were collected for pump speeds between 450 and 600 rpm, which
corresponds to free-stream velocities U∞ of 0.186 and 0.247 m s−1. These values of U∞
produce Newtonian flows with similar Reτ and Reθ as the polymer-laden flow, respectively.
A series of mesh screens within the upstream reservoir of the water flume ensured that the
turbulence intensity of the free stream was less than 2 %. Such a turbulence intensity was
previously shown to not have a substantial influence on the inner-normalized mean velocity
and Reynolds stress profiles near the wall, and is assumed to not have significant impact on
the present results (Hancock & Bradshaw 1983, 1989). Fluid temperature was monitored
using a K-type thermocouple and a data logger (HH506, Omega Engineering). Throughout
all experiments, involving both water and the polymer-laden flows, the temperature was
19.9 ◦C ± 0.3 ◦C.
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3.2. Polymer solution preparation and characterization
The flexible polymer polyacrylamide (PAM) (6030S, SNF Floerger) with a molecular
weight of 30–35 MDa, was chosen for the polymer-laden boundary layer experiments.
A 3500 l homogeneous PAM solution with a concentration c of 140 ppm was utilized.
To prepare the polymer solution, a 1140 l concentrated master solution (c = 430 ppm) was
first mixed and then diluted to achieve the desired 140 ppm concentration within the flume.
The master solution was mixed in two 570 l cylindrical vessels. Solid polymer powder was
weighed using a scale with a 0.1 g resolution, and gently added to each container (245 g
to each vessel) along with tap water. A stand mixer equipped with a 150 mm diameter
impeller and set to a rotational speed of 50 rpm was used to mix the master solution in each
vessel for 2 h. The master solution was then slowly added to 2360 l of tap water that was
contained within the flume. An air operated diaphragm pump was used to gently transfer
the master solution from the mixing containers to the flume at a flow rate of 1 l s−1. Upon
adding the master solution to the flume, the 3500 l solution was then circulated for 30 min,
where the rotational speed of the centrifugal pumps was set to a low speed of 300 rpm. The
140 ppm solution was then left to rest for 12 h. The resulting fluid was visibly transparent
and had no heterogeneous clumps of polymers.

Flow measurements were performed immediately after the PAM solution was left to
rest for 12 h. The rotational speed of the pumps were set to 1000 rpm, which produced a
U∞ of 0.432 m s−1. To avoid degradation of the PAM solution, the pumps were turned
off intermittently between instances of image acquisition for 3-D-PTV. For a single set
of flow measurements, the pumps were turned on for 2 min. After which, the pumps were
turned off for approximately 10 min to allow time for the 3-D-PTV images to be transferred
from the on-board memory of the high-speed cameras to computer storage. Eight sets of
images were collected for 3-D-PTV, therefore, this procedure of turning the pumps on
for 2 min and off for 10 min was repeated eight times. Fluid samples were collected for
rheology measurements immediately after each instance of image acquisition (eight fluid
samples in total). Rheology measurements were necessary for characterizing the material
properties of the fluid (i.e. shear viscosity and extensional relaxation time) and were also
useful for diagnosing the effects of degradation.

The shear and extensional rheology of water and the 140 ppm PAM solution is provided
in Appendix A. Torsional rheometry was used to measure the viscosity η as a function
of shear rate γ̇ for water and the eight samples of the PAM solution. Water exhibited a
viscosity that was independent of γ̇ and equal to 0.98 cP. On the other hand, the PAM
solution was shear thinning, where measurements of η decreased with increasing γ̇ .
The shear-thinning trend was described by a Carreau model (Carreau 1972) with a
zero-shear-rate viscosity η0 of 3.4 cP, an infinite-shear-rate viscosity η∞ of 1.0 cP, a
consistency K of 0.29 s and a flow index m of 0.76. The total relative uncertainty in the
measurements of η attributed to both systematic errors from the torsional rheometer and
a repeatability error from polymer degradation was 5.3 % and considered minimal. The
extensional rheology of water and PAM was evaluated using a bespoke apparatus that
measured the diameter of a droplet expelled from a blunt-end nozzle using a high-speed
camera and back light illumination (Deblais et al. 2020; Rajesh, Thiévenaz & Sauret 2022).
Water exhibited a rapid decay in its droplet diameter representative of inertiocapillary
dominated thinning. The droplet of the PAM solution had a much longer lifetime due to
elastic forces. Based on the trend in the diameter of the thinning droplet, it was assessed
that the PAM solution had an elastic relaxation time te of 9.90 ms.
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3.3. Flow measurements
Two types of flow measurements were used to characterize the Newtonian and
non-Newtonian TBLs. The first was 3-D-PTV based on the STB algorithm (Schanz et al.
2016), which was used primarily to obtain the VGT. The second consisted of a two-camera
planar PIV set-up, that was used to obtain bulk properties of the flow, including U∞, the
momentum thickness θ and the boundary layer thickness δ. These measurements were
done simultaneously, as described in the following sections.

3.3.1. Three-dimensional PTV
To obtain 3-D measurements of the velocity vector U within the Newtonian and
non-Newtonian TBLs, 3-D-PTV using the STB algorithm was used (Schanz et al. 2016).
The 3-D-PTV measurements produce Lagrangian trajectories of tracer particles that travel
through the measurement domain. The STB algorithm can detect and track a larger number
of tracer particles by utilizing temporal information over several successive images as
opposed to standard double-frame 3-D-PTV algorithms (Wieneke 2012; Schanz et al.
2016). The velocities of the Lagrangian trajectories are then projected onto an Eulerian
grid at each instance of time t. This effectively produces 3-D time-resolved measurements
of U .

An isometric view that illustrates the 3-D-PTV measurement apparatus, with reference
to a section of the water channel, is shown in figure 4(a). The 3-D-PTV measurement
apparatus consisted of four high-speed cameras (Phantom v611, Vision Research Inc.),
each of which is labelled from 1 to 4 in figure 4. A high-repetition Nd:YLF laser
(DM20-527, Photonics Industries), with a wavelength of 532 nm and a maximum pulse
energy of 20 mJ pulse−1, was used to illuminate the volume of interest (VOI). A zoomed-in
depiction of the VOI is shown in figure 4(b) with reference to the Cartesian coordinate
system, where x, y and z are the streamwise, wall-normal and spanwise directions,
respectively. The centre of the laser volume was positioned such that the VOI was at the
channel mid-span (W/2) along z and 4.5 m downstream of the inlet to the water channel
along x. The cropped laser volume was 3.5 mm thick along z and approximately 15 mm in
width along x, and had a rather uniform intensity profile along those respective directions.

Each of the four high-speed cameras had a complementary metal oxide semiconductor
sensor, that was cropped to be 1280 × 304 pixels in size, where each pixel was 20 ×
20 µm2 large and had a 12 bit digital resolution. The four cameras were arranged in
a half-cross-like configuration, as depicted in figure 4(a). All cameras were placed in a
portrait orientation such that the 1280 pixel dimension of each sensor was parallel to
the y direction. The viewing angles of each camera with respect to the VOI are shown
in figure 4(c,d). Water-filled prisms helped mitigate image distortion caused by light
refraction for cameras 1, 3 and 4, which had large viewing angles with respect to the
glass wall. Sigma lenses with a focal length f of 105 mm and 2× teleconverters (Teleplus
pro300, Kenko) were used to achieve a magnification of approximately 0.72 for all four of
the cameras. All cameras had a lens aperture of f /16, with an approximated depth of focus
of 7 mm. Schiempflug adapters were also used for cameras 1, 3 and 4 to ensure images of
the VOI were in focus. The cameras and laser were synchronized using a programmable
timing unit (PTU X, LaVision GmbH) and image acquisition was performed using DaVis
8.4 software (LaVision GmbH). The fluids within the flume were seeded with 2 µm silver
coated hollow glass spheres (SG02S40, Potters Industries). The number density of tracers
within the images was approximately 0.05 particles per pixels.
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Figure 4. A schematic of the 3-D-PTV flow measurement set-up with reference to a section of the water
channel. Here (a) shows an isometric view of the measurement apparatus and water channel, (b) provides an
isometric view of the VOI with reference to the Cartesian coordinate system, (c) shows a top view of the
3-D-PTV measurement set-up and (d) provides a front view of the measurement set-up.

For the Newtonian and non-Newtonian flows, eight datasets, equivalent to 114 832
images, were collected to ensure sufficient convergence of the different ensemble statistics
in the analysis. One time-resolved dataset, for both measurements of the Newtonian and
non-Newtonian TBLs, consisted of 14 354 single-frame images captured at a selected
frequency between 0.52 kHz and 1.82 kHz. Therefore, one dataset took between 7.9 s
and 27.6 s. This is equivalent to 36.2T and 62.7T , where T = δ/U∞ is a representative
advection time or large eddy turnover time and δ is the boundary layer thickness. The
total duration of the eight datasets used for computing ensemble statistics was between
260T to 500T depending on the flow condition. The frequency was selected depending on
U∞, and such that a maximum particle displacement of 5 pixels across subsequent images
was achieved. Image processing consisted of first determining the minimum intensity of
each pixel over the complete image ensemble, and then subtracting the minimum from
all images in a dataset. Second, the intensity signal at each pixel was normalized by the
average intensity of the ensemble. Lastly, a moving local minimum was calculated and
subtracted within a kernel size of 5 pixels and local intensity normalization with a kernel
size of 500 pixels were applied to every image. The statistical convergence for the mean
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velocity and Reynolds stresses of the Newtonian and non-Newtonian boundary layers were
confirmed. All velocity statistics attain sufficient statistical convergence, with low random
errors (less than 3.3 %), within the last 5700 realizations.

Calibration of the imaging set-up was achieved by fitting a third-order polynomial
mapping function onto images of a dual-plane 3-D calibration target (025-3.3, LaVision
GmbH). Volume self-calibration was used to significantly improve the accuracy of the
mapping function (Wieneke 2008). Self-calibration reduced the average and maximum
disparity vector magnitude, or error in the mapping function, to 0.02 and 0.06 pixels,
respectively. After self-calibration, an optical transfer function was generated to account
for changes in the imaged particle patterns across the 3-D volume (Schanz et al.
2013). The resulting VOI had dimensions (x, y, z) = (272, 1220, 102) voxel =
(8.0, 35.8, 3.0) mm3, as shown in figure 4(b). Finally, the STB algorithm was performed
using DaVis 10.2 software (LaVision GmbH). The maximum triangulation error was set to
1 voxel, and particle displacements were limited to a maximum of 8 voxel. Particles with
an acceleration that was larger than 2 pixels or 20 % between subsequent image frames
were discarded. The STB algorithm yielded approximately 6200 Lagrangian trajectories
per time step within the VOI.

Once the Eulerian vector field is obtained, a moving first-order polynomial with a
length of nine time steps was fit on the particle trajectories. Two types of binning were
used to convert the Lagrangian trajectories into Eulerian vector components. The first
involved averaging the trajectories within slabs that were parallel with the wall and
covered the entire measurement domain along x and z. Each slab was 6 voxels or 0.18 mm
(1.3δv − 1.8δv) thick in the y direction. Neighbouring slabs along y overlapped by 75 %.
This binning procedure was used exclusively for establishing the mean streamwise velocity
〈U〉 with high spatial resolution. Here, the angle brackets 〈· · · 〉 denote averaging in time
and along the spatially homogeneous direction z. It was also assessed that 〈U〉 did not
vary significantly along x within the VOI; hence, the statistics were also averaged along
the x direction within the VOI. The second binning procedure involved averaging particle
tracks for each time step in 32 × 32 × 32 voxel or 0.94 × 0.94 × 0.94 mm3 cubes to obtain
the instantaneous velocity vector U within the domain. Neighbouring cubes had 75 %
overlap with one another along the three Cartesian directions. Therefore, adjacent vectors
were separated by 8 voxels or 0.235 mm. In terms of viscous wall units δv = ν/uτ , the
bins were between 6.9δv × 6.9δv × 6.9δv and 9.3δv × 9.3δv × 9.3δv depending on the
flow considered. Here, uτ is the friction velocity and ν is the kinematic viscosity. The
streamwise, wall-normal and spanwise components of the instantaneous velocity U are
denoted as U, V and W, respectively. Velocity fluctuations were represented using lower
case symbols, i.e. u, v and w.

A moving first-order polynomial function was fitted to the velocity components at each
instance of time and then differentiated to obtain spatial gradients in velocity. The size
or extent of the polynomial function was three velocity vector components along each
Cartesian direction, which equates to 24 × 24 × 24 voxels or 0.70 × 0.70 × 0.70 mm3.
Spatial velocity gradients were then used to compute the topology parameters of the
Newtonian and non-Newtonian TBLs according to § 2.

The uncertainty in the 3-D-PTV measurements is scrutinized in Appendix B.
Uncertainty is primarily assessed based on how well the velocity vectors satisfy
the divergence-free condition, where ∇ · U = 0. Appendix B demonstrates that the
present measurements adequately satisfy the divergence-free condition compared with
other investigations that have utilized experimental flow measurements to measure the
VGT (Tsinober, Kit & Dracos 1992; Zhang, Tao & Katz 1997; Ganapathisubramani,
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Fluid U∞ (m s−1) θ (mm) δ (mm) uτ (mm s−1) δv (mm) Reθ Reτ Cf × 103 Wi DR (%)

Water 0.186 9.77 81.87 7.60 0.132 1814 612 3.35 0 0
Water 0.247 9.15 77.94 9.90 0.101 2257 765 3.22 0 0
PAM 0.432 10.33 94.31 14.20 0.137 2290 687 2.16 1.09 33.1

Table 1. Inner and outer scaling variables of the Newtonian and non-Newtonian TBLs.

Lakshminarasimhan & Clemens 2007; Gomes-Fernandes, Ganapathisubramani &
Vassilicos 2014).

The variables for inner scaling were established by fitting a linear function to the mean
velocity profile 〈U〉 of each flow near the wall. The linear function was then differentiated
in order to determine the near-wall shear rate γ̇w of each flow. Here, γ̇w is established by
differentiating the mean velocity, i.e. d〈U〉/dy, for y > 0.2 mm and y+ < 3. The lower
bound of the fit was the smallest measurable value of y with a slab that did not overlap
with the wall. While the upper bound of the fit is within the theoretical limit of the linear
viscous sublayer. The wall shear stress τw was then established according to τw = η(γ̇w)γ̇w,
where η(γ̇w) is the viscosity of the fluid evaluated at the near-wall shear rate γ̇w using the
Carreau model that was fitted to measured values of η for PAM detailed in Appendix A.
After establishing τw, the friction velocity u2

τ = τw/ρ and wall units δv = ν/uτ were
determined, where ν = η(γ̇w)/ρ is the near-wall kinematic viscosity and ρ is the fluid
density. Variables normalized by inner scaling were denoted using the superscript +,
where velocity statistics were normalized by uτ and position values were normalized
by δv . Several other variables were also used to characterize the flows. For example,
the skin-friction coefficient Cf = 2τw/ρU2∞ was used to defined the local friction of the
boundary layer. The friction Reynolds number Reτ = δ/δv defined as the ratio between
the boundary layer thickness δ and the viscous wall units. Lastly, the Weissenberg number
Wi = teγ̇w was used to the define the ratio between the elastic and viscous forces of the
flow. The corresponding variables of the flow are listed in table 1.

3.3.2. Planar PIV
For all of the flows considered, the VOI measured using 3-D-PTV did not capture the
complete boundary layer thickness along y. Therefore, a planar PIV set-up was used to
obtain measurements of 〈U〉 over a larger field of view exceeding δ, in order to determine
the bulk flow properties or outer scaling variables of the Newtonian and non-Newtonian
TBLs. These bulk properties include the momentum thickness θ , boundary layer thickness
δ and free-stream velocity U∞, all of which are listed in table 1.

The planar PIV set-up consisted of two double-frame digital cameras (Imager Intense,
LaVision GmbH), each of which had a 1376 × 1040 pixels charged-coupled device sensor.
Each pixel in the sensor was 6.45 × 6.45 µm2 in size and had a 12 bit digital resolution.
The sensors were cropped to 1376 × 128 pixels to enable higher acquisition rates, where
the 1376 pixel dimension was parallel to the y direction. Double-frame images were
acquired at a frequency of 14.3 Hz. The fields of view (FOVs) of both cameras were
stacked along the wall-normal direction y, and covered a region with a size of x =
7.0 mm and y = 143.1 mm. The FOVs were placed at the centre of the channel along
z and 200 mm upstream of the 3-D-PTV measurement location, along x. Illumination
was provided from a 15 mJ pulse−1 Nd:YAG laser (Solo I-15, New Wave Research
Inc.) that was synchronized with the cameras using a programmable timing unit (PTU 9,
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LaVision GmbH) and DaVis 7.3 software (LaVision GmbH). Two spherical lenses (one
concave, the other convex) and one concave cylindrical lens expanded the laser beam into a
20-mm-wide (along x) and a 1-mm-thick (along z) laser sheet. One dataset consisted of 800
pairs of double-frame images, which took 56 s to collect. The time delay t between laser
pulses of each image pair was between 1.43 and 5.00 ms depending on U∞. The value
of t was chosen such that the maximum particle displacement between image frames
was approximately 15 pixels. Recall from § 3 that eight datasets were collected for the two
cases of water (corresponding to different Reθ ) and the one condition of PAM. Therefore,
each flow scenario consisted of 6400 double-frame images.

Image processing was performed using DaVis 8.4 software (LaVision GmbH). First
the minimum intensity in each pixel was determined in each dataset and subtracted from
every image in the ensemble. Second, the intensity signals in each pixel were normalized
by the average intensity of the ensemble. Velocity vectors were then established using
cross-correlation with an initial interrogation window (IW) size of 64 × 64 pixels and a
final IW size of 24 × 24 pixels with 75 % overlap between neighbouring IWs. The mean
streamwise velocity 〈U〉 with respect to y was determined by averaging U over all instances
of time t and along the x direction. Profiles of 〈U〉 with respect to y were then used
to identify the free-stream velocity U∞, the boundary layer thickness δ and momentum
thickness θ as listed in table 1. The boundary layer thickness is assessed as the y location
where 〈U〉 = 0.99U∞. The Reynolds number based on the momentum thickness is defined
as Reθ = U∞θ/ν (recall that ν = η(γ̇w)/ρ, where η(γ̇w) is assessed at the given near-wall
shear rate). A local DR percentage DR for the polymer-laden TBL was defined according
to

DR = 100
(

1 − Cf ,p

Cf ,n

)
, (3.1)

where Cf ,p is the skin friction of the polymer-laden boundary layer and Cf ,n is the
skin-friction coefficient of the Newtonian boundary layer at a similar Reθ . Comparing
the Cf values in rows 2 and 3 of table 1 demonstrates that the PAM flow has a DR of
33.1 %.

4. Results and discussion

Results of the 3-D flow measurements involving the Newtonian and polymer-laden
boundary layers are presented in two parts. First, more conventional ensemble statistics
such as mean velocity profiles, Reynolds stresses and two-point velocity correlations are
presented. After which, the Δ-criterion is used to comment on the topology of each flow.

4.1. Velocity statistics
Figure 5(a) shows the inner-normalized mean streamwise velocity 〈U〉+ with respect to
y+ for the experimentally measured TBLs of water with Reθ = 1814 and 2257 and the
PAM solution at Reθ = 2290. These experimental 〈U〉+ profiles are shown alongside the
mean velocity profile derived from Newtonian TBL DNS in Jiménez et al. (2010) at an
Reθ of 1968, and also the law of the wall. All flows, both water and PAM, closely follow
the linear viscous sublayer 〈U〉+ = y+ for y+ < 3. For y+ > 30, the boundary layers of
water with different Reθ both overlap with a logarithmic profile 〈U〉+ = 1/κ ln( y+) + B
that has a von Kármán coefficient κ of 0.384 and an intercept B of 4.5 – similar to the
values prescribed by Nagib & Chauhan (2008) for Newtonian TBLs. The polymer-laden
flow exhibits enhanced values of 〈U〉+ relative to the Newtonian boundary layers for y+ >
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Figure 5. Plots of the (a) mean velocity and (b) Reynolds stress profiles for the TBL flows of water and the
140 ppm PAM solution. The dotted lines are mean velocity and Reynolds stress profiles of the Newtonian TBL
obtained from DNS of Jiménez et al. (2010) at Reθ = 1968.

30, a feature common in drag-reduced flows of polymer solutions. The intercept B of the
polymer-laden boundary layer is larger than B for water, and visually κ is approximately
the same. Although 〈U〉+ is enhanced within the outer layer of the polymer-laden flow, it
does not overlap with the maximum DR asymptote 〈U〉+ = 11.7 ln( y+) − 17.0 of Virk,
Mickley & Smith (1970).

Figure 5(b) shows inner-normalized plots of the four non-zero components of the
Reynolds stress tensor with respect to y+. In descending order of magnitude, 〈u2〉+, 〈w2〉+
and 〈v2〉+ are the streamwise, spanwise and wall-normal Reynolds stresses, respectively,
and 〈uv〉+ is the Reynolds shear stress. The experimentally measured profiles of 〈u2〉+,
〈v2〉+ and 〈uv〉+ for water overlap well with the DNS of Jiménez et al. (2010) at a
comparable Reθ . However, the measured Reynolds stress profiles of 〈w2〉+ for water are
marginally less than that of the Newtonian DNS. That being said, profiles of 〈w2〉+ for
water with slightly different Reθ only show a subtle difference and are rather consistent
with one another. The discrepancy among DNS and the measured profiles of 〈w2〉+
is attributed to experimental uncertainties (discussed in Appendix B). Measurements
of the out-of-plane velocity component, in this case W, are generally more erroneous
using 3-D-PTV, hence, errors in 〈w2〉+ are more expected (Warwaruk & Ghaemi 2021).
Overall, the polymer-laden boundary layer has augmented values of 〈u2〉+ for y+ < 150
and attenuated values of 〈w2〉+, 〈v2〉+ and −〈uv〉+ for y+ < 100, when compared with
the boundary layers of water. The peak in 〈u2〉+ is also shifted away from the wall for the
PAM flow relative to water; for PAM, the peak in 〈u2〉+ is at a y+ of 21, while for both of
the water flows, the peak in 〈u2〉+ is at a y+ of approximately 13.

Experimentally measured mean velocity and Reynolds stress profiles of PAM, shown
in figure 5, reflect consistency with prior measurements of polymer drag-reduced flows
with low drag reduction (LDR) percentages that are less than 38 % (Warholic, Massah &
Hanratty 1999). Low drag reduction flows typically have an expanded buffer layer and a log
layer with a larger B – often referred to as a Newtonian plug (Virk et al. 1970; Warholic
et al. 1999). The larger B is visually apparent in figure 5(a), and the expanded buffer
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Figure 6. Two-point correlation Cuu of streamwise velocity fluctuations along the (a) xy plane at z+ = 0 and
(b) along the xz plane at y+ = 20. The reference point for the correlation is (x+

0 , y+
0 , z+

0 ) = 0, 20, 0. The colours
of the contours correspond to the same line colours and conditions of figure 5. Grey is water with Reθ = 1814,
black is water with Reθ = 2257 and red is the 140 ppm PAM flow with Reθ = 2290.

layer is evident based on the shift in the peak of 〈u2〉+ to larger y+, seen in figure 5(b).
Warholic et al. (1999) similarly demonstrated that polymer drag-reduced channel flows at
LDR consist of augmented 〈u2〉+ values and attenuated 〈w2〉+, 〈v2〉+ and −〈uv〉+ values
relative to water at a comparable Re. Generally, the ensemble velocity statistics of PAM
are in good agreement with the LDR flows depicted in Warholic et al. (1999) and other
investigations (Escudier, Nickson & Poole 2009; Warwaruk & Ghaemi 2022; Mitishita,
Elfring & Frigaard 2023).

Two-point correlation of the streamwise velocity fluctuations u is used to obtain a
depiction of the integral length scale within the buffer layer of each flow. Moreover, it
is the most common metric used in prior investigations of polymer drag-reduced flows
for quantifying the size of large-scale turbulent motions. Therefore, it provides another
good baseline comparison between the current and prior investigations of LDR flows. The
spatial two-point correlation is calculated according to

Cuu(δx+, δy+, δz+) = 〈u(x+
0 , y+

0 , z+
0 )u(x+

0 + δx+, y+
0 + δy+, z+

0 + δz+)〉√
〈u(x+

0 , y+
0 , z+

0 )2〉
√

〈u(x+
0 + δx+, y+

0 + δy+, z+
0 + δz+)2〉

, (4.1)

where (x+
0 , y+

0 , z+
0 ) is the coordinate of a reference point, and (δx+, δy+, δz+) are small

displacements relative to the point of reference. Here, the point of reference is taken to be
(x+

0 , y+
0 , z+

0 ) = (0, 20, 0), which is at the border of the domain along x and z, and in the
buffer layer of the flow along y.

Open contours of Cuu along the xy plane and at z+ = 0 are shown in figure 6(a).
Contours are coloured according to the different flows and similar to that of figure 5.
For the water flows at different Reθ , contours of Cuu approximately overlap, implying that
the length of the large-scale motions in viscous wall units are the same. Evidently, the VOI
is not large enough along x to capture the complete integral length scale of each flow, or
where Cuu becomes zero. That being said, it is clear that the PAM flow has a different
distribution of Cuu than water. Compare, for example, Cuu with a value 0.95 or 0.85 in
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Topology of a polymer-laden boundary layer

figure 6(a) for PAM to water. Values of Cuu = 0.95 for water extend to (δx+, δy+) =
(23.0, 4.8) while for PAM, values of Cuu = 0.95 stretch to (δx+, δy+) = (42.3, 2.8). This
demonstrates that the large-scale motions within the buffer layer of the PAM boundary
layer are double the length along x compared with those of water, and less angled upwards
along y.

Contours of Cuu along the xz plane and at y+ = 20 can be seen in figure 6(b). Similar to
the xy plane, contours of Cuu along the xz plane overlap for the water flows with different
Reθ , implying that the size of the large-scale motions in viscous wall units are the same.
Based on figure 6(b) it is also apparent that the VOI is not wide enough along z to capture
the complete spanwise width of the large-scale motions where Cuu = 0. However, much
like figure 6(a), there is an unambiguous difference in the contours of Cuu along the xz
plane among PAM and water. Contours of Cuu that are similar in value extend to larger
δ+

z for PAM compared with water. For example, when δ+
x = 0, values of Cuu equal to 0.85

extend to δ+
z of 10.6 for water. For PAM, the contour of Cuu = 0.85 extends farther, to δ+

z
of 17.6, implying that the large-scale motions in the flow of PAM are wider compared
with water. As alluded to in § 1, an elongation and widening of high- and low-speed
velocity streaks is a common feature of polymer drag-reduced flows (Warholic et al. 1999;
White et al. 2004; Farsiani et al. 2020; Warwaruk & Ghaemi 2021). The difference in Cuu
among PAM and water observed in figure 6 implies the same augmentation to size of the
large-scale flow motions within the buffer layer.

Overall, the results of the current section demonstrate that the PAM boundary layer
has one-point and two-point turbulent statistics common for an LDR flow. It does not,
however, provide a complete depiction of how, and why, the velocity statistics within
the polymer-laden flow are different than a Newtonian TBL. For this, the distribution
of fine-scale motions and streamline patterns within the Newtonian and non-Newtonian
boundary layers are scrutinized using the Δ-criterion.

4.2. Flow topology

4.2.1. Probability density function of invariants
The topology of the Newtonian and non-Newtonian boundary layer is evaluated using the
Δ-criterion detailed in § 2. Previous investigations of wall-bounded turbulence generally
separate the topology of the flows into different regions of y+, e.g. viscous sublayer,
buffer layer, log layer and wake region. Before separating the flow into these different
wall-normal regions, the invariants in L, D and W are evaluated for the complete spatial
domain. Note that all gradients are made dimensionless by multiplying the components of
L by the large eddy turnover time T = δ/U∞ of each flow. Probability density functions
(p.d.f.s) are normalized histograms of all non-zero invariants Q, R, QD, QW and RD, as well
as the discriminant in (2.1) Δ and (2.4) ΔD. As discussed in § 2, if the flow is assumed to
be incompressible, the first invariant of L should be zero, i.e. P = 0. However, divergence
errors inherent in many experimental measurements produce finite values of P. Therefore,
p.d.f.s of P are also shown for comparison.

The p.d.f.s of P, Q and R are shown in figure 7(a) for the boundary layers of water
at Reθ = 1814 and 2257, and PAM. The p.d.f.s of P are shown with solid lines, Q with
dashed lines and R with dotted lines. The finite values of P are due to a divergence error
caused by experimental noise and the limited spatial resolution involved with binning the
Lagrangian trajectories produced from 3-D-PTV. This error has been shown to impact the
measured topology of each flow using the Δ-criterion (Ganapathisubramani et al. 2007;
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Figure 7. Probability density functions of (a) P, Q and R, (b) QD, QW and RD, (c) Δ and (d) ΔD, for all
measured y+. In (a) the p.d.f.s of P are the solid lines (—), p.d.f.s of Q are the dashed lines (– –) and the p.d.f.s
of R are the dotted lines (· · · ). In (b) the p.d.f.s of QD are the solid lines (—), p.d.f.s of QW are the dashed lines
(– –) and the p.d.f.s of RD are the dotted lines (· · · ). All flow gradients are made dimensionless by multiplying
by the large eddy turnover time T .

Buxton et al. 2011). Therefore, a stringent evaluation of the divergence error is made in
Appendix B. It is shown in Appendix B that the divergence errors are comparable or better
than those of prior experimental investigations that have utilized multi-probe hot wire
techniques, holographic PIV, dual-plane stereoscopic PIV and stereoscopic PIV utilizing
Taylor’s hypothesis to measure the components of the VGT (Tsinober et al. 1992; Zhang
et al. 1997; Ganapathisubramani et al. 2007; Buxton et al. 2011; Gomes-Fernandes et al.
2014). Based on figure 7(a), it is also apparent that values of P are significantly smaller
than other invariants, such as Q and R for all flow conditions.

For the flows of water, p.d.f.s of Q and R overlap for each Reθ in figure 7(a). Values of Q
tend to be more positively skewed, while values of R are more negatively skewed; in other
words, flow motions are generally more vortical with Q > 0, and stretching with R < 0.
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Topology of a polymer-laden boundary layer

The p.d.f. in R also covers a larger range of values than Q. Relative to water, the range in
possible values of both Q and R is narrower in the PAM flow; however, the attenuation in R
appears to be larger than that of Q. A more narrow range in Q implies that both vortical and
dissipative flow motions are in less abundance within the PAM flow. An attenuation in the
range of R demonstrates that the PAM flow experiences fewer instances of fluid extension
and compression. A similar reduction in the range of R was observed by Mortimer &
Fairweather (2022) in their drag-reduced channel flow DNS using the FENE-P constitutive
model. Interestingly, p.d.f.s of Q and R for PAM do not have a noticeable skeweness and
reflect a similar range of values, unlike the p.d.f.s for water.

Figure 7(b) shows the p.d.f.s of QW with dashed lines, QD with solid lines and RD with
dotted lines, for the flows of water and PAM. As expected, all values of QD are negative,
while all values of QW are positive. Similar to figure 7(a), p.d.f.s of QW , QD and RD overlap
for the flows of water at different Reθ . The p.d.f.s of RD are more positively skewed,
implying the straining flow motions are more compressive (unstable) than stretching
(stable). Compared with the water flows, the PAM flow has a higher likelihood of non-zero
values of QW and QD compared with water – an opposite trend than the p.d.f.s shown in
figure 7(a). The p.d.f. of RD is similar for PAM and water for negative values of RD;
however, the probability of positive RD values is lower for PAM compared with water.
Therefore, the PAM flows exhibit fewer compressive or biaxial straining motions compared
with water, given the lower p.d.f. values of positive RD.

Figure 7(c) shows p.d.f.s of the discriminant Δ established using (2.3). The p.d.f.s of Δ

are positively skewed and overlap for the two boundary layer flows of water. The positive
skewness shows that more flow motions are focal than dissipative in the Newtonian
boundary layers. The boundary layer flow of PAM, on the other hand, has overall fewer
instances of non-zero Δ. These reinforce the observation of figure 7(a) – namely that
PAM has a lower amount of both focal and dissipative flow motions. The p.d.f.s of ΔD
determined from (2.6) are provided in figure 7(d). Recall from § 2 that the discriminant
ΔD should be less than 0 for an incompressible flow. In other words, this is predicated on
the assumption that P = PD = 0 and the notion that (2.6) only consists of the invariants
QD and RD. Therefore, the positive values of ΔD seen in the p.d.f.s of figure 7(d) are a
result of the divergence error or non-zero values of P. Despite the appearance that the
PAM flow has fewer instances of ΔD > 0 in figure 7(d), the percentage of values with
ΔD > 0 among all flows is similar and between 12–13 %. Although this is not ideal, this
discrepancy is not outside the norm for experimentally derived velocity vectors – see the
comparable divergence error among the current measurements and previous experimental
works in Appendix B.

4.2.2. Flow topology of the Newtonian flows
The j.p.d.f.s of the different invariants in L, D and W are used to determine the topology
of flow motions within the buffer layer (5 < y+ < 30), the log layer (y+ > 30, y/δ < 0.3)
and the wake region (y/δ > 0.3). The j.p.d.f.s of Q and R (similar to figure 1), QD and RD
(figure 2), −QD and QW (figure 3) are presented for each wall-normal region of the flow
in the three rows of figure 8. The j.p.d.f.s of the different tensor invariants for water with
an Reθ of 1814, alongside the other flow of water with an Reθ of 2257, are presented using
filled contours and the open contours with black dashed lines, respectively.

The j.p.d.f. of Q and R within the buffer layer, log layer and wake region are seen in
figures 8(a–c), respectively. Within the buffer layer, i.e. figure 8(a), the Q − R j.p.d.f.
is skewed towards positive Q, but rather evenly distributed among positive and negative
values of R. Overall, there is preference towards focal topologies with Δ > 0. Moving
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Figure 8. The j.p.d.f.s of the invariants in the VGT, RDT and RRT for boundary layers of water. Rows of figure
correspond to different wall-normal locations: (a–c) buffer layer, (d– f ) log layer, (g–i) wake region. Columns
of figure correspond to j.p.d.f.s of different invariants: (a,d,g) Q and R, (b,e,h) QD and RD, (c, f,i) −QD and
QW . Filled contours are the j.p.d.f.s of water with Reθ = 1814, open contours with black dashed lines are the
j.p.d.f.s of water with Reθ = 2257 at 10−5 and 10−4.

farther away from the wall and into the log layer, the Q − R j.p.d.f. in figure 8(b) continues
to reflect a preference for topologies with Δ > 0. As expected, the strength of the velocity
gradients diminishes with increasing distance from the wall and the range of possible
Q and R values decreases, i.e. the pattern shrinks. Within the log layer, the shape of
the Q − R j.p.d.f. takes on a more well-defined tear-drop pattern with a clear point at
the right-Vieillefosse tail (Δ = 0, R > 0) compared with the j.p.d.f. of the buffer layer
in figure 8(a). Moving into the wake region, figure 8(c) shows that the range in possible
values of Q and R continues to decrease with increasing y. That being said, the general
shape of the Q − R j.p.d.f. is similar to that of the log layer in figure 8(b). A similar
enhancement in the shape of the tear-drop pattern with increasing y was also observed
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Topology of a polymer-laden boundary layer

in Newtonian DNS of channel flows by both Blackburn et al. (1996) with an Reτ of 395
and Mortimer & Fairweather (2022) with an Reτ of 180, as well as boundary layers by
Chong et al. (1998), who used the boundary layer DNS of Spalart (1988) with an Reθ of
670. When comparing the j.p.d.f.s of Q and R for water at different Reθ , similar contour
levels overlap within their respective wall-normal region of the flow, implying the flows at
different Reθ posses a similar distribution of fine-scale motions.

The most notable difference between the Q − R j.p.d.f.s of figure 8(a–c) and
that of Newtonian wall-bounded DNS (Blackburn et al. 1996; Chong et al. 1998;
Mortimer & Fairweather 2022) is that DNS produces a more ‘pointed’ ridge at the
right-Vieillefosse tail. Buxton et al. (2011) demonstrated that divergence errors, inherent
in most experimentally derived velocity vectors, do not alter the general shape and
limits of the Q − R j.p.d.f., with the exception that it erodes the tip of the Q − R
j.p.d.f. along the right-Vieillefosse tail, making it more rounded. Although the tip of the
tear-drop pattern becomes more rounded from divergence errors, Buxton et al. (2011)
demonstrated that it continues to remain centred on the right-Vieillefosse tail, i.e. Δ = 0.
Considering the present measurements have a comparable divergence error to that of prior
experimental investigations of the VGT, as demonstrated in Appendix B, the j.p.d.f.s
shown in figure 8(a–c) should provide a reasonable depiction of the distribution of
fine-scale motions within the Newtonian boundary layer. Also, the j.p.d.f.s of Q and R
take on a similar shape as those derived experimentally in the log layer of a Newtonian
TBL (Elsinga & Marusic 2010).

Figure 8(d– f ) shows the j.p.d.f.s of the invariants in D for the water boundary layers
with different Reθ . The j.p.d.f.s of QD and RD are presented alongside lines of different
eigenvalue ratios, namely Γ2/Γ1, as shown in figure 8( f ). Recall from § 2 that Γ2/Γ1 = 1
corresponds to biaxial extension, Γ2/Γ1 = 0 represents steady shear or planar extension,
and Γ2/Γ1 = −1/2 is uniaxial extension. Ashurst et al. (1987) demonstrated that the most
probable eigenvalue ratio was Γ2/Γ1 of 1/3 using DNS of Newtonian isotropic turbulence,
hence, Γ2/Γ1 = 1/3 is also shown on figure 8(d– f ). Within the buffer layer, shown in
figure 8(d), there is a higher preference towards more biaxial extensional flow motions
with RD > 0 and Γ2/Γ1 between 0 and 1. Interestingly, a large ridge in the j.p.d.f. in
the buffer layer appears to align with the preferential eigenvalue ratio of Γ2/Γ1 = 1/3
for the Newtonian isotropic turbulence found by Ashurst et al. (1987). Moving away
from the wall to the log layer and wake region shown in figure 8(e, f ), the flow becomes
increasingly skewed toward biaxial extensional flow events (RD > 0 and 0 < Γ2/Γ1 < 1).
Compared with the j.p.d.f. of the buffer layer, shown in figure 8(d), the log layer and
wake regions have more events with ΔD > 0, indicative of divergence errors. Based on
Appendix B, and also shown in Ganapathisubramani et al. (2007) and Gomes-Fernandes
et al. (2014), regions of the flow with lower velocity gradients are generally coupled with
larger divergence errors. Therefore, it is expected that the log and wake layers, with overall
smaller velocity gradients than the buffer layer, may exhibit higher divergence errors –
an effect of this being a positive ΔD. That being said, the j.p.d.f.s of QD and RD are
generally similar to those derived from Blackburn et al. (1996) and Chong et al. (1998)
using DNS of a Newtonian channel flows (Reτ = 395) and boundary layers (Reθ = 670),
where preference to RD > 0 grows as y increases. Similar to the VGT invariants, j.p.d.f.s
of QD − RD for water at different Reθ overlap, implying the straining motions are similar
among the two Newtonian TBLs with a slightly different Reθ .

The j.p.f.s of the invariants −QD and QW are presented for the water boundary layers
in figure 8(g–i), similar to that of figure 3. Much like the previously detailed j.p.d.f.s, the
j.p.d.f.s of −QD and QW overlap for the water flows at the two Reθ . Within the buffer layer
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of the flow, shown in figure 8(g), there is a preference towards flow motions exhibiting
conditions consistent with steady shear, with K = 1. Soria et al. (1994) detailed that
turbulent mixing layers with flow regions having K = 1 consisted almost entirely of vortex
sheets. Chong et al. (1998) demonstrated a similar preference to K = 1 and shear-dominant
topologies within the buffer layer of a turbulent boundary flow with an Reθ of 670, that
was derived from Newtonian DNS (Spalart 1988). Although the j.p.d.f. of figure 8(g) is
concentrated around K = 1, there are deviations, particularly at smaller values of −QD
and QW . Chong et al. (1998) similarly observed subtle deviations from K = 1 within the
buffer layer near the origin of −QD and QW in their analysis of Newtonian boundary flow
DNS by Spalart (1988). Within the log and wake layers of the flow, shown in figure 8(h,i),
a large spread between K of 0 and ∞ emerges. Therefore, fine-scale motions within the
log and wake layers take on a variety of patterns, ranging from extensional to rotational.
Topology in figure 8(h,i) is similar to isotropic turbulence seen in Ooi et al. (1999).

4.2.3. Flow topology of the polymer-laden flow
The j.p.d.f.s of the invariants of L, D and W are shown in figure 9 for the polymer-laden
boundary layer at different wall-normal regions of the flow. The limits of the wall-normal
regions are the same as those from figure 8. Open contours with black dashed lines
in figure 9 are the j.p.d.f.s of water with an Reθ of 2257 while the filled contours are
the j.p.d.f.s of PAM at Reθ = 2290. Figure 9(a) provides the j.p.d.f. of Q and R for
5 < y+ < 30. Compared with the flow of water at a similar Reθ , the PAM boundary layer
has attenuated values of Q and R. The range in possible R values narrows considerably
compared with water – almost a two-fold reduction in the largest magnitude of R. A
narrower range in R was similarly observed by Mortimer & Fairweather (2022) for
drag-reduced viscoelastic channel flows at an Reτ of 180 and derived from DNS. This is a
general indication that stretching and extensional motions within the flow are diminished.
Furthermore, the narrowing of Q demonstrates that strong vortical and dissipative motions
are less common. Moving away from the wall, figure 9(b) shows the Q − R j.p.d.f. for
y+ > 30 and y/δ < 0.3. Evidently, a reduction in the magnitude of Q and R relative to
water at a similar Reθ is still present farther from the wall. The tear-drop pattern no longer
exists in the Q − R j.p.d.f. of PAM, and a well-defined tip does not appear along the
right-Vieillefosse tail. The trend continues into the wake region of the flow; figure 9(c)
again shows how the range of possible Q and R values is diminished for PAM relative to
water. This is despite the fact that the boundary layers of PAM and water have comparable
velocity fluctuations within the outer layer of the flow, as seen in figure 5(b).

In viscoelastic simulations of a low-Reynolds-number transitional channel flow
exhibiting EIT, Dubief et al. (2013) demonstrated that j.p.d.f.s of Q and R exhibited an
oval pattern, that was more narrow along R than Q. The oval pattern was also relatively
symmetric about Q = 0 and R = 0. The narrowing of R, seen in figure 9(a–c), is perhaps
indicative that the polymer-laden flow is exhibiting dynamics more akin to EIT. That said,
the topology of the polymer-laden flow is not identical to EIT; the j.p.d.f.s of Q and R
seen in figure 9(a–c) are still asymmetric with respect to the axes of Q = 0 and R = 0.
However, the possibility that EIT exists within the polymer-laden boundary layer is not
yet ruled out. Observations of instantaneous flow structures have not been made, and it is
possible that EIT might exist in some capacity within the flow.

Perhaps the most obvious difference between the topology of PAM and water are
revealed in the j.p.d.f.s of QD and RD. Figure 9(d) shows the QD − RD j.p.d.f. for the
polymer-laden boundary layer relative to water for 5 < y+ < 30. Although there is still
a bias towards biaxial extensional flow motions, the preference to RD > 0 is greatly
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Figure 9. The j.p.d.f.s of the invariants in the VGT, RDT and RRT for boundary layers of water. Rows of figure
correspond to different wall-normal locations: (a–c) buffer layer, (d– f ) log layer, (g–i) wake region. Columns
of figure correspond to j.p.d.f.s of different invariants: (a,d,g) Q and R, (b,e,h) QD and RD, (c, f,i) −QD and
QW . Filled contours are the j.p.d.f.s of the PAM boundary layer, open contours with black dashed lines are the
j.p.d.f.s of water with Reθ = 2257 at 10−5 and 10−4.

diminished relative to water at a similar Reθ . Rather, the flow tends towards an eigenvalue
ratio Γ2/Γ1 of 0, where the flow is more two dimensional with conditions comparable to
steady shear or planar extension. Farther from the wall for y+ > 30, straining motions
within the flow of PAM shown in figure 9(e, f ) become more biased towards biaxial
stretching, but do not show as strong of a preference to Γ2/Γ1 = 1 as seen for water.

The j.p.d.f.s of −QD and QW also demonstrate an unambiguous difference between
fine-scale motions within the polymer-laden and Newtonian boundary layers. Compared
with water, the flow of PAM near the wall shown in figure 9(g) consists of −QD
and QW values that are almost always equivalent and concentrated on the line K = 1.
Together, with figure 9(d), this implies that the near-wall flow of PAM is primarily two
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Figure 10. Probability density functions of (a–c) the ratio between the second and first eigenvalues of D, and
(d– f ) the kinematical vorticity number K from (2.8). The p.d.f.s in (a–c) are conditioned to exclude ΔD > 0.
The p.d.f.s (a,d) correspond to the buffer layer, (b,e) the log layer and (c, f ) the wake region.

dimensional and shear dominant. In their Newtonian boundary layer DNS, Chong et al.
(1998) demonstrated that similar 2-D shear-dominant flow can also be found in Newtonian
wall turbulence, albeit much closer to the wall and within the viscous sublayer (y+ < 5).
This could be indicative of an expansion in the thickness of the viscous sublayer of the
polymer-laden flow. Moving farther from the wall and into the range of y+ > 30 and
y/δ < 0.3, the higher tendency for the PAM flow to exhibit features with K = 1 continues.
Compared with the flow of water at a similar Reθ , the j.p.d.f. of −QD and QW shown
in figure 9(h) shows more of a preference towards shear-dominant flow with K = 1,
albeit less so than the PAM flow near the wall for 5 < y+ < 30. Within the wake region,
figure 9(i) shows a more scattered j.p.d.f. of −QD and QW for the flow of PAM with no
clear preference to a particular value of K, but also no overlap with the j.p.d.f. of water at
a similar Reθ .

Based on the j.p.d.f.s of QD and RD shown in figure 8(d– f ), most straining motions
within the Newtonian boundary layers were closer to biaxial stretching, where Γ2/Γ1 = 1.
However, for the polymer-laden boundary layer, shown in figure 9(d– f ), straining motions
near the wall were closer to the 2-D line where Γ2/Γ1 = 0, and the local fine-scale motions
are akin to steady shear or planar extension. The p.d.f.s of Γ2/Γ1 are provided for the
Newtonian and polymer-laden boundary layers within the buffer, log and wake regions
in figure 10(a–c), respectively. The eigenvalues Γ1 and Γ2 are determined from locally
solving (2.4) at every spatial coordinate and time instance. For the water flows, p.d.f.s
of Γ2/Γ1 overlap within the buffer layer, log layer and wake region. The probabilities
of Γ2/Γ1 > 0 for water are 58 %, 70 % and 70 % in the buffer layer, log layer and wake
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Topology of a polymer-laden boundary layer

region, respectively, demonstrating the overall preference to a biaxial stretching topology.
Based on the near-wall p.d.f. of Γ2/Γ1 for the PAM boundary layer, shown in figure 10(a),
there is a much higher probability of Γ2/Γ1 being zero compared with the flows of
water. Moreover, the Γ2/Γ1 p.d.f. of the near-wall boundary layer of PAM, depicted in
figure 10(a), has a probability of Γ2/Γ1 > 0 of 49 %, which is 9 % lower than water.
Therefore, biaxial stretching events with Γ2/Γ1 > 0 are less abundant and 2-D shear or
planar extensional flow features with Γ2/Γ1 = 0 are more common in the polymer-laden
boundary layers for y+ < 30. Despite the appearance of subtle difference in the j.p.d.f.s
of QD and RD in the log and wake regions among PAM and water in figure 9(e, f ), the
p.d.f.s of Γ2/Γ1 shown in figure 10(b,c) demonstrate that the distribution of Γ2/Γ1 values
is similar for the Newtonian and polymer-laden flows.

The j.p.d.f.s of −QD and QW for the Newtonian boundary layers, shown in figure 8(g),
demonstrated that the flow near the wall consisted mostly of 2-D shear layers where
K = 1. However, in the log and wake layers, shown in figure 8(h,i), the flow had a
variety of dissipative and vortical motions with K between 0 and ∞, similar to isotropic
turbulence (Ooi et al. 1999). For the polymer-laden boundary layer, the flow was even more
concentrated around K = 1 within the buffer and log layers in figure 9(g,h) compared
with water, while the topology within the wake region was scattered, with K between
0 and ∞. The p.d.f.s of K for the Newtonian and polymer-laden boundary layers are
shown for the buffer, log and wake regions of the flows in figure 10(d- f ). The p.d.f.s
of K overlap for the flows of water at different Reθ at all wall-normal regions. Within the
buffer layer, figure 10(d) shows visibly narrow Gaussian p.d.f.s of K where the average of
K for water and the flow of PAM are both 1. However, the standard deviation in K for the
polymer-laden flow is smaller and approximately equal to 0.15, compared with water where
the standard deviation in K is 0.45. Within the log layer, water is slightly more biased
towards K < 1; the mode and median in the p.d.f. of K for water shown in figure 10(e) is
0.685 and 0.910, respectively. For the polymer-laden boundary layer, the mode and median
in the p.d.f. of K within the log layer, shown in figure 10(e), is larger compared with water
and equal to 0.945 and 0.975, respectively. Therefore, the polymer-laden flow has less
likelihood to exhibit dissipative topologies compared with water. In the wake region the
p.d.f.s of water boundary layers shown in figure 10( f ) are not significantly different than
those of water in the log layer seen in figure 10(e). Also similar to the log layer, the wake
region of the polymer-laden flow has a lower probability of exhibiting dissipative flow
topologies and a higher preference towards K of 1.

4.3. Conditional flow structures
The topology of fine-scale motions within the boundary layers of PAM and water are
unique, as shown by the j.p.d.f.s of the different tensor invariants in figure 9 and the
p.d.f.s of Γ2/Γ1 and K in figure 10. To provide a more visual depiction of the differences
in the topologies of each flow, the following section demonstrates sample velocity fields
for the Newtonian and polymer-laden boundary layers alongside contours of positive and
negative regions of Δ, and the VGT invariants Q and R. Linear stochastic estimation (LSE)
is then used to provide an average velocity field associated with large positive and negative
instances of Δ within the flow that correspond to the dominant focal and dissipative
topologies, respectively.

An instantaneous snapshot of u+ and streamlines along an xy plane situated at z =
1.5 mm is shown in figure 11(a) for the boundary layer of water at an Reθ of 2257.
Corresponding contours of positive regions of Δ, negative regions of Δ, Q and R are
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Figure 11. Instantaneous snapshots of u+ (a, f ), positive Δ (b,g), negative Δ (c,h), Q (d,i) and R (e, j) for the
boundary layer of water with an Reθ = 2257 and PAM. The upper row of figures (a–e) is the water flow, and
the lower row ( f – j) is PAM. The snapshots are shown along the xy plane at z = 1.5 mm, or the middle of the
VOI. The blue dot indicates the spatial location (x+, y+) = (18, 63), the magenta dot is (x+, y+) = (45, 35)

and the red dot is (x+, y+) = (36, 35). Black lines in (a, f ) are streamlines.

shown in figure 11(b,c,d,e), respectively. Values of Δ cover a wide range from −105 to
+105, as shown in figure 7(c); hence, contours of Δ are shown on a log scale, and positive
and negative Δ are presented separately as Δ+ and Δ−, respectively. The particular
instance, shown in figure 11(a–e), demonstrates a visibly focal (or vortical) flow region at
(x+, y+) = (18, 63) indicated by the blue marker. Below the vortex there is a dissipative
region (or node-saddle-saddle) at (x+, y+) = (45, 35), indicated with a magenta marker
in figure 11(a–e). Regarding the blue marker, streamlines in figure 11(a) form a spiral
pattern that implies large spanwise vorticity. In the neighbouring spatial locations of the
blue marker, figure 11(b) shows large positive Δ and figure 11(d) shows large positive Q,
similarly implying the flow is vortical. Furthermore, values of R near the blue marker,
shown in figure 11(e), are negative, implying the vortex is stretching. Hence, the flow
region indicated by the blue marker would constitute a zone of stable focus stretching that
would fall in the upper-left-hand region of figure 1. On the other hand, the flow region
indicated by the magenta marker has streamlines that form a saddle point, as seen in
figure 11(a). The flow region is indeed dissipative, as confirmed by the large negative
Δ, shown in figure 11(c), and negative Q, seen in figure 11(d). This same region is also in
biaxial extension, as demonstrated by the large positive value of R at the location of the
magenta marker shown in figure 11(e). This region of large biaxial extension is situated at

983 A22-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

13
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.131


Topology of a polymer-laden boundary layer

the interface of a high-speed zone (u+ > 0) at x+ < 50, and a low-speed zone (u+ < 0) at
x+ > 50, as seen in figure 11(a).

Another instantaneous snapshot of u+, overlaid with 2-D streamlines, along an xy
plane situated at z = 1.5 mm, is shown in figure 11( f ) for the boundary layer of
PAM at an Reθ of 2290. Corresponding contours of Δ+, Δ−, Q and R are shown in
figure 11(g,h,i, j), respectively. Here, a region of the flow that exhibits shear-dominant
2-D flow is emphasized, which was previously shown to be in larger abundance within the
polymer-laden flow based on figures 9 and 10. The particular 2-D shear-dominant region
is located at (x+, y+) = (36, 35) and denoted using a red marker in figure 11( f – j). This
region has relatively parallel streamlines in figure 11( f ), which is characteristic of shear
flow. Correspondingly, values of Δ and Q are largely negative around the region of the
flow indicated by the red marker, as shown in figure 11(g–i). Values of R are also small
in magnitude at (x+, y+) = (36, 35) and approximately equal to zero, implying the flow
is more two dimensional. This provides a visual depiction of the velocity field associated
with the 2-D shear-dominant events found to be in greater abundance within the boundary
layer of PAM.

Among most snapshots within the polymer-laden flow, there are no obvious indicators of
EIT. Specifically, the flow does not exhibit the distinct alternating regions of positive and
negative Q, or Δ, along the x direction seen in low-Reynolds-number viscoelastic channel
flow simulations by Samanta et al. (2013) or Dubief et al. (2013). It is suspected that EIT
has not yet established a significant presence within the LDR flow, and higher amounts of
DR could demonstrate topologies more comparable to EIT.

In addition to providing instantaneous snapshots of the velocity field, LSE is used
to approximate the average velocity field associated to an event E at a particular
spatial location (x+

0 , y+
0 , z+

0 ) within the VOI (Christensen & Adrian 2001; Elsinga et al.
2010, 2012). The event E(x+

0 , y+
0 , z+

0 ) can be chosen as any scalar quantity derived from
the measured velocity (Christensen & Adrian 2001); in this case E is chosen to be the
discriminant Δ, in order to highlight the velocity fields associated with the dominant focal
and dissipative events. The conditionally averaged velocity is represented as

〈u+|E〉 ≈ CuEE(x+
0 , y+

0 , z+
0 , t0), where (4.2a)

CuE = 〈u(x+
0 + δx+, y+

0 + δy+, z+
0 , t) E(x+

0 , y+
0 , z+

0 , t)〉
〈E(x+

0 , y+
0 , z+

0 , t)2〉 . (4.2b)

The conditional velocity 〈u+|E〉 is a linear function of E(x+
0 , y+

0 , z+
0 , t), and the coefficient

of the linear function, CuE, is a time-independent two-point correlation of the velocity
fluctuations u+ = (u+, v+, w+) and E (Christensen & Adrian 2001). Because CuE of
(4.2b) is independent of time, the magnitude of 〈u+|E〉 can be amplified or attenuated
based on E(x+

0 , y+
0 , z+

0 , t0), where t0 is a particular time instance. In this case, E is taken
to be Δ at (x+

0 , y+
0 ) = (27, 50) and z0 = 1.5 mm, which is at the centre of the VOI along

x and z and at the lower extent of the log layer along y. For simplicity, only the conditional
streamwise velocity 〈u+|Δ〉 and wall-normal velocity 〈v+|Δ〉 is determined using (4.2)
along a 2-D xy plane at z0 = 1.5 mm for the boundary layers of water at an Reθ of
2257 and PAM at an Reθ of 2290. The LSE coefficient is calculated with Δ < 0 and
Δ > 0 in (4.2b) separately, to isolate the conditional velocity field associated with the
dominate dissipative and focal fine-scale motions at (x+

0 , y+
0 ) = (27, 50). The conditional

streamwise and wall-normal velocities, given negative Δ, are denoted as 〈u+|(Δ < 0)〉
and 〈v+|(Δ < 0)〉, respectively. Similarly, the conditional streamwise and wall-normal
velocities, given positive Δ, are denoted as 〈u+|(Δ > 0)〉 and 〈v+|(Δ > 0)〉. For the LSE
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Figure 12. Conditionally average velocity fields for the flow of water at an Reθ = 2257 (a) given Δ < 0 and (b)
given Δ > 0; as well as the flow of PAM (a) given Δ < 0 and (d) Δ > 0. Velocity field is shown along the xy
plane at z = 1.5 mm, or the middle of the VOI. All conditional averages are evaluated for (x+

0 , y+
0 ) = (27, 50).

Filled contours are the streamwise velocity component of the conditionally averaged velocity, while black solid
lines are streamlines.

given negative Δ, t0 in (4.2a) is chosen to be the instance in which Δ is minimum. On
the other hand, t0 in (4.2a) for the LSE given positive Δ, is chosen to be the instance of
maximum Δ. These amplify the LSE such that the magnitude of conditional velocities
are comparable to those shown in figure 11(a, f ). In figure 12, 2-D streamlines based
on the conditional streamwise and wall-normal velocities are overlaid on contours of the
conditional streamwise velocity.

The conditional streamwise velocities 〈u+|(Δ < 0)〉 and 〈u+|(Δ > 0)〉, overlaid with
streamlines are shown in figures 12(a) and 12(b), respectively, for the flow of water at
an Reθ of 2257. In figure 12(a) the conditional velocity field corresponding to large
negative Δ demonstrates a noticeable saddle point that is marginally upstream of the
reference point (δx+, δy+) = (0, 0). The saddle point is situated at the intersection of
a sweep (u > 0, v < 0), located at δy+ > 25, and ejection (u > 0, v < 0), located at
δx+ > 0 and −25 < δy+ < 0. Two spanwise vortical motions can be seen within the
conditionally averaged flow, one directly below the saddle point region, and the other,
above and downstream of the saddle point. In figure 12(b) the conditional velocity field
corresponding to Δ > 0 demonstrates a large spanwise vortex approximately centred on
the reference point. Above the vortex, at δy+ > 0, is a large high-speed zone with u > 0,
while below the vortex (δy+ < 0) there is narrow low-speed zone with u < 0. Together,
figures 12(a) and 12(b) produce a spatial velocity pattern similar to a hairpin packet
dissected at its centre along the xy plane. Figure 12(a) shows the saddle point between two
neighbouring hairpins along x, where the high-speed sweep of an upstream hairpin meets
the low-speed ejection of another downstream hairpin vortex. Figure 12(b) shows the head
of the hairpins, which consists of a large spanwise vortex. Therefore, the most dominant
dissipative (Δ < 0) and focal (Δ > 0) events within a Newtonian TBL correspond to
fine-scale motions that make up a hairpin packet. The former being a saddle point at the
intersection of two neighbouring hairpins, the later being the hairpin heads.
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Topology of a polymer-laden boundary layer

The conditional velocity fields for the polymer-laden boundary layer with an Reθ of
2290 are shown in figures 12(c) and 12(d), for Δ < 0 and Δ > 0, respectively. The
velocity fields are extracted based on the signal of Δ at the same reference point of
(x+

0 , y+
0 ) = (27, 50), as that previously used for water in figure 12(a,b). The conditional

velocity field corresponding to large negative Δ, shown in figure 12(c), demonstrates a
low-speed zone or ejection event (u < 0, v > 0). The conditional velocity field associated
with Δ > 0, shown in figure 12(d), consists of an upward-tilted high-speed zone or
an outward interaction (u > 0, v > 0), in stark contrast to the low-speed zone seen in
figure 12(c). Overall, the conditional flow fields of the polymeric boundary layer, shown
in figure 12(c,d), do not exhibit the same hairpin structure implied from the conditional
velocity field for water and shown in figure 12(a,b). Rather, conditional flow fields consist
of low- and high-speed shear layers, where streamlines are approximately parallel with
respect to the wall. These shear layers are consistent with the previous observations that
the PAM boundary layer is more shear dominant, and consists of fewer biaxial and vortical
motions near the wall.

5. Further discussion

In § 4 it was demonstrated that extensional straining motions, particularly those exhibiting
biaxial extension with RD > 0 and 0 < Γ2/Γ1 < 1, are less abundant within the buffer
layer of the polymeric flow compared with water. This was shown by the more narrow
range in R of figures 7(a) and 9(a), as well as the lower preference to straining motions with
RD > 0 or 0 < Γ2/Γ1 < 1 seen in figures 7(b), 9(d) and 10(a). Furthermore, figures 7(a)
and 9(a) demonstrated that flow motions with a large magnitude in Q were less present in
the polymeric flow relative to water, implying an attenuation in the strength of vorticity
(Q > 0) and dissipation (Q < 0). Instead, figures 9(d) and 9(g), as well as figures 10(a)
and 10(d), demonstrated that the polymer-laden flow had a higher preference to 2-D
shear-dominant structures, with RD = 0, Γ2/Γ1 = 0 and K = 1. These shear-dominant
structures are similar to those seen in the viscous sublayer of Newtonian wall turbulence,
as demonstrated by the boundary layer DNS of Chong et al. (1998) at an Reθ of 670 and
channel flow DNS of Blackburn et al. (1996) at an Reτ of 395. The notable difference
is that for the polymer-laden flow, these 2-D shear-dominant structures exist outside the
conventional limits of the viscous sublayer (y+ > 5), implying that the viscous sublayer of
the polymer-laden flow is thicker compared with water.

The observation of a thicker viscous sublayer is consistent with the lower magnitude in
the wall-normal Reynolds stress 〈v2〉+ and Reynolds shear stress 〈uv〉+ within the buffer
layer of the polymer-laden flow compared with water, seen in figure 5(b) of § 3. The 2-D
shear-dominant flow and expanded viscous sublayer agrees with the strong attenuation of
wall-normal sweep and ejection motions commonly observed in drag-reduced viscoelastic
DNS (Pereira et al. 2017) and experiments of polymer drag-reduced boundary layers (Shah
et al. 2021). A suppression of sweep and ejection motions in the polymer-laden flow
can also be reasonably implied from the current measurements based on the reduction in
〈uv〉+ shown in figure 5(b), as well as the stronger alignment between large-scale turbulent
motions and the streamwise x direction shown in plots of the two-point correlation Cuu in
figure 6(a). The mechanism by which these sweep and ejection motions are suppressed
appears to be an attenuation of the extensional flow motions where sweep and ejection
events meet – an observation that was similarly implied in the polymer-laden boundary
layer experiments of Shah et al. (2021). Conditionally averaged velocity fields for the
Newtonian boundary layer, shown in figure 12(a,b), show that the dominant dissipative
motion within the buffer layer is an extensional saddle point, located at the interface of
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a sweep and ejection. On the other hand, the same saddle point seen in the boundary
layer of water is not present in the polymer-laden flow. Rather, the conditionally average
velocity fields for the polymeric boundary layer, shown in figure 12(c,d), exhibit low-
and high-speed zones with streamlines that are parallel with respect to the wall, consistent
with the observation of more 2-D shear-dominant flow shown in figures 9 and 10. Classical
theories regarding the mechanism of polymer DR, e.g. that proposed by Lumley (1973),
assert that polymer drag-reduced flows typically have an expanded buffer layer relative
to Newtonian wall-bounded turbulence due to an attenuation of the extensional motions
within the flow. Our experimental results demonstrate that this assertion is plausible, given
the fewer extensional flow motions near the wall and the expanded inner layer of the
polymer-laden flow.

6. Conclusion

Prior works have asserted that the large extensional viscosity of polymer solutions opposes
uniaxial and biaxial extensional flow regions, and mitigates the strength and formation
of counter-rotating streamwise vortices (Lumley 1973; Roy et al. 2006). The present
experimental investigation sought to observe this effect by measuring the distribution of
extensional and vortical motions within a polymer-laden boundary layer using 3-D-PTV
and the Δ-criterion of Chong et al. (1990). A polymer-laden boundary layer with Reτ =
687 and Reθ = 2290 was compared with two Newtonian TBLs, one at a similar friction
Reynolds number Reτ of 612 and the other at a similar momentum thickness-based
Reynolds number Reθ of 2257. Relative to the Newtonian boundary layer with a similar
Reθ , the polymeric flow had a 33 % lower skin-friction coefficient. The j.p.d.f.s of the
invariants in the VGT, the RDT and the RRT were used to establish a distribution of
the different fine-scale motions within the polymer-laden and Newtonian boundary layers,
some of which include extensional- and vortical-type flow motions.

Unambiguous difference in the j.p.d.f.s of the invariants in the VGT, Q and R, were
observed between the polymer-laden and Newtonian boundary layers. The j.p.d.f.s of
Q and R for the Newtonian boundary layers exhibited the well-known tear-drop shaped
pattern with a clear ridge at the right-Vieillefosse tail. Relative to the Newtonian flows,
the polymer-laden boundary layer had attenuated values of Q and R; although values of R
were diminished much more than Q. A narrowing of R is the first evidence that uniaxial
and biaxial stretching is less abundant within the polymer-laden flow.

Alterations to the invariants in the RDT and RRT are more telling of the attenuation
of uniaxial and biaxial extension within the polymer-laden flow – particularly within
the inner layer or y/δ < 0.3. Here, the invariants of the RDT, QD and RD, imply that
straining motions of the polymeric flow are more two dimensional considering there is
a higher preference for the second eigenvalue in the RDT to be zero compared with
water. Moreover, j.p.d.f.s of QD and the invariant in the RRT QW suggest that extensional
flow motions (particularly biaxial extension) within the polymer-laden flow are less
abundant and there is a larger preference towards shear-dominant flow motions. These
shear-dominant structures are similar to those seen in the viscous sublayer of Newtonian
turbulence. However, in the polymer-laden flow these structures are found at y+ larger
than the conventional limit of the viscous sublayer, implying that the viscous sublayer of
the polymer-laden flow is thicker compared with water.

Overall, the notion that extensional flow motions are opposed within the polymer-laden
boundary layer was confirmed using the measurements of the present work. It was
demonstrated that biaxial extensional straining motions are less pervasive within the
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inner layer of the polymeric flow compared with water. Strong vortical motions, such as
quasi-streamwise vortices, with large positive Q and Δ are also less abundant. Instead,
the flow exhibits shear-dominant structures similar to those found in the viscous sublayer
of Newtonian turbulence, but at y+ > 5, implying an expansion of the viscous sublayer.
Each of these observations supports the assertions of Lumley (1973) and simulations of
Roy et al. (2006), that an attenuation of biaxial extensional flow motions inhibits vortical
motions near the wall, expands the inner layer and reduces skin friction. Future works can
extend upon the present measurements at LDR by analysing the topology of polymeric
flows in a high DR or maximum DR regime, where EIT is believed to sustain velocity
fluctuations and Newtonian turbulence is seemingly non-existent (Dubief et al. 2013;
Samanta et al. 2013; Xi 2019).
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Appendix A. Fluid rheology

A.1. Shear rheology
Steady shear rheology was used to evaluate the viscous features of the 140 ppm
PAM solution. Shear rheology measurements were performed using a controlled-stress
single-head torsional rheometer (HR-2, TA Instruments). A double-gap concentric
cylinder geometry was utilized for the measurements. This geometry consisted of a fixed
cup with an inner radius R1 of 15.1 mm and an outer radius R2 of 18.5 mm. Another
cylinder rotated within the fixed cup whose inside radius R3 was 16.0 mm and outside
radius R4 was 17.49 mm. Fluid within the gaps of the cylinders had an immersion height
L of 53.0 mm. Measurements of η were performed over a logarithmic sweep of shear
rate γ̇ from 0.1 to 1000 s−1, as shown in figure 13(a) for water and the 140 ppm PAM
solution. Note that measurements of η are limited by a minimum measurable torque M and
the inception of Taylor vortices. The lower torque limit provided by TA instruments was
10 nN m; in practice, the lower limit was larger and equal to 600 nN m. Taylor instabilities
occur at larger γ̇ when the Taylor number Ta exceeds 1700 (Ewoldt, Johnston & Caretta
2015). The dashed lines labelled M = 600 nN m and Ta = 1700 in figure 13(a) represent
the lower and upper limits of γ̇ , between which η can be measured accurately.

Figure 13(a) shows the average measurements of η for water and PAM with c =
140 ppm. For water, η was measured for three samples. The three measurements were then
averaged at their respective values of γ̇ . The sample error bars in figure 13(a) convey the
range in the measurements of η at the selected values of γ̇ . As expected for a Newtonian
fluid, the values of η are relatively constant with respect to γ̇ for water. The average
η of water across all values of γ̇ (with M > 600 nN m and Ta < 1700) was 0.98 cP –
approximately 2.0 % lower than the expected value according to Cheng (2008). This 2 %
deviation between the expected and measured value of η for water is assumed to be a
systematic error in the shear viscosity. The measurements of η for the 140 ppm PAM
solution were taken for eight samples corresponding to different sets of 3-D-PTV flow
measurements. The data points in figure 13(a) are the average measurements of η at each
corresponding γ̇ for the eight samples. Similar to water, the down-sampled error bars
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Figure 13. Rheology measurements of tap water and the 140 ppm PAM solution. Here (a) corresponds to
measurements of steady shear viscosity as a function of shear rate and (b) shows the diameter versus time of
the thinning droplet expelled from a needle. Black dashed lines in (a) represent the lower and upper shear rate
limits of the torsional rheometer. The solid red line in (a) is the fitted line of (A1) representative of the Carreau
shear-thinning trend. The red solid line in (b) is the fitted line of (A2) that describes elastocapillary thinning.

represent the range in the measurements of η at each γ̇ . The error bars in η are slightly
larger for the PAM solution than water (for M > 600 nN m and Ta < 1700) and can be
attributed to some degradation in the samples as the fluids are pumped within the flume.
The largest relative error in η is 4.9 %; therefore, despite slight amounts of degradation
being present, its influence on the measurements of η are minimal. For a conservative
estimate, it is assumed that the total uncertainty in measurements of η is the root sum of
the squared systematic uncertainty, determined from the measurements of η for water, and
the squared relative uncertainty of 4.9 % caused by degradation. In other words, the total
relative uncertainty in η was taken to be 5.3 %.

The Carreau model was fit on the shear rheogram of the 140 ppm PAM solution to
approximate the trend in η as a function of γ̇ (Carreau 1972). The model was of the form

η − η∞
η0 − η∞

= 1
[1 + (Kγ̇ )2](1−m)/2 , (A1)

where η0 is the viscosity at γ̇ = 0, η∞ is the viscosity at γ̇ = ∞, K is the consistency
and m is the flow index. Nonlinear least square regression was used to fit (A1) onto the
average values of η for the PAM solution between γ̇ of 1 and 200 s−1. The red solid
line in figure 13 shows the Carreau model; the resulting fit of (A1) agrees well with the
experimental measurements for PAM. The values of η0, η∞, K and m are 3.4 cP, 1.0 cP,
0.29 s and 0.76, respectively.

A.2. Extensional rheology
To evaluate the extensional rheology of water and the PAM solution, the deformation
of a small droplet of fluid undergoing capillarly driven thinning was measured (Deblais
et al. 2020; Rajesh et al. 2022). The droplet was generated by slowly extruding a small
volume of fluid from a blunt-end nozzle with a diameter D0 of 1.27 mm. A syringe pump
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Fluid tR (ms) tv (µs) te (ms) Oh De

Water 1.88 8.82 0.00 0.01 0.00
PAM 1.88 30.00 9.90 0.06 5.27

Table 2. Time scales and dimensionless values for the droplet thinning process represented in figure 13(b) for
water and PAM.

(Legacy 200, KD Scientific Inc.) was used to expel the droplet from the nozzle at a rate of
0.02 ml min−1. Before the droplet detaches, a liquid bridge was formed between remnant
fluid at the tip of the nozzle and the falling droplet. The rapid decay in the diameter of
the liquid bridge Dmin was captured using a high-speed camera (NOVA S9, Photron Inc.)
and back light illumination from a light-emitting diode. The high-speed camera had a
1024 × 1024 pixel complementary metal oxide semiconductor sensor with pixels that were
20 × 20 µm2 in size and had a bit depth of 12 bit. The sensor was cropped to 896 × 512 to
remove unused pixels in the image and increase the acquisition rate. A zoom lens was used
to achieve a magnification of 4.3 and scale of 4.62 µm pixel−1. For water, the thinning of
the liquid bridge occurred rapidly, and images were acquired at 20 kHz. For the PAM
solution, elastic forces prolonged the pinch-off process and an acquisition rate of 4 kHz
was used. A similar configuration was used to measure the filament breakup of viscoelastic
liquids in Deblais et al. (2020) and Rajesh et al. (2022). Three repeated measurements in
the extensional rheometer were performed for water. Recall that eight samples of the PAM
solution were collected immediately following 3-D-PTV data collection. Three repeated
measurements of the extensional rheology were performed for each sample of the PAM
solution, resulting in 24 measurements in total. The minimum diameter Dmin of the liquid
bridge was established using MATLAB software (Mathworks Inc.).

Figure 13(b) shows the evolution of Dmin/D0 with respect to time t. Here, the break-up
time tb is subtracted from t on the horizontal axis. The markers in figure 13(b) represent
the average values of the repeated measurements of Dmin for each instance of t. The sample
error bars indicate the range in the repeated measurements of Dmin for each instance of t.
For water, the liquid bridge ruptures quickly in tb of 25 ms due to inertial and capillary
forces. The Ohnesorge number Oh = tv/tR relates the time scale associated with viscous
forces tv = η0D0/2σ to that of surface tension and inertial forces, i.e. the Rayleigh time
tR = (ρD3

0/8σ)1/2. Here σ is the surface tension, which for water and low concentration
solutions of PAM is generally 72 mNm−1 (Miller, Clasen & Rothstein 2009). For both
water and PAM, Oh is less than 1, as shown in table 2, and the thinning process is
dominated by inertial and capillary forces (Rajesh et al. 2022). However, for the PAM
solution, elastic forces also contribute to the pinch-off dynamics. The Deborah number
De = te/tR represents the ratio of elastic forces to inertiocapillary forces, where te is
the elastic relaxation time of the fluid. When De is greater than 1, the droplet exhibits
elastocapillary thinning described by

Dmin

D0
= A exp

(
− t

3te

)
, (A2)

where A = (GD0/2σ)1/3 and G is the elastic modulus of the fluid (Anna & McKinley
2001). Nonlinear least square regression is used to fit (A2) on the average measurements
of Dmin/D0 for t > tb of the PAM solution. The solid red line in figure 13(b) demonstrates
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Figure 14. (a) The j.p.d.f. of ∂U/∂x and −(∂V/∂y + ∂W/∂z). Filled contours in (a) represent the j.p.d.f.
∂U/∂x and −(∂V/∂y + ∂W/∂z) for water with an Reθ of 1814. The red contour line in (a) is PAM with Reθ =
2290 and a j.p.d.f. value of 10−4. The black contour line in (a) is water with Reθ = 2257 and a j.p.d.f. value of
10−4. (b) Probability density function of local divergence error ratio ξ from Zhang et al. (1997).

the fitted (A2) with respect to the measurements of Dmin/D0. Using (A2), te of the PAM
solutions was determined to be 9.90 ms, as listed in table 2.

Appendix B. Measurement uncertainty

The accuracy of the velocity gradients, computed from the 3-D-PTV measurements,
is assessed by evaluating the divergence of the velocity, ∇ · U = tr(L) = −P. For an
incompressible flow, ∇ · U = 0. A similar assessment of the divergence-free condition is
performed in other 3-D experimental investigations that utilize the Δ-criterion (Tsinober
et al. 1992; Ganapathisubramani et al. 2007; Gomes-Fernandes et al. 2014). Figure 14(a)
shows the j.p.d.f. of ∂U/∂x and −(∂V/∂y + ∂W/∂z) for the flows of water at different
Reθ and PAM. All velocity gradients are made dimensionless by multiplying them by
the large eddy turnover time T . Deviations from the diagonal dotted line in figure 14(a),
where ∂U/∂x = −(∂V/∂y + ∂W/∂z), are indicative of divergence errors. The j.p.d.f.s of
∂U/∂x and −(∂V/∂y + ∂W/∂z) agree reasonably well with the divergence-free line for all
flows, compared with prior works that similarly utilize the Δ-criterion (Gomes-Fernandes
et al. 2014). The correlation coefficient between ∂U/∂x and −(∂V/∂y + ∂W/∂z) is 0.91,
0.94 and 0.84 for the flows of water at Reθ = 1814, water at Reθ = 2257 and PAM at
Reθ = 2290, respectively. These are comparable or better than the correlation coefficients
of 0.70 derived from Tsinober et al. (1992) who used a multi-probe hot wire technique,
as well as the correlation coefficient of 0.82 in Ganapathisubramani et al. (2007) and
0.5–0.6 in Gomes-Fernandes et al. (2014), who both used stereoscopic PIV with Taylor’s
hypothesis to derive the VGT.

Another estimate for the divergence error is the ratio

ξ = (∂U/∂x + ∂V/∂y + ∂W/∂z)2

(∂U/∂x)2 + (∂V/∂y)2 + (∂W/∂z)2 , (B1)
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Figure 15. (a) Probability density function of the velocity divergence Lii normalized by the norm in the VGT
(LjkLjk)

1/2. (b) The j.p.d.f. of the norm in the VGT and velocity divergence normalized by the norm in the
VGT. Filled contours in (b) represent the j.p.d.f. of T(LjkLjk)

1/2 and Lii/(LjkLjk)
1/2 for water with an Reθ of

1814. The red contour line in (b) is PAM with Reθ = 2290 and a j.p.d.f. value of 10−3. The black contour line
in (b) is water with Reθ = 2257 and a j.p.d.f. value of 10−3.

developed by Zhang et al. (1997), who used holographic PIV to measure the turbulent flow
of water in a square duct. The closer ξ is to 0, the better the divergence-free condition is
satisfied. The p.d.f.s of ξ are shown in figure 14(b) for the flows of water at different Reθ

and PAM. The mean value of ξ for water at an Reθ = 1814, water at Reθ = 2257 and PAM
at an Reθ = 2290 is 0.16, 0.12 and 0.25, respectively. These are comparable to the mean
values of ξ from holographic PIV performed by Zhang et al. (1997) with ξ = 0.12–0.74,
as well as stereoscopic PIV performed by Ganapathisubramani et al. (2007) with ξ of 0.18.

Mullin & Dahm (2006) assessed the divergence error of their dual-plane stereoscopic
PIV measurements by calculating the divergence of the velocity vectors relative to the
norm of the VGT. Figure 15(a) shows the p.d.f.s of the divergence of velocity divided by
the norm of the VGT. Here, the trace of the VGT or divergence in the velocity is written
in index notation, i.e. Lii = tr(L) = ∇ · U = 0, and the norm in the VGT is (LjkLjk)

1/2.
The p.d.f.s in Lii/(LjkLjk)

1/2 shown in figure 15(a) are visibly Gaussian, with a mean that
is approximately equal to 0 for all flow conditions considered. Mullin & Dahm (2006)
assumed a divergence error equal to the root mean square (r.m.s.) in Lii/(LjkLjk)

1/2. The
r.m.s.value of Lii/(LjkLjk)

1/2 for water at an Reθ = 1814, water at an Reθ = 2257 and
PAM at an Reθ = 2290 is 0.119, 0.095 and 0.170, respectively. These divergence errors
are better than or comparable to the divergence error of the dual-plane steroscopic PIV
measurements of Mullin & Dahm (2006) equal to 0.35, and both the steroscopic PIV
measurements of Ganapathisubramani et al. (2007) equal to 0.25, and Gomes-Fernandes
et al. (2014) equal to 0.33–0.41.

Ganapathisubramani et al. (2007) demonstrated that divergence errors are strong
functions of the magnitude of the VGT. the j.p.d.f.s of (LjkLjk)

1/2T and Lii/(LjkLjk)
1/2 are

shown in figure 15(b) for the boundary layers of water at different Reθ and PAM, similar
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to those seen in Ganapathisubramani et al. (2007) and Gomes-Fernandes et al. (2014). The
divergence error, characterized by the horizontal spread in the j.p.d.f. of figure 15(b) along
Lii/(LjkLjk)

1/2, is larger when (LjkLjk)
1/2T is lower for all flow conditions. Therefore,

it is expected that velocity gradients that are lower in magnitude are more corrupted
by divergence error than those with a higher magnitude, similar to the conclusion of
Ganapathisubramani et al. (2007) and Gomes-Fernandes et al. (2014).
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