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Abstract Let P be a closed convex cone in Rd which is assumed to be spanning Rd and contains no line.
In this article, we consider a family of CAR flows over P and study the decomposability of the associated
product systems. We establish a necessary and sufficient condition for CAR flow to be decomposable.
As a consequence, we show that there are uncountable many CAR flows which are cocycle conjugate to
the corresponding CCR flows.
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1. Introduction

Powers introduced the theory of one-parameter E 0-semigroups in [8]. A one-parameter
E 0-semigroup is a weak ∗-continuous semigroup α = {αt}t≥0 of unital normal
∗-endomorphisms on a von Neumann algebra M. After the introduction of E 0-semigroups
over R+, the theory quickly grew with a lot of interesting structures and many surprises.
The classification of E 0-semigroups is far from being complete and remains mysterious
even for the case of E 0-semigroups over R+ on B(H ). Arveson introduced the notion
of product systems to study the theory of E 0-semigroups on the ∗-algebra B(H ) of all
bounded operators on a separable Hilbert space H. He showed that the classification
of E 0-semigroups on a type I factor, up to cocycle conjugacy, is equivalent to the clas-
sification of product systems up to isomorphism. E 0-semigroups on type I factors are
roughly divided into three types, namely types I, II and III. In the beginning, the work
progressed by studying CCR and CAR flows and trying to classify them up to cocycle
conjugacy. Later, it was shown that CCR flows and CAR flows are cocycle conjugate
[9], so while Powers worked on CAR flows and Arveson worked on CCR flows, this was
a matter of convenience or perhaps even taste. Arveson proved that they were clas-
sified by the Powers–Arveson index, and not long afterward, Arveson proved that all
decomposable E 0-semigroups are cocycle conjugate to CAR or CCR flows with the same
Powers–Arveson index. In the one-parameter case, there exists only countable many CCR
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2 A. Arjunan

flows (see [4]). However, in the multiparameter context, there are uncountable many CCR
flows over a closed convex cone P [2, 3, 12]. The multiparameter CCR flows are decom-
posable (see [12]). It was shown in [10] that for certain P -spaces, CCR flows are not
cocycle conjugate to the corresponding CAR flows. Let P be a closed convex cone in Rd,
and let V be an isometric representation of P. Denote by α the CAR flow associated to
the isometric representation V and by E the product system associated to α. A natural
question that arises is the following. Under what condition on the isometric representa-
tion V, the corresponding product system E is decomposable?. In this paper, we answer
this for the isometric representations given by P -spaces. More precisely, we show that
the CAR flow associated to a P-space is decomposable if and only if the P -space is a
half-space.
The organization of the paper is as follows. In § 2, we recall a few definitions that are

required to study non-commutative stochastic calculus. We define the notion of additive
decomposable section, and using that we define a non-commutative Itô integral of an
adapted process with respect to a centred additive decomposable section (a generalization
of the non-commutative Itô integral with respect to a centred addit considered in [6]). By
building the necessary tools, we obtain a centred coherent section from a centred additive
decomposable section by solving the quantum stochastic integral equation, and on the
other hand, we obtain a centred additive decomposable section as a logarithm of a given
centred coherent section by an appropriate limit; see Proposition 3 and Proposition 4. We
establish a bijective correspondence between the set of all additive decomposable sections
and the set of all coherent sections for the product system over R+, where the product
system is assumed to have a coherent section. This section may be of independent interest
for some specialists in quantum stochastic differential equations. In § 3, for a fixed P -space
and a ray in a closed convex cone P, by using the bijective correspondence obtained in
§ 1, we compute the decomposable vectors of the CAR flow along the ray. In § 4, the
homeomorphism map given in Proposition 7 involving the boundary of P -space A and
the interior of A, together with the description of the boundary of P -space A given in
Lemma 7, provide us a useful tool to study the geometry of the space A when the product
system for the CAR flow associated to A is decomposable (see Theorem 3). We show that
there are uncountable many CCR flows that are cocycle conjugate to CAR flows over a
closed convex cone.

2. Non-commutative stochastic calculus

The notion of addits was introduced independently in [6] and [5]. The sole purpose of
this section is to record for future reference that the bijection between addits and units
established in [6] works equally well to provide a bijection between the set of all centred
coherent sections and the set of all centred additive decomposable sections, and we do
not claim much originality. As an immediate application, we obtain another proof for the
fact that e-logarithm of a coherent section e = (et)t∈R+ is positive definite. We leave it to
the reader for the proof of many results, and we only provide the proof for the necessary
places. We also adapt most of the notation from [6].
Let E = {(t, ξ) : t ≥ 0, ξ ∈ Et} be a product system over R+, and in short, we

write E =
⋃
t≥0Et. A family {xs : 0 ≤ s < t} of vectors is said to be left coherent if

each xs ∈ Es and for 0 ≤ r < s < t, there exists a vector x(r, s) ∈ Es−r such that
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Decomposability of multiparameter car flows 3

xs = xrx(r, s). A left coherent section of E is a left coherent family {xs : 0 ≤ s < t}
with t = ∞ (similarly we also have the notion of right coherent section). Now onwards
we simply call the left coherent family a coherent family. Then the family {x(r, s) : 0 ≤
r < s < t} satisfies x(q, r)x(r, s) = x(q, s), for every 0 ≤ q < r < s. We assume that all
the product system in our discussion will have a coherent section. Fix a coherent section
Ω = (Ωt)t≥0 along with the product system E such that ‖Ωt‖ = 1 for t ≥ 0. For a

fixed r ∈ R+, let Ω̃t = Ω(r, r + t) for t ≥ 0. Note that Ω̃ = (Ω̃t)t∈R+ defines a coherent
section. A coherent section (xt)t∈R+ is called a centred coherent section with respect to
Ω (or simply a centred coherent section) if 〈xt|Ωt〉 = 1, for each t ≥ 0.

Definition 1. Let Ω = {Ωs : 0 ≤ s < t} be a coherent family. A family {bs : 0 ≤ s < t}
of vectors is said to be a left additive decomposable family with respect to Ω if for any
0 ≤ r < s < t, there exists a vector b(r, s) ∈ Es−r such that

br ⊗ Ω(r, s) + Ωr ⊗ b(r, s) = bs.

We simply say {bt : 0 ≤ s < t} is an additive decomposable family if Ω is clear from the
context. If in addition the family {bs : 0 ≤ s < t} satisfies 〈bs|Ωs〉 = 0 for each 0 ≤ s < t.
We say that the family {bs : 0 ≤ s < t} is a centred additive decomposable family.

Every additive decomposable family {bs : 0 ≤ s < t} has the following decomposition:
For s ≥ 0, bs = cs + 〈bs|Ωs〉Ωs, where {cs : 0 ≤ s < t} is a unique centred additive
decomposable family. We observe that the family {b(r, s) : 0 ≤ r < s < t} satisfies
b(q, s) = b(q, r) ⊗ Ω(r, s) + Ω(q, r) ⊗ b(r, s) for every 0 ≤ q < r < s. If an additive
decomposable family {bs : 0 ≤ s < t} is centred, we also have 〈b(r, s)|Ω(r, s)〉 = 0 for
every 0 ≤ r < s < t. An additive decomposable section is an additive decomposable
family {bs : 0 ≤ s < t} with t = ∞.

Lemma 1. Let Ω = {Ωs : 0 ≤ s < t} be a left coherent family with ‖Ωs‖ = 1 for
each s, and let b = {bs : 0 ≤ s < t} and c = {cs : 0 ≤ s < t} be centred left additive
decomposable families with respect to Ω. Then lim

h→0+
〈bh|ch〉 = 0.

Proof. For 0 < r < s, define a map Lr : Es−r → Es by Lr(ξ) = Ωrξ for each ξ ∈ Es−r.
Then Lr is an isometry. Denote the range projection LrL

∗
r of Lr by Pr , that is, we can

view Pr = 〈.|Ωr〉Ωr⊗1Es−r : Er⊗Es−r → Er⊗Es−r. Then Pr strongly converges to 1 as
r decreases to zero (see [4, Theorem 6.1.1] for the proof of this fact). Let 0 < h < s < t.
We observe that ‖bs‖2 = ‖bh‖2 + ‖b(h, s)‖2, and we have

‖bs‖2 = lim
h→0+

‖Ph(bs)‖2

= lim
h→0+

‖Ph(bh ⊗ Ω(h, s) + Ωh ⊗ b(h, s))‖

= lim
h→0+

‖b(h, s))‖

= lim
h→0+

(
‖bs‖2 − ‖bh‖2

)
.

From the above, we conclude that lim
h→0+

‖bh‖2 = 0, and hence lim
h→0+

〈bh|ch〉 = 0. �
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4 A. Arjunan

Proposition 1. Let {bs : 0 < s < t} and {cs : 0 < s < t} be centred additive
decomposable families. Then the map (0, t) 3 s 7→ 〈bs|cs〉 ∈ C is continuous.

Proof. Let s0 ∈ (0, t) be given. We show that the map (0, t) 3 s 7→ 〈bs|cs〉 ∈ C is both
left and right continuous at s0. For any 0 < h < t− s0, we observe that

〈bs0+h|cs0+h〉 = 〈bs0 |cs0〉+ 〈b(s0, s0 + h)|c(s0, s0 + h)〉

= 〈bs0 |cs0〉+ 〈̃bh|c̃h〉,

where b̃h = b(s0, s0 + h) and c̃h = c(s0, s0 + h). Then the sets {b̃r : 0 < r < t − s0}
and {c̃r : 0 < r < t − s0} form centred left additive decomposable families. Indeed, for
0 < q < r < t− s0, we have

b̃r = b̃q ⊗ Ω̃(q, r) + Ω̃q ⊗ b̃(q, r),

where Ω̃(q, r) = Ω(s0 + q, s0 + r), Ω̃q = Ω(s0, s0 + q) and b̃(q, r) = b(s0 + q, s0 + r).
Similarly, {c̃r : 0 < r < t − s0} forms a centred left additive decomposable family. By

Lemma 1, lim
h→0+

〈̃bh|c̃h〉 = 0. Hence, the equation 〈bs0+h|cs0+h〉 = 〈bs0 |cs0〉 + 〈̃bh|c̃h〉

implies that 〈bs0+h|cs0+h〉 → 〈bs0 |cs0〉 as h goes to zero. This means that the map
(0, t) 3 s 7→ 〈bs|cs〉 ∈ C is right continuous.
For 0 < h < s0, let b′ := {b′s = b(s0 − s, s0) : 0 < s < s0} and Ω′ := {Ω′

s =
Ω(s0 − s, s0) : 0 < s < s0}. Note that Ω′ is a right coherent family. We leave it to the
reader to verify that b

′
is a centred right additive decomposable family with respect to

Ω′ for the product system E. In the opposite product system E op, Ω′ is a left coherent
family and b

′
is a centred left additive decomposable family with respect to Ω′. Similar

to the above argument, we see that 〈bs0−h|cs0−h〉 → 〈bs0 |cs0〉 as h goes to zero. Hence,
the map (0, t) 3 s 7→ 〈bs|cs〉 ∈ C is left continuous. This proves the proposition. �

Definition 2.

(1) By an adapted process of E, we mean a measurable map R+ 3 t 7→ xt ∈ E satisfying
xt ∈ Et for each t ≥ 0. We say that an adapted process (xt)t∈R+ is simple if there
exists a partition 0 ≤ t0 < t1 < · · · < tn < · · · of R+ such that

xt =
∞∑
i=0

xi ⊗Ω(ti, t) χ[ti,ti+1)
(t) for every t ≥ 0 and xi ∈ Eti for i ≥ 0. (2.1)

(2) Let (xt)t∈R+ be a simple adapted process of the form (2.1) and let (bt)t∈R+ be a
centred additive decomposable section of E. Then the integral of a simple adapted
process (xt)t∈R+ with respect to the centred additive decomposable section (bt)t∈R+

over the interval [a,b] is denoted by
∫ b
a
xt dbt and is defined as follows:

∫ b

a

xt dbt =
n−1∑
i=m

xi ⊗ b(ti, ti+1)⊗ Ω(ti+1, b). (2.2)
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Decomposability of multiparameter car flows 5

Here we have refined the partition such that a = tm and b = tn for some m,n ∈ N.

(3) Let (xt)t∈R+ be an adapted process, and let (bt)t∈R+ be a centred additive decom-
posable section of E. We say that an adapted process (xt)t∈R+ is Itô integrable with
respect to (bt)t∈R+ if for every a, b ∈ R+ with a< b, there exists a sequence of simple

adapted processes {x(n)}∞n=1 with x(n) = (x
(n)
t )t∈R+ such that {x(n)}∞n=1 converges

to x = (xt)t∈R+ in L2-norm on [a, b] and the sequence
∫ b
a
x
(n)
t dbt is Cauchy. In that

case, we define
∫ b
a
xt dbt as follows:∫ b

a

xt dbt := lim
n→∞

∫ b

a

x
(n)
t dbt. (2.3)

We will see that the above integral is well-defined.

The definition for the Itô integrable adapted process is slightly different from the one
considered in [6, see discussion after Proposition 5.4].

Lemma 2. Let (xt)t∈R+ and (yt)t∈R+ be Itô integrable adapted processes with respect
to the centred additive decomposable section (bt)t∈R+ . Then we have the following
properties.

(1) For 0 ≤ s ≤ t, we have

〈∫ t

s

xr dbr

∣∣∣∣∣Ωt
〉

= 0.

(2) For 0 ≤ s0 ≤ s and t ≥ 0,

∫ s+t

s0

xr dbr =

∫ s

s0

xr dbr ⊗ Ω(s, s+ t) +

∫ s+t

s

xr dbr.

(3) For s, t ≥ 0,

∫ s+t

s

xs ⊗ yr−s dbr = xs ⊗
∫ t

0

yr db̃r.

Here b̃ = (b̃r)r≥0 := (b(s, s + r))r≥0 is a centred additive decomposable section

with respect to the coherent section Ω̃ = (Ω(s, s+ r))r≥0.

(4) For 0 ≤ s0 ≤ s and 0 ≤ t0 ≤ t, we have

〈∫ s+t

s+t0

xr dbr

∣∣∣∣∣
∫ s

s0

xr dbr ⊗ Ω(s, s+ t)

〉
= 0.

(5) For s, t ≥ 0,

∫ s+t

s

Ωr dbr = bs+t − bs ⊗ Ω(s, s+ t).

Proof. By definition, it is enough to prove the above results for a simple adapted
process and we leave it to the reader’s verification. �

Let (bt)t∈R+ be a centred additive decomposable section. Define a map F : R → R by

F (s) :=

‖bs‖2 if s > 0,

0 if s ≤ 0.

Since F is a non-decreasing right continuous function on R, there exists a unique Borel
measure µ on R such that µ((−∞, s]) = F (s) for s ∈ R. For simple adapted processes
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6 A. Arjunan

(xt)t∈R+ and (yt)t∈R+ , we have〈∫ t

s

xr dbr

∣∣∣∣∣
∫ t

s

yr dbr

〉
=

∫ t

s

〈xr|yr〉dµ(r). (2.4)

We can see using the above equality that Equation (2.3) is well-defined. With this result,
we have the following lemma, which can also be thought of as a version of the Itô identity.

Lemma 3. Let (xt)t∈R+ and (yt)t∈R+ be Itô integrable adapted processes, and let
(bt)t∈R+ be a centred additive decomposable section. Then we have〈∫ t

s

xr dbr

∣∣∣∣∣
∫ t

s

yr dbr

〉
=

∫ t

s

〈xr|yr〉dµ(r). (2.5)

The following proposition provides a condition for a continuous adapted process to be
Itô integrable, and the proof follows from Lemma 3.

Proposition 2. Let (bt)t∈R+ be a centred additive decomposable section, and let x =
(xt)t∈R+ be a continuous adapted process such that

〈xr+s|xr ⊗ Ω(r, r + s)〉 = ‖xr‖2, for every r, s ≥ 0. (2.6)

Then x = (xt)t∈R+ is Itô integrable with respect to (bt)t∈R+ . In fact, for any given interval

[a, b], the sequence x(n) of simple adapted processes is given by x
(n)
t =

∑n−1
i=0 xr(n)

i

⊗

Ω(r
(n)
i , t)χ

[r
(n)
i

,r
(n)
i+1

)
(t) for each t ≥ 0 and r

(n)
i = a+ (b− a) i

n−1 with 0 ≤ i ≤ n− 1 and

converges to x = (xt)t≥0 in L2-norm.

Lemma 4. Let (bt)t∈R+ be a centred additive decomposable section and µ be its
associated measure given after Lemma 2. Then we have∫ t

0

‖br‖2n dµ(r) =
‖bt‖2(n+1)

n+ 1
for every n ≥ 0.

Proof. Recall that [11, Theorem 6.5.10] if f and α are continuous monotone non-
decreasing functions on [a, b], then f ∈ R(α) and α ∈ R(f) (here R(α) denotes the space
of Riemann–Stieltjes functions with respect to α). Moreover, we have

∫ b

a

f(s) dα(s) +

∫ b

a

α(s) df(s) = α(b)f(b)− α(a)f(a). (2.7)

Take α(s) = f(s) = ‖bs‖2. Then for t > 0, we have
∫ t
0
‖bs‖2 dµ(s) = ‖bt‖4/2. Let us

take α(s) = ‖bs‖2(k+1) for k ≥ 1 and f(s) = ‖bs‖2. Assume that
∫ t
0
‖bs‖2k dµ(s) =
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Decomposability of multiparameter car flows 7

‖bt‖2(k+1)/(k + 1) is true for k. This means that dα(s) = (k + 1)‖bs‖2k dµ(s). Then we
have

‖bt‖2(k+2) =

∫ t

0

‖bs‖2 dα(s) +
∫ t

0

‖bs‖2(k+1) dµ(s) (by integration by parts)

=

∫ t

0

‖bs‖2(k + 1)‖bs‖2k dµ(s) +
∫ t

0

‖bs‖2(k+1) dµ(s)

=

∫ t

0

(k + 2)‖bs‖2(k+1) dµ(s).

Hence, we have shown the lemma by induction. �

Denote the space of all centred additive decomposable sections by A and the set of all
centred coherent sections by C. The following proposition is very similar to [6, Proposition
5.9], and we provide the proof for completeness.

Proposition 3. Let (bt)t∈R+ be a centred additive decomposable section. Then there
exists a unique solution to the quantum stochastic integral equation

ut = Ωt +

∫ t

0

us dbs for each t ≥ 0, (2.8)

and the solution is a centred coherent section. Moreover, the map A 3 (bt)t∈R+ 7→
(ut)t∈R+ ∈ C is injective.

Proof. Let x
(0)
t = Ωt, x

(1)
t = bt and x

(n)
t =

∫ t

0

x(n−1)
r dbr for n ≥ 1. Define ut =

∞∑
n=0

x
(n)
t for t ≥ 0. Then we can see the following.

(1) 〈x(n)t |x(m)
t 〉 = δm,n

‖bt‖
2n

n! and ‖ut‖2 = e‖bt‖
2
.

(2) (ut)t∈R+ is Itô integrable and satisfies the quantum stochastic integral
equation (2.8).

To show the uniqueness part, let u and v be adapted processes

satisfying Equation (2.8). This implies that ‖ut‖2 = ‖vt‖2 = e‖bt‖
2

and the maps
R+ 3 t 7→ ‖ut‖, ‖vt‖ ∈ R+ are continuous. Let Mt = sup

r∈[0,t]

‖ur − vr‖. Then for t ≥ 0,

‖ut − vt‖2 =

∫ t

0

‖ur − vr‖2 dµ(r), and by iteration, we have

‖ut − vt‖2 =

∫ t

0

∫ r1

0

· · ·
∫ rn−1

0

‖urn − vrn‖2 dµ(rn) dµ(rn−1) · · · dµ(r1)

≤
∫ t

0

∫ r1

0

· · ·
∫ rn−1

0

M2
t dµ(rn) dµ(rn−1) · · · dµ(r1)
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8 A. Arjunan

=M2
t

‖bt‖2n

n!
(by Lemma 4)

→ 0 as n→ ∞.

Hence, we have proved the uniqueness part. Let u = (ut)t∈R+ be the solution of
Equation (2.8).
Fix s > 0. Define w = (wt)t∈R+ as

wt :=

ut if t ∈ (0, s),

us ⊗ ũt−s if t ≥ s,

where ũt = u(s, s + t). Then we see that w = (wt)t∈R+ satisfies Equation (2.8). By
the uniqueness of the solution, us+t = ws+t = us ⊗ ũt = us ⊗ u(s, s + t). It is also
centred. Hence, u = (ut)t∈R+ is a centred coherent section. One can check that the map
A 3 (bt)t∈R+ 7→ (ut)t∈R+ ∈ C is injective. �

We will use the notation Exp(b) to denote the solution of Equation (2.8). Let (xt)t∈R+
be any adapted process. Let T > 0 be given. From now onwards, we fix the following
notation.

x′t = xt ⊗ Ω(t, T ) for any 0 ≤ t ≤ T, and

x′s,s+t = Ωs ⊗ xt ⊗ Ω(s+ t, T ) for s, t ≥ 0 with s+ t ≤ T.

We also provide the sketch of the following proposition.

Proposition 4. Let u = (ut)t∈R+ be a centred coherent section, and for t ≥ 0, n ∈ N,

define y
(n)
t :=

2n∑
i=1

yi,nt , where for 1 ≤ i ≤ 2n,

yi,nt = Ω t
2n

⊗Ω

(
t

2n
,
2t

2n

)
⊗ · · · ⊗ Ω

(
(i− 2)t

2n
,
(i− 1)t

2n

)
⊗(

u

(
(i− 1)t

2n
,
it

2n

)
− Ω

(
(i− 1)t

2n
,
it

2n

))
⊗ · · · ⊗ Ω

(
t− t

2n
, t

)
.

Then lim
n→∞

y
(n)
t exists and denote its limit by log(u)t. Show that b = (bt)t∈R+ :=

(log(u)t)t∈R+ is a centred additive decomposable section.

Proof. For s > 0, ‖us−Ωs‖2 = eϕ(s)− 1, where ϕ(s) = ‖bs‖2. Note that 〈y(n)t |y(m)
t 〉 =∑2m

k=1

(
eϕ(

kt
2m

)−ϕ( (k−1)t
2m

) − 1

)
for n ≤ m and ‖y(n)t ‖2 → ϕ(t) as n→ ∞. Now for n ≤ m,

we have
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Decomposability of multiparameter car flows 9

‖y(n)t − y
(m)
t ‖2 = ‖y(n)t ‖2 + ‖y(m)

t ‖2 − 2 Re 〈y(n)t |y(m)
t 〉

→ ϕ(t) + ϕ(t)− 2ϕ(t) = 0 as n,m→ ∞.

Hence, y
(n)
t is a Cauchy sequence in E t and it is convergent.

For s, t ≥ 0, let y
(n)
s,s+t =

∑2n

i=1 y
i,n
s,s+t, where

yi,ns,s+t = Ω

(
s, s+

t

2n

)
⊗ Ω

(
s+

t

2n
, s+

2t

2n

)
⊗ · · · ⊗ Ω

(
s+

(i− 2)t

2n
, s+

(i− 1)t

2n

)
⊗(

u

(
s+

(i− 1)t

2n
, s+

it

2n

)
− Ω

(
s+

(i− 1)t

2n
, s+

it

2n

))
⊗ · · · ⊗ Ω

(
s+ t− t

2n
, s+ t

)
.

Let Ω̃t = Ω(s, s + t) and ũt = u(s, s + t) for each t ≥ 0. Observe that y
(n)
s,s+t = ỹ

(n)
t ,

where ỹ
(n)
t is defined using the left coherent section (ũt)t∈R+ with respect to the fixed

coherent section (Ω̃t)t∈R+ which is similar to the above construction. This implies that

limn→∞ y
(n)
s,s+t exists, and we denote its limit by b(s, s + t). First we claim that for

m ∈ N and t ≥ 0, b′mt = b′t + b′t,2t + · · · + b′(m−1)t,mt. For it is enough to show that

‖y(n)
′

mt −
∑m−1
k=0 y

(n)′
kt,(k+1)t‖

2 → 0 as n→ ∞.

Now consider the following expression.∥∥∥∥∥y(n)′mt −
m−1∑
k=0

y
(n)′
kt,(k+1)t

∥∥∥∥∥
2

=
∥∥∥y(n)mt

∥∥∥2 + ∥∥∥∥∥
m−1∑
k=0

y
(n)′
kt,(k+1)t

∥∥∥∥∥
2

−
m−1∑
k=0

2Re

〈
y
(n)′
mt

∣∣∣∣y(n)′kt,(k+1)t

〉
.

(2.9)

Note that
∥∥∥y(n)mt

∥∥∥2 =
2n∑
k=1

(
e
ϕ
(
kmt
2n

)
−ϕ

(
(k−1)mt

2n

)
− 1

)
.

Now we have∥∥∥∥∥
m−1∑
k=0

y
(n)′
kt,(k+1)t

∥∥∥∥∥
2

=
m−1∑
k,l=0

〈
Ωkt ⊗ y

(n)
kt,(k+1)t ⊗ Ω((k + 1) t, T )

∣∣∣∣Ωlt ⊗ y
(n)
lt,(l+1)t ⊗ Ω((l + 1) t, T )

〉

=
m−1∑
k=0

∥∥∥y(n)kt,(k+1)t

∥∥∥2
=
m−1∑
k=0

2n∑
i=1

(
e
ϕ
(
kt+ it

2n

)
−ϕ

(
kt+

(i−1)t
2n

)
− 1

)
.

Moreover, finally,〈
y
(n)′
mt

∣∣∣∣y(n)′kt,(k+1)t

〉
=

〈
y
(n)
mt

∣∣∣∣Ωkt ⊗ y
(n)
kt,(k+1)t ⊗ Ω((k + 1) t,mt)

〉
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10 A. Arjunan

=
2n∑
i,j=1

〈
yj,nmt

∣∣∣∣Ωkt ⊗ yi,nkt,(k+1)t ⊗ Ω((k + 1)t,mt)

〉

=
2n∑
i=1

∥∥∥∥u(kt+ (i− 1)t

2n
, kt+

it

2n

)
− Ω

(
kt+

(i− 1)t

2n
, kt+

it

2n

)∥∥∥∥2

=
2n∑
i=1

(
e
ϕ
(
kt+ it

2n

)
−ϕ

(
kt+

(i−1)t
2n

)
− 1

)
.

Using above expressions, Equation (2.9) becomes∥∥∥∥∥y(n)′mt −
m−1∑
k=0

y
(n)′
kt,(k+1)t

∥∥∥∥∥
2

=
2n∑
j=1

(
e
ϕ
(
jmt
2n

)
−ϕ

(
(j−1)mt

2n

)
− 1

)

−
m−1∑
k=0

2n∑
i=1

(
e
ϕ
(
kt+ it

2n

)
−ϕ

(
kt+

(i−1)t
2n

)
− 1

)

→ ϕ(mt)−
m−1∑
k=0

(ϕ ((k + 1) t)− ϕ (kt)) = 0, as n→ ∞.

Hence, form ∈ N, b′mt = b′t+b
′
t,2t+· · ·+b′(m−1)t,mt. From which we deduce that b′(m+n)t =

b′nt+b
′
nt,(m+n)t for 0 ≤ (m+n)t ≤ T . For any q ∈ Q+ with s+qs ∈ [0, T ], we observe that

b′s+qs = b′s+b
′
s,s+qs and b

′
s,s+t is a limit of

∑2n

i=1

(
u′
s+

(i−1)t
2n

,s+ it
2n

− ΩT

)
.We see that for

any s, t ≥ 0, b′s+t = b′s+ b′s,s+t. This implies that bs+t = bs⊗Ω(s, s+ t)+Ωs⊗ b(s, s+ t).
By definition, it is clear that (bt)t∈R+ is centred. Hence, (bt)t∈R+ is a centred additive
decomposable section. �

Lemma 5. Let (ut)t∈R+ be a centred coherent section, and let (xt)t∈R+ be an adapted

process satisfying 〈xr+s|xr ⊗Ω(r, r+ s)〉 = ‖xr‖2 for every r, s ≥ 0. Then (xt)t∈R+ is an
Itô integrable adapted process with respect to (logΩ(u)t)t∈R+ . Moreover, we have〈

ut

∣∣∣∣ ∫ t

0

xr dlogΩ(u)r

〉
=

∫ t

0

〈
ur
∣∣xr〉 dµ(r).

The proof follows from Lemma 2.
Let b = (bt)t∈R+ and c = (ct)t∈R+ be centred additive decomposable sections. Define

a measure on ν on R+ by ν([s, t)) = 〈b(s, t)|c(s, t)〉 for every 0 ≤ s < t. Let x = (xt)t∈R+
and y = (yt)t∈R+ be two Itô integrable adapted processes. Then we have,〈∫ t

s

xr dbr

∣∣∣∣∣
∫ t

s

yr dcr

〉
=

∫ t

s

〈xr|yr〉 dν(r). (2.10)

We require this result in the following theorem and leave it to the reader for verification.
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Theorem 1

(1) The map ExpΩ : A 3 b = (bt)t∈R+ 7→ Exp(b) = (Exp(b)t)t∈R+ ∈ C is a bijection.

(2) Let b = (bt)t∈R+ and c = (ct)t∈R+ be two centred additive decomposable sections.
Then we have 〈

Exp(b)t
∣∣Exp(c)t〉 = e〈bt|ct〉 for every t ≥ 0.

We remark here that the above Theorem 1 remains true when we replace the additive
decomposible section (bt)t∈R+ and the corresponding coherent section (Exp(b)t)t∈R+ by
the additive decomposable family (bt)0<t≤T and the coherent family (Exp(b)t)0<t≤T for
any T > 0.
Let us recall the definition of e-Logarithm Le . For t > 0 and x, y ∈ D(t), we say that

x ∼ y if there exists a non-zero complex number λ such that x = λy. Then ∼ defines
an equivalence relation on D(t). Denote by ẋ the equivalence class of x and by ∆(t) the
equivalence classes of D(t). Let ∆(2) = {(t; ẋ, ẏ) : x, y ∈ D(t)} for some {t > 0}. We say
that a function f : ∆(2) → C is continuous if for any given coherent sections (xt)t∈R+ and

(yt)t∈R+ , the map (0,∞) 3 t 7→ f(t; ẋt, ẏt) ∈ C is continuous. We say that f : ∆(2) → C
is vanishing at zero if the limit lim

t→0+
f(t; ẋt, ẏt) = 0. Let e = (et)t∈R+ be a left coherent

decomposible section such that ‖et‖ = 1. By Theorem [4, Theorem 6.4.2], there exists a
unique continuous function Le : ∆(2) → C vanishing at zero such that

eL
e(t;ẋ,ẏ) =

〈x|y〉
〈x|et〉〈et|y〉

.

The function Le is called the e-Logarithm. As a consequence of the above theorem, we
have the following corollory.

Corollary 1. Let e = {et}t∈R+ be a centred coherent section. Then the e-Logarithm
is positive definite. More precisely, for every t> 0, the map D(t) × D(t) 3 (x, y) 7→
Le(t; ẋ, ẏ) ∈ C is positive definite.

Proof. For x, y ∈ D(t), let {xs : 0 < s ≤ t} and {ys : 0 < s ≤ t} be the left coherent
decomposible families such the xt = x and yt = y. Then by remark following Theorem 1,
there exist left additive decomposible families {bs : 0 < s ≤ t} and {cs : 0 < s ≤ t} such
that

〈xs|ys〉 = e〈bs|cs〉 for every 0 < s ≤ t.

Set b = bt and c = ct. Recall that Le is homogeneous, that is, for t > 0, we have
L(t;λx, µy) = L(t;x, y), where x, y ∈ D(t) and λ, µ 6= 0.
For t > 0, let x, y ∈ D(t). Since Le is homogeneous, we can assume that 〈x|et〉 = 1 and

〈y|et〉 = 1. With the foregoing notation, we have eL
e(t;ẋ,ẏ) = 〈x|y〉 = 〈xt|yt〉 = e〈bt|ct〉 =

e〈b|c〉. Hence, for x, y ∈ D(t), there exists unique b, c ∈ E(t) such that Le(t; ẋ, ẏ) = 〈b|c〉.
This implies that for t > 0, the map D(t) × D(t) 3 (x, y) 7→ Le(t; ẋ, ẏ) ∈ C is positive
definite. �
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12 A. Arjunan

3. Decomposable vectors of one-parameter CAR flows

In this section, we describe left coherent sections for one-parmeter CAR flows. We achieve
this by using the bijective correspondence between the set of all additive decomposable
sections and the set of all left coherent sections obtained in the previous section. Let H
be a Hilbert space and let H⊗n be the n-fold tensor product of H for n ∈ N. For σ ∈ Sn,
define a unitary U σ on H⊗n by

Uσ(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn) = ξσ(1) ⊗ ξσ(2) ⊗ · · · ⊗ ξσ(n) for every ξ1, ξ2, . . . , ξn ∈ H.

Let H a○n
be the subspace of H⊗n given by

H a○n
=
{
u ∈ H⊗n : Uσ(u) = ε(σ)u, for all σ ∈ Sn

}
.

Here ε(σ) is 1 if σ is even and −1 if σ is odd. We define ξ1 ∧ ξ2 ∧ · · · ∧ ξn ∈ H a○n
as

ξ1 ∧ ξ2 ∧ · · · ∧ ξn =
1√
n!

∑
σ∈Sn

sgn(σ)ξσ(1) ⊗ ξσ(2) ⊗ · · · ⊗ ξσ(n)

and the inner product on H a○n
as〈

ξ1 ∧ ξ2 ∧ · · · ∧ ξn
∣∣η1 ∧ η2 ∧ · · · ∧ ηn

〉
= det (〈ξi|ηj〉) .

Let Γa(H) be the antisymmetric Fock space given by

Γa(H) =
∞⊕
n=0

H a○n
= CΩ⊕

∞⊕
n=1

H a○n
.

Here, Ω is the vacuum vector. Let H 1 and H 2 be Hilbert spaces. Then the map Γa(H1)⊗
Γa(H2) → Γa(H1 ⊕H2) is given by

(ξ1 ∧ ξ2 ∧ · · · ∧ ξn)⊗ (η1 ∧ η2 ∧ · · · ∧ ηm) 7→ ξ1 ∧ ξ2 ∧ · · · ∧ ξn ∧ η1 ∧ η2 ∧ · · · ∧ ηm

for ξi ∈ H1 and ηj ∈ H2 with 1 ≤ i ≤ n and 1 ≤ j ≤ m, m,n ∈ N, which extends to
a unitary operator. We freely use this identification in the rest of the paper. For ξ ∈ H,
define a bounded operator a∗(ξ) on Γa(H) by

a∗(ξ)η :=

ξ if η = Ω

ξ ∧ η if η ⊥ Ω
(3.1)

and denote the adjoint of a∗(ξ) by a(ξ). The operators a∗(ξ) and a(ξ) are called the
creation and the annihilation operator associated to a vector ξ. For an isometric repre-
sentation V of P on H, there exists a unique E 0-semigroup β = {βx}x∈P on B(Γa(H))
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satisfying

βx(a(ξ)) = a(Vxξ)

for every ξ ∈ H, called the CAR flow associated to an isometric representation V of P
(see [10]). Let x ∈ P be given. Define a unitary Ux : Γa(Ker(V ∗

x ))⊗ Γa(H) → Γa(H) by

(ξ1 ∧ ξ2 ∧ · · · ∧ ξn)⊗ (η1 ∧ η2 ∧ · · · ∧ ηm) 7→ Vxη1 ∧ Vxη2 ∧ · · · ∧ Vxηm ∧ ξ1 ∧ ξ2 ∧ · · · ∧ ξn

for ξi ∈ Ker(V ∗
x ) with 1 ≤ i ≤ n and ηj ∈ H with 1 ≤ j ≤ m, m,n ∈ N. With little

abuse of notation, we write for ξ ∈ Γa(Ker(V ∗
x )) and η ∈ Γa(H), Ux(ξ⊗η) = Γa(Vx)η∧ξ.

For x ∈ P and ξ ∈ Γa(Ker(V ∗
x )), define a bounded operator T xξ : Γa(H) → Γa(H) by

T xξ η = Γa(Vx)η ∧ ξ. The product system is given by E(x) = {T xξ : ξ ∈ Γa(Ker(V ∗
x ))}. For

notational convenience, in many places, we simply write ξ for T xξ in our calculation.
Denote by int(P ) the interior of P. By a P -space, we mean a non-empty closed subset

A of Rd such that A + P ⊆ A. Let A be a P -space and b ∈ int(P ) be given. Define a
function ψAb : Rd → R by ψAb (x) = sup{t ∈ R : x − tb ∈ A} for x ∈ Rd. We simply
write ψb when A is clear from the context. For k ∈ N, denote the set {(r1, r2, . . . , rk) ∈
Rk : ri = rj for some i 6= j with 1 ≤ i, j ≤ d} by N which is a null-set of Rk and define
ε(k) : Rk → {−1, 0, 1} by

ε(k)(r) :=

0 if r = (r1, r2, . . . , rk) ∈ N,

sgn(σ) if r /∈ N and σ ∈ Sk such that rσ(1) > rσ(2) > · · · > rσ(k).
(3.2)

Define a map ε
(k)
b : Ak → {−1, 0, 1} by

ε
(k)
b (x1, x2, . . . , xk) = ε(k)(ψb(x1), ψb(x2), . . . , ψb(xk))

for (x1, x2, . . . , xk) ∈ Ak, and for ξ ∈ L2(A,K) define eεb(ξ) ∈ Γa(L
2(A,K)) by

eεb(ξ) =
∞∑
k=0

ε
(k)
b ξ⊗k√
k!

.

Let K be a Hilbert space of dimensional k with k ∈ N. Denote the space of all K -valued

square integrable functions on A by L2(A,K). For x ∈ P , define an operator V
(A,K)
x on

L2(A,K) by

(
V (A,K)
x ξ

)
(y) =

ξ(y − x) if y − x ∈ A,

0 if y − x /∈ A.

Then V (A,K) defines an isometric representation of P, called the isometric representation
of P associated to A of multiplicity k.

Lemma 6. Let b, c ∈ int(P ) be given. For any t ≥ 0 and η ∈ L2(A,K), we have
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(1) Γa

(
V

(A,K)
tb

)(
ε
(k)
c η⊗k

)
= ε

(k)
c

(
V

(A,K)
tb η

)⊗k
.

(2) Γa

(
V

(A,K)
tb

)
eεc(η) = eεc

(
V

(A,K)
tb η

)
.

Proof. Let x1, x2, . . . , xk ∈ A, then we have(
Γa

(
V

(A,K)
tb

)
ε(k)c η⊗k

)
(x1, x2, . . . , xk)

=
(
ε(k)c η⊗k

)
(x1 − tb, x2 − tb, . . . , xk − tb) 1Ak (x1 − tb, x2 − tb, . . . , xk − tb)

= ε(k)
(
ψAc (x1 − tb), ψAc (x2 − tb), . . . , ψAc (xk − tb)

)
(η⊗k) (x1 − tb, x2 − tb, . . . , xk − tb) 1Ak (x1 − tb, x2 − tb, . . . , xk − tb)

= ε(k)
(
ψA+tb
c (x1), ψ

A+tb
c (x2), . . . , ψ

A+tb
c (xk)

) (
V

(A,K)
tb η

)⊗k
(x1, x2, . . . , xk)

= ε(k)
(
ψAc (x1), ψ

A
c (x2), . . . , ψ

A
c (xk)

) (
V

(A,K)
tb η

)⊗k
(x1, x2, . . . , xk)

=

(
ε(k)c

(
V

(A,K)
tb η

)⊗k)
(x1, x2, . . . , xk) .

The above equality holds for almost every (x1, x2, . . . , xk) ∈ Ak. This implies part (1).
Clearly, part (2) follows from part (1). �

Fix a ∈ int(P ). Denote the CAR flow associated to the isometric representation

{V (A,K)
ta }t≥0 by {βt}t≥0. We leave it to the reader to verify that T ta

eεa (E⊥
taξ)

is a decom-

posable vector of β for any t > 0 and ξ ∈ L2(A,K). In fact, we have the following
proposition.

Proposition 5. The set of all decomposable vectors of {βt}t≥0 is given by
{λT

eεa (E⊥
taξ)

: λ ∈ C \ {0}, t > 0 and ξ ∈ L2(A,K)}.

Proof. Let b = (bt)t≥0 be an additive decomposable section for β. Then for t ≥ 0,
bt = E⊥

taξ for some ξ ∈ L2(A,K). By the proof of Proposition 3, the corresponding left
coherent section u = (ut)t≥0 is given by

ut =
∞∑
k=0

x
(k)
t , where x

(0)
t = Ωt, x

(1)
t = bt and x

(k)
t =

∫ t

0

x(k−1)
r dbr for t ≥ 0.

First let us compute x
(2)
t for t ≥ 0. For each n ∈ N, let ri,n = ita

n with 0 ≤ i ≤ n.

x
(2)
t =

∫ t

0

E⊥
raξ dE

⊥
raξ

= lim
n→∞

n−1∑
i=0

T
ri,n

E⊥
ri,n

ξ
◦ T

ri+1,n−ri,n
V ∗
ri,n

E⊥
ri+1,n

ξ
◦ T

ta−ri+1,n
Ωta−ri+1,n

(by Proposition 2)
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= lim
n→∞

T ta∑n−1
i=0

Eri,nE
⊥
ri+1,n

ξ∧E⊥
ri,n

ξ

= lim
n→∞

n−1∑
i=0

Eri,nE
⊥
ri+1,n

ξ ∧ E⊥
ri,n

ξ.

In the view of Proposition 2, it is enough to check the pointwise convergence of∑n−1
i=0 Eri,nE

⊥
ri+1,n

ξ ∧ E⊥
ri,n

ξ to
ε
(2)
a (E⊥

taξ)
⊗2

√
2!

almost everywhere. For x ∈ A, there exists

a unique x̃ ∈ ∂A such that x = x̃+ψa(x)a. For almost every (x, y) ∈ A×A and for large
n, we have(

n−1∑
i=0

Eri,nE
⊥
ri+1,n

ξ ∧ E⊥
ri,n

ξ

)
(x, y) =

1√
2!

n−1∑
i=0

(
χ(

A+ itan

)
∩
(
A\A+

(i+1)ta
n

)(x)

χ(
A\A+ itan

)(y) −χ(
A\A+ itan

)(x)χ(
A+ itan

)
∩
(
A\A+

(i+1)ta
n

)(y)
)
ξ(x)⊗ ξ(y)

When ψa(x) < ψa(y), x ∈ A\A+ ita
n and y ∈ (A+ ita

n )∩(A\A+ (i+1)ta
n ) for some 0 ≤ i ≤

n − 1. Hence,
(∑n−1

i=0 Eri,naE
⊥
ri+1,na

ξ ∧ E⊥
ri,na

ξ
)
(x, y) =

−(E⊥
taξ)(x)⊗(E⊥

taξ)(y)√
2!

. Similarly

if ψa(x) > ψa(y),
(∑n−1

i=0 Eri,naE
⊥
ri+1,na

ξ ∧ E⊥
ri,na

ξ
)
(x, y) =

(E⊥
taξ)(x)⊗(E⊥

taξ)(y)√
2!

. We

conclude that x
(2)
t =

∫ t
0
E⊥
raξ dE

⊥
raξ =

ε
(2)
a (E⊥

taξ)
⊗2

√
2!

.

Before proving x
(k)
t =

ε
(k)
a (E⊥

taξ)
⊗k

√
k!

for any k ∈ N, let us fix few notation. For

ξ1, ξ2, . . . , ξn, η ∈ H, set η(k)� (ξ1⊗ ξ2⊗· · ·⊗ ξn) = ξ1⊗ ξ2⊗· · ·⊗ ξk−1⊗η⊗ ξk⊗· · ·⊗ ξn
for 1 ≤ k ≤ n. With this notation, we can see that

ξ1 ∧ (ξ2 ∧ ξ3 ∧ · · · ∧ ξn) =
1√
k

n∑
j=1

(−1)j−1ξ
(j)
1 � (ξ2 ∧ ξ3 ∧ · · · ∧ ξn).

Assume that x
(k−1)
t =

ε
(k−1)
a (E⊥

taξ)
⊗(k−1)√

(k−1)!
for some k ∈ N. Now consider the following

expression. For almost every (x1, x2, . . . , xk) ∈ Ak and for large n, we have

(
n−1∑
i=0

Eri,n E⊥
ri+1,n

ξ ∧
ε
(k−1)
a (E⊥

ri,na
ξ)⊗(k−1)√

(k − 1)!

 (x1, x2, . . . , xk)

=
n−1∑
i=0

1√
k

k∑
j=1

(−1)j−1
(
(Eri,nE

⊥
ri+1,n

ξ)(j)

�
ε
(k−1)
a (E⊥

ri,na
ξ)⊗(k−1)√

(k − 1)!

 (x1, x2, . . . , xk)

https://doi.org/10.1017/S0013091522000554 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091522000554


16 A. Arjunan

=
n−1∑
i=0

1√
k!

k∑
j=1

(−1)j−1χ(
A+ itan

)
∩
(
A\A+

(i+1)ta
n

)(xj)ε(k−1)
a (x1, x2, . . . , x̂j , . . . , xk)

k∏
l=1,l 6=j

χ(
A+ itan

)(xl)(E⊥
taξ)

⊗k(x1, x2, . . . , xk).

There exist unique i and j such that xj ∈ (A + ita
n ) ∩ (A \ A + (i+1)ta

n ) and

x1, x2, . . . , x̂j , . . . , xk ∈ A+ ita
n .

Hence,

(∑n−1
i=0 Eri,nE

⊥
ri+1,n

ξ ∧
ε
(k−1)
a (E⊥

ri,na
ξ)⊗(k−1)√

(k−1)!

)
=

ε
(k)
a (E⊥

taξ)
⊗k

√
k!

almost every-

where. By definition, we have

x
(k)
t =

∫ t

0

ε
(k−1)
a (E⊥

raξ)
⊗(k−1)√

(k − 1)!
dE⊥

raξ = lim
n→∞

n−1∑
i=0

Eri,nE
⊥
ri+1,n

ξ ∧
ε
(k−1)
a (E⊥

ri,na
ξ)⊗(k−1)√

(k − 1)!
.

Hence, we conclude that for each k ∈ N, x(k)t = 1√
k!
ε
(k)
a (E⊥

taξ)
⊗k and ut = eεa(E⊥

taξ).

This completes the proof. �

4. Characterization for decomposablility of CAR flows

Let us recall the definition of a decomposable product system from [12]. Let α = {αx}x∈P
be an E 0-semigroup over P on B(H ). For x ∈ P , let E(x) = {T ∈ B(H) : αx(A)T =
TA for all A ∈ B(H)}. Then E = {E(x) : x ∈ P} has the structure of the product
system. We say that a product system over P is spatial if it admits a unit. We also use
the notation αV and βV to denote the CCR flow and the CAR flow associated to the
isometric representation V.
For x ∈ P , a non-zero element u ∈ E(x) is said to be a decomposable vector if for

y ∈ P with y ≤ x, there exist v ∈ E(y) and w ∈ E(x − y) such that u = vw. Denote
the set of all decomposable vectors in E (x ) by D(x ). We say that the product system
E = {E(x) : x ∈ P} is decomposable if the following conditions are satisfied.

(1) For every x, y ∈ P , D(x)D(y) ⊆ D(x+ y).

(2) For every x ∈ P , D(x ) is total in E (x ).

We call an E 0-semigroup is decomposable if its associated product system is decom-
posable. It is known that the CCR flow αV associated to an isometric representation V
of P is decomposable (see [12, Proposition]). The converse of this statement is also true
and is given in the following theorem.

Theorem 1. [12, Theorem 4.6] Let E be a decomposable product system over P
which admits a unit. Then there exists an isometric representation V of P such that E is
isomorphic to EαV as product systems. Here EαV denotes the product system associated
to the CCR flow αV.
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In fact, a much stronger result was proved in [12]. More precisely, we have the following
theorem.

Theorem 2. The set of all isometric representations of P, up to unitary equivalence,
are in bijective correspondence with the set of all spatial decomposable product systems
over P, up to cocycle conjugacy.

Let E be a spatial product system over P. Fix a unit (Ωx)x∈P of E. An element
u ∈ E(x) is said to be an additive decomposable vector if for any y ∈ P with x− y ∈ P ,
there exist v ∈ E(y) and w ∈ E(x − y) such that u = v ⊗ Ωx−y + Ωy ⊗ w. Denote the
set of all additive decomposable vectors in E (x ) by A(x ). A spatial product system E is
said to be embeddable if the following conditions hold.

A(x)⊗ Ωy ⊆ A(x+ y) and Ωx ⊗A(y) ⊆ A(x+ y) for every x, y ∈ P.

In [12], Sundar has provided the construction of an isometric representation of P from
a decomposable product system that admits a unit. But in [10], Srinivasan has provided
the construction of an isometric representation of P from a spatial embeddable product
system over P. It was shown that the isometric representation constructed out of αV

and βV is unitary equivalent to V itself (see [10, Proposition 4.1]). He also showed that
any isomorphism between two spatial embeddable product systems over P, by fixing
the canonical unit, induces a conjugate unitary between the corresponding isometric
representations of P (see [10, Definition 3.3]) and the discussion following that.
Let A be a P -space and let K be a Hilbert space of dimension k with k ∈ N. Let us

denote the CAR flow associated to the isometric representation V (A,K) by β. The goal
of this section is to exhibit the necessary and sufficient condition for the CAR flow β to
be decomposable. With the foregoing notation, we have the following proposition.

Proposition 6. Let E be the product system associated to β. Assume that E = {E(x) :
x ∈ P} is decomposable. Then for any given b, c ∈ int(P ), we have

ε
(2)
b

(
E⊥
sbE

⊥
tcξ
)⊗2

= ε(2)c
(
E⊥
sbE

⊥
tcξ
)⊗2

a.e for all ξ ∈ L2(A,K).

Proof. Without loss of generality, we assume that b and c are linearly independent.
Choose a linearly independent collection v1, v2, . . . , vd ∈ int(P ) with v1 = b and v2 = c.
Let Q = {r1v1+r2v2+ · · ·+rdvd : for all ri ≥ 0 with 1 ≤ i ≤ d}. Since E is decomposable
over P, it is also decomposable over Q. For the product system {E(x)}x∈Q over Q, let
D(x ) be the set of all decomposable vectors in E (x ). By Proposition 5, we have

D(sb) = {λT
eεb (E⊥

sb
ξ)

: λ ∈ C \ {0} and ξ ∈ L2(A,K)}, and

D(tc) = {µT
eεc (E⊥

tcη)
: µ ∈ C \ {0} and η ∈ L2(A,K)}.

As E is decomposable over Q, D(sb)D(tc) = D(sb + tc) = D(tc)D(sb), that is, for any
ξ, η ∈ L2(A,K), there exist ξ′, η′ ∈ L2(A,K) such that

T sb
eεb (E⊥

sb
ξ)
T tc
eεc (E⊥

tcη)
= T tc

eεc (E⊥
tcη

′)T
sb

eεb (E⊥
sb
ξ′).
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By applying ζ on both sides, we have

Γa(Vsb+tc)ζ ∧ Γa(Vsb)e
εc(E⊥

tcη)∧eεb(E⊥
sbξ) =

Γa(Vsb+tc)ζ ∧ Γa(Vtc)e
εb(E⊥

sbξ
′) ∧ eεc(E⊥

tcη
′).

The above equation together with Lemma 6 gives

eεc(VsbE
⊥
tcη) ∧ eεb(E⊥

sbξ) = eεb(VtcE
⊥
sbξ

′) ∧ eεc(E⊥
tcη

′).

Applying Γa(E
⊥
sbE

⊥
tc) on both sides, we have eεb(E⊥

sbE
⊥
tcξ) = eεc(E⊥

sbE
⊥
tcη

′). Equating
one-particle space and two-particle space on both sides, we have E⊥

sbE
⊥
tcξ = E⊥

sbE
⊥
tcη

′,
and hence,

ε
(2)
b (E⊥

sbE
⊥
tcξ)

⊗2 = ε(2)c (E⊥
sbE

⊥
tcξ)

⊗2 a.e for all ξ ∈ L2(A,K). �

Proposition 7. [2, Proposition 2.3(3)] Let A be a P-space and let a ∈ int(P ) be
given. Then the map ∂A× (0,∞) 3 (x, t) 7→ x+ ta ∈ Int(A) is a homeomorphism.

Let v1, v2, . . . , vd ∈ int(P ) be a linearly independent set in Rd. Define a function
ϕ : Rd−1 → R by ϕ(r1, r2, . . . , rd−1) := rd − ψvd(r1v1 + r2v2 + · · · + rdvd). The map is
well-defined. This follows from the observation that for s ∈ R, ψvd(r1v1 + r2v2 + · · · +
(rd+ s)vd) = s+ψvd(r1v1 + r2v2 + · · ·+ rdvd). With the foregoing notation, we have the
following lemma.

Lemma 7. Let a ∈ int(P ) be given. Then we have the following.

(1) The map ∂A× R 3 (x, t) 7→ x+ ta ∈ Rd defines a homeomorphism.

(2) The P-space A can be described as A = {x ∈ Rd : ψa(x) ≥ 0}.

(3) The boundary of A is given by ∂A = {x ∈ Rd : ψvd(x) = 0}. Moreover, the map

B : Rd−1 → ∂A is given by

B(r1, r2, . . . , rd−1) := r1v1 + r2v2 + · · ·+ rd−1vd−1 + ϕ(r1, r2, . . . , rd−1)vd

for (r1, r2, . . . , rd−1) ∈ Rd−1 defines a homeomorphism.

Proof. The proof of part (1) follows similar to the proof of [2, Proposition 2.3(3)].
Part (2) is clear from the definition. Note that ∂A = {x ∈ Rd : ψvd(x) = 0}. Define

ϕ : Rd−1 → R by

ϕ(r1, r2, . . . , rd−1) = rd − ψvd(r1v1 + r2v2 + · · ·+ rd−1vd−1 + rdvd)

for every (r1, r2, . . . , rd−1, rd) ∈ Rd. Now the part (3) is clear from the fact that ∂A =
{x ∈ Rd : ψvd(x) = 0}, and the remaining we leave it to the reader for verification. �
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Theorem 3. Let E be the product system over P corresponding to β. Suppose E is
decomposable, then there exists an element λ ∈ P ∗ such that A = {x ∈ Rd : 〈x|λ〉 ≥ 0}.

Proof. Let v1, v2, . . . , vd ∈ int(P ) be a linearly independent set in Rd. Fix i with
1 ≤ i ≤ d − 1 and t0 > 0. By Proposition 7 and Lemma 7(3), there exist functions f0 :
Rd−1 → Rd−1 and g0 : Rd−1 → (0,∞) such that for every r = (r1, r2, . . . , rd−1) ∈ Rd−1,
we have

B(r) + t0vi = B(f0(r)) + g0(r)vd,

that is, r1v1+r2v2 + · · ·+ rd−1vd−1 + ϕ(r)vd + t0vi =

i1 ◦ f0(r)v1 + i2 ◦ f0(r)v2 + · · ·+ id−1 ◦ f0(r)vd−1 + ϕ(f0(r))vd + g0(r)vd.

Here il : Rd−1 → R denotes the projection onto the lth coordinate for each 1 ≤ l ≤ d−1.
By equating the coefficients of v ’s on both sides, we see that f0(r) = r + t0ei and
g0(r) = ϕ(r) − ϕ(r + t0ei). Here ei = (0, 0, . . . , 1, . . . , 0) ∈ Rd−1, where 1 in the ith
place and elsewhere 0. Hence, f 0 and g0 are continuous. Similarly for δ > 0, there exist
continuous functions fδ : Rd−1 → Rd−1 and gδ : Rd−1 → (0,∞) such that

B(r) + (t0 + δ)vi = B(fδ(r)) + gδ(r)vd for all r ∈ Rd−1.

We claim that g0(.) is constant. Suppose not, choose r′, r′′ ∈ Rd−1 such that g0(r
′) >

g0(r
′′). Note that the map [0,∞)×Rd−1 3 (δ, r) 7→ gδ(r) ∈ (0,∞) is continuous. Choose

δ0 > 0 such that g0(r
′) > gδ0(r

′′). Then there exists a compact neighbourhood K of

int(A)× int(A) containing
(
(t0, r

′), (t0 + δ0, r
′′)
)
such that

t < t′ and gt(r) > gt′(s) for every (B(r) + tvi, B(s) + t′vi) ∈ K.

This implies that ε
(2)
vi 6= ε

(2)
vd

on K. This is a contradiction to Proposition 6. Hence, g0(.)
is a constant function.
Without loss of generality, we assume that ∂(A) 3 0. Then ϕ(0) = 0. Using this equality

and the fact that g0(.) is a constant function, we see that for every i with 1 ≤ i ≤ d− 1,
ϕ(r + s0ei) = ϕ(r) + ϕ(s0ei) for r ∈ Rd−1 and s0 > 0. Consequently, we deduce that
ϕ(r) = ϕ(r + c) − ϕ(c) for every r ∈ Rd−1 and c = (c1, c2, . . . , cd−1) with ci > 0. Let
r, r′ ∈ Rd−1 be given. Choose c = (c1, c2, . . . , cd−1), c

′ = (c′1, c
′
2, . . . , c

′
d−1) ∈ Rd−1 with

ci, c
′
i > 0 and ci + ri, c

′
i + r′i > 0 for each 1 ≤ i ≤ d− 1. Then we have,

ϕ(r) + ϕ(r′) = ϕ(r + c)− ϕ(c) + ϕ(r′ + c′)− ϕ(c′)

= ϕ(r + c) + ϕ(r′ + c′)− (ϕ(c) + ϕ(c′))

= ϕ(r + r′ + c+ c′)− ϕ(c+ c′) = ϕ(r + r′).

Since ϕ is continuous, there exists a unique µ ∈ Rd−1 such that ϕ(r) = 〈r|µ〉 for every
r ∈ Rd−1. By Lemma 7(2), rd−ϕ(r1, r2, . . . , rd−1) = rd−〈r|µ〉 = ψvd(r1v1+ r2v2+ · · ·+
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rdvd) ≥ 0 for the points of A. Therefore A = {x ∈ Rd : 〈x|λ〉 ≥ 0} for some λ ∈ Rd. Since
P ⊆ A, λ ∈ P ∗. This completes the proof. �

Recall that a P -space A is proper if the isometric representation V (A,C) associated to A
is proper. In other words, A is proper if there exist x, y ∈ P such that (A+x)∩(A\A+y) 6=
∅ and (A + y) ∩ (A \ A + x) 6= ∅. We remark here that any P -space A of the form
A = {x ∈ Rd : 〈x|λ〉 ≥ 0}, for some λ ∈ P ∗, is not proper. For, let x, y ∈ P . Note that
A+x = {z ∈ Rd : 〈z−x|λ〉 ≥ 0} and A \A+ y = {z ∈ Rd : 〈z|λ〉 ≥ 0 and 〈z− y|λ〉 < 0}.
Then we have

(A+ x) ∩ (A \A+ y) = {z ∈ Rd : 〈z|λ〉 ≥ 0, 〈z − x|λ〉 ≥ 0 and 〈z − y|λ〉 < 0}, and
(A+ y) ∩ (A \A+ x) = {z ∈ Rd : 〈z|λ〉 ≥ 0, 〈z − y|λ〉 ≥ 0 and 〈z − x|λ〉 < 0}.

Suppose there exist x, y ∈ P such that (A+x)∩ (A\A+y) 6= ∅. Then there exists z0 ∈ A
such that

〈z0 − x|λ〉 ≥ 0 and 〈z0 − y|λ〉 < 0. (4.1)

Let z ∈ A be any element such that

〈z − y|λ〉 ≥ 0. (4.2)

Then we have

〈z − x, λ〉 = 〈z − y|λ〉+ 〈y − z0|λ〉+ 〈z0 − x|λ〉 (By inequalities (4.1) and (4.2))

> 0.

This implies that (A + y) ∩ (A \ A + x) = ∅. Similarly, if (A + y) ∩ (A \ A + x) 6= ∅,
then we have (A + x) ∩ (A \ A + y) = ∅. Therefore, either (A + x) ∩ (A \ A + y) = ∅ or
(A+ y) ∩ (A \A+ x) = ∅ for every x, y ∈ P . Hence, any half space is not proper.

Proposition 8. Let v1, v2, . . . , vd be a linearly independent set in Rd and let Q :=
{r1v1 + r2v2 + · · · + rdvd : each ri ≥ 0}. Let E = {E(x)}x∈Q be a product system over
Q. For 1 ≤ i ≤ d, set E(i) = {E(i)(r) = E(rvi) : r ≥ 0} and denote the set of all
decomposable vectors in E(i)(r) by D(i)(r) for r ≥ 0. Suppose for 1 ≤ i, j ≤ d and
r, s ≥ 0, D(i)(r)D(j)(s) = D(j)(s)D(i)(r). Then E is decomposable over Q if and only if
each E(i) is decomposable over R+.

Proof. We only prove for d =2 and the proof for general d is similar. Assume that E is
a decomposable product system. Then each E(i) is a decomposable product system over
R+. Conversely, assume that each E(i) is decomposable over R+ and D(1)(r)D(2)(s) =
D(2)(s)D(1)(r) for every r, s > 0. We claim that D(rv1+sv2) = D(1)(r)D(2)(s), for every
r, s > 0. Clearly, D(rv1 + sv2) ⊆ D(1)(r)D(2)(s). On the other hand, let u ∈ D(1)(r)
and v ∈ D(2)(s). Let r′v1 + s′v2 ∈ Q be such that r′v1 + s′v2 < rv1 + sv2. Then
(r − r′)v1 + (s− s′)v2 ∈ int(Q), that is, r > r′ and s > s′. Write u = u′u′′ for some u′ ∈
E(1)(r′) and u′′ ∈ E(1)(r−r′). Then we have u′ ∈ D(1)(r′) and u′′ ∈ D(1)(r−r′). Similarly
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we have v = v′v′′ ∈ D(2)(s′)D(2)(s − s′). By using the relation D(1)(r − r′)D(2)(s′) =
D(2)(s′)D(1)(r− r′), we have u′′v′ = ṽũ for some ṽ ∈ D(2)(s′) and ũ ∈ D(1)(r− r′). Now
we have

uv = u′u′′v′v′′ = uṽũv′′ ∈ E(r′v1 + s′v2)E((r − r′)v1 + (s− s′)v2).

This implies that uv ∈ D(rv1 + sv2), and hence D(rv1 + sv2) = D(1)(r)D(2)(s). Clearly,
D(rv1 + sv2) is total in E(rv1 + sv2). Now for any r, r′, s, s′ > 0, we have

D(rv1 + sv2)D(r′v1 + s′v2) = D(1)(r)D(2)(s)D(1)(r′)D(2)(s′)

= D(1)(r)D(1)(r′)D(2)(s)D(2)(s′)

= D(1)(r + r′)D(2)(s+ s′)

= D((r + r′)v1 + (s+ s′)v2)

Therefore, E is a decomposable product system over Q. �

Proposition 9. Let A = {x ∈ Rd : 〈x|λ〉 ≥ 0} for some λ ∈ P ∗ and let E be the
product system for the CAR flow over P associated to the P-space A of multiplicity k.
Then E is decomposable over P.

Proof. Since P ⊆ A, choose a linearly independent set {v1, v2, . . . , vd} in A such that
v1, v2, . . . , vd−1 ∈ ∂A and P ⊆ Q = {r1v1 + r2v2 + · · · + rdvd : each ri ≥ 0}. Note that
∂A is a d − 1 vector space over R. Observe that A is also a Q-space. Let F = {F (x)}x∈Q
be the product system for the CAR flow over Q associated to A of multiplicity k. Note
that E = {F (x)}x∈P and for 1 ≤ i ≤ d − 1, D(i)(r) = F (i)(r) = {λΓa(Vrvi) : λ ∈
C\{0}}. By Proposition 5, D(d)(r) = {λT rvd

eεd (ξ)
: λ ∈ C\{0} and ξ ∈ Ker(V ∗

rvd
)}. Clearly,

D(i)(r)D(j)(s) = D(j)(s)D(i)(r) for each 1 ≤ i, j ≤ d and r, s ≥ 0. By Proposition 8, F
is decomposable over Q. This implies that E is decomposable over P. �

Theorem 4. Let A be a P-space and let E be the product system over P for the CAR
flow associated to A of multiplicity k. Then E is decomposable over P if and only if
A = {x ∈ Rd : 〈x|λ〉 ≥ 0} for some λ ∈ P ∗.

Proof. Proof follows from the Theorem 3 and the Proposition 9. �

When a P -space A is proper, then the CCR flow and the CAR flow associated to V (A,C)

are not cocycle conjugate. Since any P -space of the form A = {x ∈ Rd : 〈x|λ〉 ≥ 0}, for
some λ ∈ P ∗, is not proper, so we cannot apply the results of [1]. In fact, we have the
following result.

Corollary 2. There are an uncountable many CCR flows cocycle conjugate to CAR
flows over P.

Proof. Let A = {x ∈ Rd : 〈x|λ〉 ≥ 0} and B = {x ∈ Rd : 〈x|µ〉 ≥ 0} for some
λ, µ ∈ P ∗. Let α be the CCR flow associated to A with multiplicity k and let β be the
CAR flow associated to B with multiplicity l.
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We claim that α is cocycle conjugate to β if and only if A=B and k = l. Let E and
F be the product systems associated to α and β, respectively. Assume that α is cocycle
conjugate to β. Then by [7, Theorem 2.9], E is isomorphic to F as product systems.
Observe that the product systems E and F are embeddable and its corresponding iso-
metric representations of P are unitary equivalent to V (A,K) and V (B,L), respectively
(see [10, Definition 3.3] and the discussion following that). Since E is isomorphic to F,
V (A,K) is unitary equivalent to V (B,L). Hence, A=B and k = l. Conversely, let A=B and
k = l. Since F is decomposable and has a unit, by Theorem 1, there exists an isometric
representation V of P such that the product system F is isometric to the product system
associated to the CCR flow αV . Since the isometric representation constructed out of F
is V (A,K), V is unitary equivalent to V (A,K). Hence, E is isomorphic to F. Since there
are uncountable many P -spaces of the form A = {x ∈ Rd : 〈x|λ〉 ≥ 0} for λ ∈ P ∗, the
proof is complete. �
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