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Stability of obliquely driven cavity flow
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The linear stability of the incompressible flow in an infinitely extended cavity with
rectangular cross-section is investigated numerically. The basic flow is driven by a lid
which moves tangentially, but at yaw with respect to the edges of the cavity. As a
result, the basic flow is a superposition of the classical recirculating two-dimensional
lid-driven cavity flow orthogonal to a wall-bounded Couette flow. Critical Reynolds
numbers computed by linear stability analysis are found to be significantly smaller than
data previously reported in the literature. This finding is confirmed by independent
nonlinear three-dimensional simulations. The critical Reynolds number as a function of
the yaw angle is discussed for representative aspect ratios. Different instability modes are
found. Independent of the yaw angle, the dominant instability mechanism is based on the
local lift-up process, i.e. by the amplification of streamwise perturbations by advection of
basic flow momentum perpendicular to the sheared basic flow. For small yaw angles, the
instability is centrifugal, similar as for the classical lid-driven cavity. As the spanwise
component of the lid velocity becomes dominant, the vortex structures of the critical
mode become elongated in the direction of the bounded Couette flow with the lift-up
process becoming even more important. In this case the instability is made possible by
the residual recirculating part of the basic flow providing a feedback mechanism between
the streamwise vortices and the streamwise velocity perturbations (streaks) they promote.
In the limit when the basic flow approaches bounded Couette flow the critical Reynolds
number increases very strongly.

Key words: shear-flow instability, vortex instability

1. Introduction

The flow of an incompressible fluid in a cavity of rectangular cross-section, driven by
the tangential motion of one or more lids, is of general importance in fluid mechanics.
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The system encompasses several fundamental flow problems such as viscous corner
eddies, corner singularities and hydrodynamic instabilities. The physics of lid-driven
cavity flows has been covered in comprehensive reviews by Shankar & Deshpande
(2000) and Kuhlmann & Romanò (2018). Another important aspect of the lid-driven
cavity derives from testing numerical methods. Owing to its simple geometry with plane
orthogonal boundaries, the mesh generation and implementation of Dirichlet boundary
conditions is straightforward. Therefore, the system has evolved to one of the main
benchmarks for numerical solvers.

Historically, the first two-dimensional steady flow computations are due to Kawaguti
(1961) and Burggraf (1966) who used finite-difference schemes on an 11 × 11 and
a 40 × 40 tensor grid, respectively. As the computational resources increased, highly
resolved benchmark data were obtained in the early 1980s by Ghia, Ghia & Shin (1982) and
Schreiber & Keller (1983) who computed steady flows up to Re = 104. Later on, Botella
& Peyret (1998) employed a spectral method together with the singularity subtraction
method (Botella & Peyret 2001) to avoid an excessive deterioration of the exponential
convergence of the spectral method by the singular boundary condition. The same method
has been employed by Albensoeder & Kuhlmann (2005) to treat three-dimensional cavity
flows, providing benchmark data for height-to-width (Γ ) and span (Λ) aspect ratios
(Γ,Λ) = (1, 1), (1,2), (1,3), and (2,1).

While benchmark data having been gathered, the lid-driven cavity naturally
served as a test bed for the development of numerical schemes. For instance,
De Vahl Davis & Mallinson (1976) examined several schemes for convection and
their stability, Ku, Hirsh & Taylor (1987) tested a pseudo-spectral Chebyshev
method, and Tuann & Olson (1978) reviewed different schemes for recirculating
flows.

Meanwhile, experiments were carried out as well. Pan & Acrivos (1967) experimentally
investigated the size of the laminar recirculating vortex as a function of the depth-to-width
ratio of the cavity. Ground-breaking experimental studies at higher Reynolds numbers
were carried out by Koseff et al. (1983), Koseff & Street (1984a,b,c) and Prasad &
Koseff (1989). They investigated a square cavity with a spanwise aspect ratio of three,
driven on its top surface by a metal belt which was held flat. At a Reynolds number
of Re = 3000 the authors discovered three-dimensional Taylor–Görtler vortices which
develop along the curved boundary layer next to the bottom corners of the cavity. Since
these three-dimensional vortices cannot be represented by two-dimensional numerical
simulations, the experimental discovery of Taylor–Görtler vortices stimulated further
research on the laminar-turbulent transition.

The lid-driven cavity flow restricted to two dimensions becomes unstable to
two-dimensional oscillatory perturbations at a relatively high Reynolds number. For a
square cavity, Shen (1991) found a Hopf bifurcation at the critical Reynolds number
Rec ≈ 104. However, due to the regularisation of the discontinuous boundary conditions
implemented the critical Reynolds number was overestimated. Auteri, Quartapelle &
Vigevano (2002b) obtained the more accurate value Rec = 8018.2 ± 0.6. The limit cycle
bifurcating from the steady basic state was computed by Auteri et al. (2002b), Peng, Shiau
& Hwang (2003) and also by Bruneau & Saad (2006). The critical Reynolds number
for two-dimensional flow was confirmed by linear stability analyses of Poliashenko &
Aidun (1995), Fortin et al. (1997) and Sahin & Owens (2003) who obtained Rec = 7763,
Rec = 8000 and Rec = 8069.76, respectively. Since the experimentally observed flow
at these Reynolds numbers is already three-dimensional, the third dimension has to be
necessarily taken into account.
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Obliquely driven cavity flow

Assuming a square cavity which is infinitely extended in the spanwise direction and
allowing the perturbation flow to be three-dimensional, Ramanan & Homsy (1994)
predicted a linear stability boundary at Rec = 594 due to a stationary long-wavelength
mode with wave number kc = 2.15 in the z-direction given in units of the inverse cavity
depth. On the other hand, Ding & Kawahara (1999) (see also Ding & Kawahara 1998)
estimated the critical Reynolds number as Rec = 920 due to an oscillatory mode with
a wave number kc = 7.4. This contradiction was resolved by Albensoeder, Kuhlmann
& Rath (2001) who systematically computed the linear stability boundary as a function
of the depth-to-width aspect ratio Γ ∈ [0.2, 4]. Depending on Γ they obtained four
different critical modes, two stationary and two oscillatory ones, which were all of a
centrifugal nature. For a square cavity with Γ = 1, the critical mode corresponding
to the Taylor–Görtler vortices observed experimentally by Koseff & Street (1984a) is
stationary and has a short wavelength with kc = 15.4. This mode becomes critical at
Rec = 786. The numerical predictions of Albensoeder et al. (2001) were later confirmed
by careful experiments of Siegmann-Hegerfeld, Albensoeder & Kuhlmann (2008); see
also Siegmann-Hegerfeld (2010). For a square cavity, Theofilis, Duck & Owen (2004)
numerically confirmed the results of Albensoeder et al. (2001).

In this work we consider the stability of the steady flow in an infinitely extended cavity in
which the flow is driven by a sliding lid which moves in its own plane, but with a velocity
vector which also has a component in the span direction, i.e. which makes an angle α with
respect to the cross-sectional plane. The first investigations of obliquely driven cavity flow
were due to Povitsky (2001) and Povitsky (2005), albeit for a finite-length cubic cavity.
When the lid moves diagonally (α = 45◦), the flow at moderate Reynolds numbers is
steady and mirror symmetric. Due to the restricted geometry up- and downstream of the
moving lid the flow in the cavity at yaw has more fine structure than the conventional
flow in a cube when the lid moves parallel to one side wall (Sheu & Tsai 2002; Feldman
& Gelfgat 2010; Kuhlmann & Albensoeder 2014; Lopez et al. 2017). By numerical
simulation, Feldman (2015) found a supercritical Hopf bifurcation in the obliquely driven
cube with α = 45◦ in which the oscillatory part of the flow breaks the mirror symmetry
with respect to the diagonal plane and arises as a streamwise vortex near the moving
wall, centred on the diagonal plane and alternating its sense of rotation with time. The
time-dependent perturbation flow has a quite complicated structure, originating from the
intricate three-dimensional basic flow. Benchmark data for the critical Reynolds number
for the diagonally driven cubic cavity flow were provided by Gelfgat (2019) who found
Rec = 2289.31 (see also Feldman & Gelfgat 2011), comparable in magnitude to the linear
stability boundary in the classical lid-driven cube of Rec = 1919.51 and Rec = 1919.37
obtained by Kuhlmann & Albensoeder (2014) and Gelfgat (2019), respectively.

Despite extensive stability analyses of the classical lid-driven cavity, only Theofilis et al.
(2004) have carried out a linear stability analysis of the flow in an infinitely extended
rectangular cavity driven by an oblique motion of the lid. They scrutinised three different
yaw angles, α = π/4, π/2 and 3π/4. For all yaw angles considered, the basic flow was
found to be linearly stable at least up to Re = 800. In the present study it will be shown
that these data must be corrected, because the two-dimensional flow turns out to become
unstable already at much lower Reynolds numbers. Another aim of our investigation is to
more systematically calculate the linear stability boundary as a function of the angle the
lid velocity makes with the walls, and to uncover the mechanics of the critical modes.

After introducing the mathematical formulation of the problem in § 2, the numerical
solution methods are discussed in § 3 and the codes are verified against data available in
the literature. Our findings for a square cavity (Γ = 1), as well as for a representative

928 A25-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

80
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.804


P.-E. des Boscs and H.C. Kuhlmann

x

y

z

O

α

−1/2

1/2

−Γ/2

Γ/2

U

Figure 1. Geometry of the problem with Cartesian coordinates centred in the cavity (O) and a lid (dark grey)
moving tangentially with velocity U under an angle α with respect to the x axis.

shallow (Γ = 0.5) and a deep cavity (Γ = 2) are presented in § 4 and the connection
of the critical curves along α is demonstrated. Flow structures and instability mechanisms
are investigated by considering the local and global production rates of kinetic perturbation
energy. Finally, limiting cases of the yaw angle and common properties of the instabilities
found are discussed in § 5.

2. Formulation of the problem

We consider the incompressible flow of a Newtonian fluid with density ρ and kinematic
viscosity ν in a rectangular cavity (figure 1). The depth d in the y-direction and the width h
in the x-direction define the aspect ratio Γ = d/h. In the z-direction the cavity is assumed
to be infinitely extended. The origin of the coordinate system is placed in the centre of the
(x, y) cross-section. The flow is driven by the steady tangential motion of a lid at the top
y = d/2 of the cavity. The lid velocity vector U = U(cosαex + sinαez), where ex and ez
are the unit vectors in the x and z directions, respectively, is inclined with respect to the x
axis with inclination (or yaw) angle α.

Using the length, time, velocity and pressure scales h, h2/ν, ν/h and ρν2/h2,
respectively, the fluid flow is governed by the non-dimensional Navier–Stokes and
continuity equations

∂u
∂t

+ u · ∇u = −∇p + ∇2u, (2.1a)

∇ · u = 0, (2.1b)

where u(x, t) = (u, v,w) is the velocity vector and p(x, t) the pressure field. Equations
(2.1) must be solved subject to the boundary conditions

u(x = ±1/2) = 0, (2.2a)

u( y = −Γ/2) = 0, (2.2b)

u( y = Γ/2) = Re(cosα, 0, sinα)T. (2.2c)

Furthermore, we consider the case of a vanishing pressure gradient in the z-direction,
∂p/∂z = 0. The problem is thus defined by three parameters: the aspect ratio Γ , the
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Obliquely driven cavity flow

inclination angle α and the Reynolds number

Re = Uh
ν
. (2.3)

Due to the translation invariance of the problem in z and t the governing equations allow
for a steady two-dimensional basic flow u0(x, y) which only depends on x and y.

We are interested in the linear stability boundary, expressed by Rec(Γ, α), at which
the two-dimensional basic flow becomes unstable to three-dimensional perturbations.
Linearising (2.1) with respect to small perturbations of the basic flow yields the linear
perturbation equations

∂u
∂t

+ u0 · ∇u + u · ∇u0 = −∇p + ∇2u, (2.4a)

∇ · u = 0, (2.4b)

where now u and p denote the deviations from the basic state.
Owing to the homogeneity in the z-direction, these equations may be solved using

normal modes (
u
p

)
=

(
û(x, y)
p̂(x, y)

)
exp(γ t + ikz)+ c.c., (2.5)

where k ∈ R is a real wave number, γ = σ + iω ∈ C a complex growth rate with real
growth rate σ and frequency ω, and c.c. denotes the complex conjugate. Inserting this
ansatz into the perturbations equations (2.4) we are left with

−γ û = (
u0∂x + v0∂y + ikw0

)
û + (

û∂x + v̂∂y
)

u0 + ∂xp̂ − (∂2
x + ∂2

y − k2)û, (2.6a)

−γ v̂ = (
u0∂x + v0∂y + ikw0

)
v̂ + (

û∂x + v̂∂y
)
v0 + ∂yp̂ − (∂2

x + ∂2
y − k2)v̂, (2.6b)

−γ ŵ = (
u0∂x + v0∂y + ikw0

)
ŵ + (

û∂x + v̂∂y
)

w0 + ikp̂ − (∂2
x + ∂2

y − k2)ŵ, (2.6c)

0 = ∂xû + ∂yv̂ + ikŵ. (2.6d)

Together with the boundary conditions û(x = ±1/2) = û( y = ±Γ/2) = 0 this system
of equations constitutes a generalized eigenvalue problem with eigenvectors (û, p̂) and
eigenvalues γ . The eigenvalues γ (k, n;Γ, α,Re) depend on the wave number k of the
disturbance, the three parameters (Γ, α,Re) and on the index n numbering the discrete
set of solutions for given k. For given Γ and α, neutral stability boundaries Ren(k, n)
are defined by σ(Re) = 0. Finally, the critical Reynolds number Rec is the lowest neutral
Reynolds number, equivalent to maxk,n σ(Re) = 0.

3. Methods of solution

All differential equations are discretized with triangular elements on a rectangular domain
(x, y) using the finite element library FEniCS (Alnaes et al. 2015). To properly resolve
the flow fields near the boundaries the mesh is refined towards all walls by subsequently
doubling the number of grid points within 5 %, 1 % and 0.5 % of the width and the depth of
the cavity. Taylor–Hood elements are employed which implement a quadratic interpolation
for the velocity fields and a linear interpolation for the pressure.
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Author Γ Grid nT nDOF Rec kc

Present 1 16 × 16 1032 7160 811.96 14.71
Present 1 20 × 20 3520 25 124 788.52 15.29
Present 1 30 × 30 6136 43 248 787.16 15.34
Present 1 40 × 40 13 976 95 328 786.39 15.37
Present 1 50 × 50 18 896 128 428 785.93 15.38
Present 1 60 × 60 24 792 167 872 785.63 15.39
Albensoeder et al. (2001) 1 spectral 141 × 141 — — 786.3 ± 6 15.43 ± 0.06
Theofilis et al. (2004) 1 spectral 48 × 48 — — 782.61 15.37
Present 2 10 × 20 1268 9100 455.29 1.7146
Present 2 20 × 40 7008 48 916 445.95 1.7181
Present 2 30 × 60 12 324 85 150 445.57 1.7178
Present 2 40 × 80 24 064 163 140 444.90 1.7183
Albensoeder et al. (2001) 2 spectral 141 × 141 — — 446.3 ± 10 1.715 ± 0.012

Present 0.5 32 × 16 2716 19 016 711.15 10.662
Present 0.5 40 × 20 7008 48 916 709.71 10.655
Present 0.5 60 × 30 12 324 85 150 707.69 10.646
Present 0.5 80 × 40 24 064 163 140 706.70 10.642
Albensoeder et al. (2001) 0.5 spectral 141 × 141 — — 706.1 ± 7 10.63 ± 0.1

Table 1. Critical Reynolds number Rec and wave number kc as functions of the grid resolution for α = 0◦.
The column labelled ‘Grid’ refers to the initial grid size before refinement, nT denotes the number of triangles,
while nDOF is the number of degrees of freedom.

3.1. Basic state
The steady two-dimensional flow (u0, p0) is computed using Newton–Raphson iteration
already implemented in the FEniCS framework, which only requires the variational
formulation and the boundary conditions. Absolute and relative convergence criteria based
on the L2 norm of the residuum are set to 10−10 and 10−8, respectively. During tracking
of the stability boundary, the basic state calculation is typically terminated due to the
absolute convergence criterion. The converged basic flow field enters the linear stability
analysis parametrically.

3.2. Linear stability analysis
Once the basic state (u0, p0) is computed the linear stability equations (2.6) are solved on
the finite element mesh for given α, Re and k using an implicitly restarted Arnoldi method
implemented in ARPACK (Lehoucq & Salinger 2001) and called within the subroutine
eigs of SciPy. In order to ensure that the method captures all the eigenvalues of interest the
dimension of the Krylov space is set to 300, while the number of converged eigenvalues
required to assume convergence is set to 50. We noticed that when lowering both these
numbers some eigenvalues might not be captured correctly.

To find the neutral curves a sensitivity-based algorithm has been developed which is
detailed in Appendix A. The required first-order sensitivity of the eigenvalues with respect
to wavelength variations is derived in Appendix B.

3.3. Code verification
In a first step a grid-convergence study for the critical Reynolds and wave numbers is
carried out. Table 1 shows (Rec, kc) as a function of the grid resolution for three aspect
ratios Γ and α = 0◦. Grid convergence is clearly obtained and the converged results
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Figure 2. (a) Growth rate σ = Re(γ ) and (b) oscillation frequency ω = Im(γ ) of the most dangerous mode
for α = 0◦, Γ = 1 for Re = 200 (dashed lines) and Re = 1000 (full lines). Results are given for the base
grid resolution of 40 × 40 in comparison with data of Ding & Kawahara (1999) (�) and Albensoeder
et al. (2001) (◦).

compare very well, i.e. within 1 %, with the reference results of Albensoeder et al.
(2001). The data suggest that a basic mesh of 40 × 40 provides already very accurate
results for Γ = 1. Note the grid specified represents the grid with equidistant spacing,
the actual grid used is refined towards the walls as specified above such that the formal
40 × 40 resolution practically is made of 13 976 elements or 95 328 degrees of freedom.
With similar arguments, the initial grids 40 × 80 and 80 × 40 for Γ = 2 and Γ = 1/2,
respectively, are used for the stability analysis for α > 0◦.

To verify the growth rate σ and the oscillation frequency ω as functions of the wave
number k, we consider Γ = 1 and α = 0◦ for which reference data are available in the
literature. To that end, the most dangerous mode has been computed for Re = 200 and
Re = 1000. Figure 2 shows the growth rates and oscillation frequencies of the fastest
growing mode for Re = 200 (dashed lines) and Re = 1000 (full lines) in comparison
with the results of Ding & Kawahara (1999) (�) and Albensoeder et al. (2001) (◦).
For Re = 200, an excellent agreement is found for all k considered, using the basic grid
resolution of 40 × 40. The numerical results for Re = 1000 also show a good agreement
with the reference data for the frequency ω. Agreement of the growth rate σ obtained
for the current resolution with the reference data is acceptable. Typically, our results are
in-between the two reference data sets and tend to compare slightly better with those of
Ding & Kawahara (1999) than with those of Albensoeder et al. (2001).

3.4. Energy analysis
In order to understand the fundamental instability mechanisms it is helpful to evaluate the
budget of the kinetic energy of the critical mode u. Taking into account the perturbation
flow vanishes on the boundaries and the nonlinear term u · ∇u is energy-preserving, the
Reynolds–Orr equation can be written as (Albensoeder et al. 2001)

dEkin

dt
=

∫
V

[
−u · (u · ∇u0)− (∇u)2

]
dV, (3.1)

where Ekin = ∫
V(u

2/2) dV and V is the volume occupied by the fluid over one period in
z. The dissipation D∗ = ∫

V(∇u)2 dV � 0 is positive and always contributes to a reduction
of the kinetic energy. If the total energy production rate I = − ∫

V u · (u · ∇u0) overcomes
the dissipation rate, the perturbation kinetic energy grows and the basic flow is unstable.
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It is useful to decompose the perturbation flow u into components parallel and
perpendicular to the basic flow (Albensoeder et al. 2001) and define

u‖ = (u · u0)u0

u2
0

and u⊥ = u − u‖. (3.2a,b)

Inserting this decomposition in (3.1) and normalising all terms with D∗ yields the
following local dissipation and production terms:

d∗ = 1
D∗

[∇ × (u⊥ + u‖)
]2
, (3.3a)

i1 = − 1
D∗

u⊥ · (u⊥ · ∇u0), (3.3b)

i2 = − 1
D∗

u‖ · (u⊥ · ∇u0), (3.3c)

i3 = − 1
D∗

u⊥ · (u‖ · ∇u0), (3.3d)

i4 = − 1
D∗

u‖ · (u‖ · ∇u0). (3.3e)

In this formulation the Reynolds–Orr equation reads as

1
D∗

dEkin

dt
= −1 +

4∑
n=1

∫
V

in dV = −1 +
4∑

n=1

In, (3.4)

where In = ∫
V in dV . The local and the total energy production rates are i = ∑

n in and
I = ∑

n In, respectively.
The four local energy production terms in describe the rate of change of the kinetic

energy density due to the transport of basic state momentum u0 by the perturbation flow
u either perpendicular (e⊥ · ∇) or parallel (e‖ · ∇) to the direction of the basic flow,
feeding to the (perpendicular or parallel) perturbation flow itself. These advective transport
mechanisms build on the local shear (i1, i2) or the local deceleration of the basic flow
(i3, i4).

Symmetries restrict the energy production terms. For instance, a local acceleration of
the basic flow with e‖ · (e‖ · ∇u0) > 0 cannot locally produce kinetic perturbation energy,
because this condition renders i4 < 0. On the other hand, a flow deceleration (e‖ · (e‖ ·
∇u0) < 0) can locally increase the kinetic energy by the process i4. Furthermore, it is
easy to see that i1 = 0 for unidirectional basic flows, and for parallel plane shear flows also,
i3 = i4 = 0. Therefore, the energy production term i2 is the dominant energy production
term in most shear-dominated systems.

The term i2 plays a major role for the centrifugal instabilities of the basic vortex flow in
the lid-driven cavity (Albensoeder et al. 2001). In this system the streamlines of the basic
flow are locally curved and the momentum of the basic flow decreases radially outward
from the vortex core due to the stationary rigid walls. The process i2 is also important in
plane shear flows in which streamwise perturbation vortices (u⊥) can extract considerable
energy from the basic flow u0 and feed this energy to the streamwise velocity perturbation
(u‖) in form of streaks leading to a considerable transient energy growth (Butler & Farrell
1992). Today the process i2 is called the lift-up mechanism. The terminology originates
from the observation that streamwise vortices seem to lift-up slow-speed streaks away from
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Obliquely driven cavity flow

the wall just before a burst event occurs, initiating the transition to turbulence in a boundary
layer flow (Kline et al. 1967; Landahl 1975; Brandt 2014). The energy production term i2
also includes the Orr mechanism (Farrell & Ioannou 1993; Jiao, Hwang & Chernyshenko
2021), or shear stress mechanism (Butler & Farrell 1992), which essentially describes the
shearing of spanwise vortices by the basic flow.

The physical transport mechanisms associated with i2 are independent of the particular
flow system. Here we shall address i2 as the lift-up term, because it turns out that the
critical modes typically arise as streamwise vortices and the contribution of the Orr
mechanism is of secondary importance. Perturbations in the form of streamwise vortices
extended along the basic flow direction can be identified by u⊥. They can efficiently
extract energy from the basic shear flow and transfer momentum, hence energy, to the
streamwise perturbation flow u‖ via the process i2. An example are the curved Görtler
vortices in the lid-driven square cavity (Albensoeder et al. 2001). Typically, the energy
transfer occurs in the region between counter-rotating streamwise vortices. Therefore,
regions (isosurfaces) of large i2 arise as elongated structures just as the streamwise
vortices. In a situation in which the lift-up process i2 dominates the energy budget of the
perturbations the isosurfaces of i2 are very similar to the isosurfaces of u‖. In such case,
typical for the present investigation, isosurfaces of i2 can safely be identified as curved
streaks.

3.5. λ2-criterion
In order to detect and visualise vortices in the perturbation flow associated with the critical
eigenmodes we use the λ2-criterion, introduced by Jeong & Hussain (1995). To that end,
the perturbation velocity gradient is decomposed into a symmetric and an anti-symmetric
part, respectively,

S(x) = 1
2

[∇u + (∇u)T
]

and 𝞨(x) = 1
2

[∇u − (∇u)T
]
. (3.5)

The vortex core is then defined as the connected region in which two of the real eigenvalues
of S2 + 𝞨2 are negative. If the eigenvalues (λ1, λ2, λ3)(x) are ordered by size, λ2 < 0
should be negative in the vortex core. A vortex is then identified as a connected region
within which λ2 < 0 and a vortex core can be visualised by displaying isosurfaces of
constant λ2 < 0.

3.6. Nonlinear numerical simulation
For the purpose of an additional verification and for a clarification of the bifurcation
character being sub- or supercritical, we also carried out full numerical simulations
of the time-dependent three-dimensional flow. To that end, the problem (2.1) was
solved by employing the spectral element code NEK5000 (Fischer, Lottes & Kerkemeier
2008).

For these calculations, the flow was assumed periodic in z with a wavelength
corresponding to 2π/kc. Using a regular tensor mesh composed of Nx × Ny × Nz =
20 × 20 × 10 elements of polynomial order p = 6 for the velocity and p = 4 for the
pressure, simulations are carried out for Γ = 1 with α = 22.5◦. Temporal integration was
performed using a third-order Adams–Bashforth scheme with third-order extrapolation of
the convective terms.
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4. Results

4.1. Basic flow
The basic flow u0 = u2-D

0 + uC
0 is the two-dimensional steady solution of (2.1) and (2.2).

It can be decomposed into a recirculating two-dimensional cavity flow u2-D
0 (x, y) driven

by the effective Reynolds number Re2-D = Re cosα, and the parallel bounded Couette
flow uC

0 (x, y) = wC
0 (x, y)ez driven by the effective Reynolds number ReC = Re sinα.

The recirculating part u2-D
0 of the flow field is independent of the Couette part of the

flow, because ∇ · u0 = ∇ · u2-D
0 = 0 and the nonlinear coupling terms uC

0 · ∇u2-D
0 = 0

vanishes. On the other hand, the parallel Couette part of the flow uC
0 depends on the

recirculating part of the flow and results from a linear equation balancing viscous diffusion
and advection by u2-D

0 in the (x, y) plane. The strength of both parts of the flow are related
to each other via the Reynolds number and the inclination angle.

In the combined basic flow u0 fluid elements have helical trajectories. This flow
structure also arises in the context of air motion in street canyons driven by oblique wind
directions (see e.g. Soulhac, Perkins & Salizzoni 2008; Zajic et al. 2011). The projections
of the fluid trajectories onto the (x, y) plane correspond to the closed streamlines of the
recirculating part u2-D

0 of the flow. The pitch of the fluid trajectories is determined by the
spanwise component uC

0 . Owing to the strong maximum principle for linear elliptic partial
differential equations (see e.g. Evans 2010), the spanwise velocity uC

0 of a fluid element
(and also its mean) is always less than the span component Re sinα of the lid velocity.
Therefore, the spanwise velocity is considerably stronger near the moving lid than in the
bulk of the cavity, and fluid elements are transported in the z-direction mainly in the upper
part of the cavity.

In the limit α → 0 the classical lid-driven cavity flow is recovered with uC
0 = 0. The

stability boundary has been investigated by several authors with Albensoeder et al. (2001)
perhaps providing the most comprehensive stability results quasi-continuously covering
the range of aspect ratios Γ ∈ [0.2, 4]. In the other limit of α → π/2, the recirculating
part u2-D

0 = 0 vanishes and the basic flow arises as a pure bounded Couette flow in a
rectangular channel which can be written in form of an infinite series

wC
0 = Re

∞∑
n=0

4(−1)n

(2n + 1)π
sinh[(2n + 1)π( y + Γ/2)]

sinh[(2n + 1)πΓ ]
cos[(2n + 1)πx]. (4.1)

The stability of this basic flow has been considered by Theofilis et al. (2004). No unstable
modes have been found by these authors, even for Reynolds numbers as large as Re =
5000. Our linear stability analysis also indicates the basic flow is linearly stable, at least up
to Re = 3000. Since the critical Reynolds numbers for lid-driven cavity flows for α = 0◦
and Γ � 0.5 satisfy Rec < 103 (Albensoeder et al. 2001), a strong stabilisation of the
basic flow is expected as α → π/2. The stability boundary Rec(α, Γ ) for intermediate
parameter values depends on the inclination angle α and on the cross-sectional aspect
ratio Γ . Therefore, calculations have been carried out for selected aspect ratios, varying α
quasi-continuously, and for representative yaw angles, varying Γ .

4.2. Linear stability for Γ = 1
Neutral Reynolds and wave numbers for Γ = 1 are shown in figure 3(a) as functions
of the inclination angle α. The critical Reynolds number (full bold lines) is made of
different segments belonging to different neutral curves (full lines, colour coded) leading
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Figure 3. Neutral Reynolds number (a), wave number (b), angular frequency (c) and energy budget (d) as
functions of α for Γ = 1 for the most dangerous modes. Bold lines indicate the critical values. Different
branches are distinguished by colour and Roman numerals. The numbers at the top of (a) denote the angles at
which critical curves intersect (vertical dotted lines). The square (�), circle (◦) and diamond (♦) indicate the
critical Reynolds number, wave number and oscillation frequency, respectively, obtained by Albensoeder et al.
(2001) for α = 0◦. In (d), I1, I2, I3 and I4 are shown by dashed, full, dash–dotted and dotted lines, respectively.

928 A25-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

80
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.804


P.-E. des Boscs and H.C. Kuhlmann

Γ α (◦) Mode Rec kc ωc I1 I2 I3 I4
∑

n In

0.5 0.00 I 706.7 10.64 −818.87 0.1059 0.6128 0.1016 0.1796 1.000
15.00 I 600.6 11.00 −323.27 0.2029 0.5943 0.1118 0.0910 1.000
40.00 I 858.7 9.05 −2070.37 0.4200 0.5433 0.0595 −0.0228 1.000
50.00 II 1112.1 7.81 −1234.75 0.0712 0.7796 0.1039 0.0453 1.000
65.00 III 984.0 4.13 −1237.96 0.1293 0.8427 0.0556 −0.0277 1.000
75.00 III 1304.7 2.56 −1112.10 0.0774 0.9344 0.0256 −0.0375 1.000

1 0.00 I 786.4 15.37 0.00 0.0405 0.6784 0.1795 0.1015 1.000
2.50 I 792.4 15.34 −225.42 0.0418 0.6787 0.1798 0.0996 1.000
6.00 II 795.1 15.27 −0.876 0.0396 0.6847 0.1793 0.0965 1.000
0.00 III 937.8 7.39 −460.26 0.0012 0.6787 0.1922 0.1279 1.000

22.50 III 619.9 6.96 −454.55 0.0740 0.6717 0.2219 0.0323 1.000
40.00 IV 834.2 7.76 −278.25 0.0166 0.8234 0.1434 0.0164 1.000
60.00 V 637.3 4.59 −524.45 0.0415 0.9066 0.0750 −0.0233 1.000
67.50 VI 643.3 3.19 −629.57 0.0730 0.9327 0.0548 −0.0606 1.000
75.00 VII 631.6 1.82 −253.10 0.0044 0.9447 0.0189 0.0319 1.000

2 0.00 I 444.9 1.72 0.00 −0.0283 0.7363 0.0803 0.2117 1.000
50.00 I 269.1 1.75 −107.51 0.0438 0.8276 0.1193 0.0093 1.000
75.00 I 483.9 1.11 −182.74 0.0070 0.9559 0.0269 0.0102 1.000
85.00 II 1159.2 0.68 −159.68 −0.0029 0.9076 0.0016 0.0937 1.000

Table 2. Critical data and integral production rates of kinetic energy as functions of the aspect ratio Γ and
the inclination angle α of the lid velocity vector.

to qualitatively different critical modes, depending on α. As α approaches π/2, the critical
wave number becomes very small (figure 3b), indicating the critical mode becomes nearly
two-dimensional. Numerical data for the critical parameters are listed in table 2 for several
representative yaw angles α.

4.2.1. Modes I and II
At α = 0◦ the classical Taylor–Görtler mode (mode I, Albensoeder et al. 2001) with
relatively high wave number is recovered. As the inclination angle increases from zero,
the Taylor–Görtler mode I with a small wavelength evolves continuously and changes only
slightly due to the Couette part of the basic flow. While the Taylor–Görtler mode I is
stationary for α = 0◦, the Görtler vortices drift in the positive z-direction with a phase
velocity which increases as α increases. From figure 3(b,c), it can be observed that the
phase velocity of the Görtler mode increases nearly linearly with α.

When α is increased, the basic flow is slightly stabilised until, at α ≈ 4.3◦, the critical
mode I (blue) changes to mode II (grey) which has a similar wave number. Mode II very
much resembles mode I and the corresponding neutral stability boundary extends down to
α = 0◦ (not shown). At α = 0◦ mode II is only the second most dangerous mode and, to
the best of our knowledge, it has not yet been reported in the literature.

The neutral mode II is illustrated in figure 4 for α = 6◦. Shown is the perturbation
velocity field u in the plane y = 0 (figure 4a) and in a plane z = const. (figure 4b) in
which the energy production rate i takes its global maximum. In addition, figure 4(b)
shows the basic state in the form of streamlines of u2-D

0 and, in colour from yellow
to red, the magnitude of uC

0 . The energy transfer from the basic flow to the critical
mode primarily arises in the boundary layer of u2-D

0 with curved streamlines in regions
(blue) where the direction of the perturbation flow makes an angle of approximately 45◦
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Figure 4. Mode II (grey in figure 3) for α = 6◦, Ren = 795.07, kn = 15.27. (a) Shown over one period in z are
the perturbation velocity vector field (u,w) in the plane y = 0 (arrows), the perturbation velocity v (yellow–red)
normal to y = 0 with v > 0 (full lines) and v < 0 (dashed lines), and the total local production i (blue shading).
The horizontal black dashed line shows the plane on which perturbation quantities are evaluated in (b).
(b) Perturbation velocity vectors (u, v) in the plane z = const. in which i takes its maximum, streamlines of
u2-D

0 , magnitude of uC
0 (yellow–red), and the region in which i > 0.1 × imax (blue). (c) Isosurfaces of i on which

i = 0.1 × imax shown over two periods in z. The lid motion is indicated by the orange arrow in both (a,c), while
it moves to the right at the top of (b).

with respect to the streamlines of u2-D
0 . Finally, figure 4(c) shows a three-dimensional

view over two wavelengths of the isosurfaces of the energy production rate i at 10 %
of its maximum value imax. The region in which i > 0.1 × imax is also indicated by
the blue areas in figure 4(b). Comparing figure 4(c) with figure 4(a) it is clear that
the banana-shaped regions of high energy transfer are reflecting the perturbation vortex
structures on which the energy transfer relies. The perturbation vortices are located just
in-between neighbouring isosurfaces of i shown in figure 4(c). Since the energy budget is
dominated by I2, the isosurfaces shown in figure 4(c) very well approximate isosurfaces
of alternating streaks, i.e. of u‖, produced by the Taylor–Görtler vortices (u⊥). This
correspondence is demonstrated further below in figure 6(c).

Mode II very much resembles the classical Taylor–Görtler mode I for α = 0◦
(Albensoeder et al. 2001) with strong vortices on the wall at x = −1/2, upstream of the
moving lid, where the energy production peaks. On the downstream wall at x = 1/2 the
vortices are much weaker. The weak vortices on the downstream wall are slightly offset
in the positive z-direction as compared with the vortices on the upstream wall (figure 4a),
as a result of the Couette part of the basic flow. Hence, the vortices tend to be slightly
spiral with a small pitch. For α < 5.9◦, this mode propagates in the negative spanwise
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direction as can be seen from figure 3(c). This means that for the small range of α for which
this mode is the critical mode, it propagates against the z-component of the lid velocity.
Progressively, the phase velocity diminishes and changes sign such that, for α > 5.9, the
wave propagates in the same z-direction as the lid. Again, the propagation speed scales
approximately linearly with the yaw angle α.

4.2.2. Mode III
Near α = 5.8◦ the critical mode II (grey) changes to mode III (orange in figure 3) which
has approximately half the wave number as the low-α Taylor–Görtler modes. It can be
seen from figure 3 that the neutral mode III originates from α = 0◦ and has already
been reported (Ding & Kawahara 1999; Albensoeder et al. 2001). Unlike mode I, which
is stationary at α = 0◦, mode III is oscillatory at α = 0◦ and arises as a pair of waves
travelling in the ±z directions. As α increases from zero, the degeneracy of the neutral
Reynolds number is removed and the basic flow is strongly destabilised with respect to the
mode which propagates in the negative z-direction (opposite to the direction of the Couette
part of the basic flow), while the basic state is stabilised with respect to the complex
conjugate mode which travels in the positive z-direction. This behaviour can be inferred
from the slope ∂ReIII

n /∂α|α=0◦ /= 0 in figure 3(a). After the neutral mode III has become
critical for α > 5.8◦ the propagation direction of mode III turns in the positive z-direction
at α = 9.6◦ (figure 3c). For larger α, the magnitude of the oscillation frequency increases
monotonically with α, indicating an increasing phase velocity. For α � 15◦, the increase
of |ωn| is approximately linear in α.

Mode III is illustrated in figure 5 for α = 0◦, 22.5◦ and 35◦, showing the same quantities
as in figure 4. Similar to mode II the critical mode III arises as vortices which are the
strongest near the upstream wall at x = −1/2. The vortices, best seen in figure 5(b) for
α = 22.5◦, have a similar extension in the wall-normal direction in both cases. However,
different from mode II at α = 6◦, mode III has a much larger wavelength throughout the
range of yaw angles over which it is critical (cf. figures 3 and 5). Near the downstream wall
we do not find the same vortices. Rather, in the plane y = 0 larger-scale vortex structures
occupying the full width of the cavity can be identified. Furthermore, the pitch of the
vortices of mode III is larger than that for mode II which can be seen by correlating the
vortex structures (e.g. the isolines of v in the plane y = 0) near the two walls at x = ±1/2.

Common to modes I, II and III, they all extract most of their energy from the basic
state in the curved boundary layer of u2-D

0 on the upstream wall (see also Albensoeder
et al. 2001). In addition, we also find minor contributions to the energy production near
the bottom of the cavity. Correspondingly, the energy budgets of all three modes are very
similar (table 2, figure 3d). All modes destabilise the basic flow primarily through the
process described by i2 (3.3c). Therefore, the modes I, II and III may be called spiral
Taylor–Görtler vortices.

For constant Reynolds number Re, the effective Reynolds numbers for the recirculating
part of the basic flow and for the Couette part of the basic flow scale like Re2-D ∼ cos(α)
and ReC ∼ sin(α), respectively. Therefore, as α increases for Re = const., the velocity
magnitude and shear rate of the recirculating part of the basic flow decrease monotonically,
because Re2-D decreases. Since the shear in the two-dimensional curved boundary layer
drives the Taylor–Görtler instability, an increase of the yaw angle should result in a
certain stabilization of the basic flow with respect to modes building on the Taylor–Görtler
mechanism. However, a stabilisation of the basic flow with increasing α is not generally
found. For instance, the critical Reynolds number for mode III decreases and reaches a
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Figure 5. Neutral mode III for α = 0◦, kn = 7.38 (a,d,g), α = 22.5◦, kn = 6.96 (b,e,h), and α = 35◦, k = 6.08
(c, f,i). Shown are the same quantities as in figure 4, except that (g,h,i) show the isosurfaces of i on which
i = 0.2 × imax for only one period in z.
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minimum near α ≈ 22.5◦. This behaviour can be explained by the Couette part of the
basic flow wC

0 which exhibits a plateau in the centre of the cavity and significant gradients
near the boundaries from which kinetic energy can be extracted. Furthermore, the vortex
structures of mode III at α = 22.5◦ are larger than at α = 0◦ (figure 5a,b). Associated
with the structural changes of the neutral mode, also the region of energy production
within which i2 (lift-up) is dominant changes and, for increasing α, extends over the
bottom of the cavity up to the wall downstream of the moving lid (figure 5d–f ).
Interestingly, the extended isosurfaces of perturbation-energy production of the oscillatory
mode III for α = 0◦ make an angle of ≈ 25◦ with respect to the direction of motion of
the lid (figure 5g). As the yaw angle α is increased, the orientation of the production
isosurfaces, and, thus, the perturbation vortices, turns into the direction of the lid
velocity such that, near the minimum of the critical Reynolds number at α ≈ 22.5◦, the
perturbation-energy production surfaces are approximately aligned parallel to the (x, y)
plane (figure 5h).

4.2.3. Mode IV
Beyond α ≈ 22.5◦ (minimum of ReIII

c (α)) mode III is less efficient in extracting energy
from the basic flow, and for α > 37.4◦, mode IV (red in figure 3) becomes critical with a
critical wave numbers kc ≈ 8, slightly larger than the one of mode III. Furthermore, the
magnitude of the phase velocity |−ωc/kc| is about a factor of two smaller than the one
of mode III. The lift-up mechanism I2 becomes even more preponderant in the integral
perturbation-energy budget, while the contribution due to I3 (anti-lift-up) decreases to
14 % for α = 40◦ (table 2, figure 3d).

Mode IV is visualised in figure 6 for α = 40◦. The critical mode in the (x, y)
cross-section arises as a series of counter-rotating vortices aligned, one after the other,
along the outer streamlines of the two-dimensional part u2-D

0 of the basic flow (figure 6b).
As the wave propagates, the perturbation vortices travel, in the (x, y) plane, in the direction
of u2-D

0 (clockwise in figure 6b). This property of the perturbation flow in the (x, y) plane
is similar to the pure two-dimensional critical mode in a square cavity in which a double
row of vortices (vortex street) circulates about the vortex core (Cazemier, Verstappen &
Veldman 1998; Auteri, Parolini & Quartapelle 2002a).

In the third dimension the perturbation vortices extend in a spiral fashion wrapping
about the basic vortex core of u2-D

0 . This is illustrated in figure 6(d) by isosurfaces of λ2 =
−3 which are approximately aligned with the three-dimensional basic flow u0. The regions
of high local energy production i (blue in figure 6b,c) are approximately centred between
two neighbouring spiral perturbation vortices. Figure 6(c) reveals that the structures of
i, i2 and |u‖| superimpose almost perfectly. The close agreement of the isosurfaces of i
and i2 is not surprising, because I2 represents 82 % of I (table 2). But we also observe
that the threads of i are nearly congruent with the isosurfaces of |u‖| and, hence, with
streaks of the perturbation flow. Close to the lid the production isosurfaces show a double
structure (figure 6b,c), an effect which is due to the strong gradients of the basic flow
close to the lid. The spiral perturbation vortices wrapping about the swirling basic vortex
core are conceptionally similar to the azimuthally periodic spiral vortices arising in spiral
Couette and spiral Poiseuille flow (Ludwieg 1964; Meseguer & Marques 2000, 2002).
The number of spiral perturbation vortices in the present cavity is difficult to quantify
exactly, because their diameters in the (x, y) plane vary strongly. However, seven of the
vortices are clearly visible in figure 6(b,c). After passing the downstream singular corner
and being transported by the basic flow, the perturbation vortices grow stronger and attain
their maximum strength when they reach the upstream wall (figure 6a,b), where also the
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Figure 6. Critical mode IV (red in figure 3) at α = 40◦, Rec = 834.19 and kc = 7.76. (a–c) All quantities as
in figure 4, except for (c) which shows isosurfaces at i = 0.03 × imax (blue), i2 = 0.03 × imax (dark blue) and
isosurfaces of the streamwise velocity magnitude at |u‖| = 0.2 × |u‖|max (light blue). The box shown extends
one wavelength in z. (d) Isosurfaces of λ2 = −3 (orange).

local production i reaches its maximum. During the acceleration of the basic flow along
the moving lid the perturbation vortices are strongly damped, which is confirmed by the
large dissipation of perturbation energy d∗ near the moving lid (not shown). An animation
of the vortex motion in the (x, y) plane with a zoom into the downstream corner is provided
as a supplementary material available at https://doi.org/10.1017/jfm.2021.804.

Unlike modes I, II and III, the axes of the perturbation vortices of mode IV are strongly
deflected from the (x, y) plane. In this respect, the critical mode IV is a member of another
family of modes whose vorticity is primarily aligned in the z-direction.

4.2.4. Modes V to VII
Mode IV is critical only within a relatively small range of inclination angles. For α >
42.1◦, mode V (green in figure 3) becomes critical. It is illustrated in figure 7 for α = 60◦.
The critical mode has a similar spiral structure as mode IV, but with six vortices arranged
about the perimeter of the basic vortex u2-D

0 and extending over more than one period in z.
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Figure 7. Critical mode V (green in figure 3) for α = 60◦, Rec = 637.34 and kc = 4.59. All quantities as in
figure 6.

Mode V is critical in the ranges α ∈ [42.1◦, 65.7◦] and α ∈ [70.4◦, 73.6◦]. Between
these two ranges, mode V is replaced by mode VI (pink in figure 3) within
α ∈ [65.7◦, 70.4◦]. Finally, mode VII (brown in figure 3) appears as the critical mode
for α > 73.6◦. The structures of modes VI and VII are illustrated in figures 8 and 9,
respectively. Owing to the stronger Couette part uC

0 of the basic flow, in particular near
the moving lid, the vortical structures and the energy production isosurfaces, as well as
the corresponding streaks, are much more oriented in the z-direction near the lid than near
the bottom of the cavity.
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Figure 8. Critical mode VI (pink in figure 3) at α = 67.5◦ Rec = 643.2, kc = 3.19. All quantities as in
figure 4.

Consistent with the trend observed for modes IV and V, the critical wavelength λc
increases with α. Finally, mode VII undergoes a dramatic stabilisation for α � 80◦, rapidly
reaching critical Reynolds numbers which are beyond those for which our numerical solver
has been designed. We anticipate that other modes similar to mode VII become critical as
the yaw angle is further increased.

Common to the spiral vortices of modes IV to VII they grow in size and strength as
they travel in the (x, y) plane with the basic flow u2-D

0 downstream from the singular
corner at (x, y) = (1/2, 1/2). The perturbation vortices reach their maximum size and
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Figure 9. Mode VII (brown in figure 3) at α = 75◦, Rec = 631.6, kc = 1.82. All quantities as in figure 4. In
(a) the z-direction is not to scale.

strength near the wall upstream of the moving lid. As the perturbation vortices travel along
the moving lid, they shrink and cannot be unambiguously identified anymore when they
pass the downstream singular corner. The damping and size reduction of the perturbation
vortices seem to be strongly related to the acceleration of the basic flow along the moving
lid during which the length scale of the shear layer of u2-D

0 with negative vorticity shrinks,
whereas the perturbation vortices grow in the widening boundary layer of the decelerating
flow u2-D

0 along the downstream wall which has positive vorticity. Therefore, the helical
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nature of the perturbation vortices is disrupted at the downstream singular corner and the
total number of vortices present at any time in a cross-section at constant z cannot be
precisely specified, even though from an analogy with spiral Couette flow an even number
of vortices is expected.

4.2.5. General properties of the critical modes for Γ = 1
All critical modes found for Γ = 1 are destabilised by the lift-up mechanism represented
by i2 in (3.3c), whose integral contribution ranges from 68 % for α = 0◦ to 94 % for α =
75◦, as can be seen in table 2 or figure 3. The energy production is most pronounced near
the upstream wall of the cavity. Therefore, we conclude that the mechanism is essentially
a modification of the Taylor–Görtler instability mechanism which is well established for
α = 0◦. This interpretation is supported by the expectation that the pure Couette part uC

0
of the basic flow (4.1) is linearly stable and no linear instability mechanism can be derived
from this parallel shear flow alone. Since the Taylor–Görtler-like vortices are aligned with
the direction of the total basic flow u0, the pitch of the vortices of the critical helical
modes increases with α. For small α, the diameter of the vortices is small, as they scale
with the boundary layer thickness of u2-D

0 . Therefore, as α increases, more and more helical
vortices penetrate the unit cell defined by one wavelength λc of the perturbation flow (see
e.g. figure 6c,d). As the basic flow turns predominantly into the span (z) direction and
the critical wavelength increases, the Taylor–Görtler-like vortices become longer and can
grow to larger diameters (see figures 6b to 9b), because the characteristic length scale
becomes the depth of the cavity. Therefore, the trend is reversed and a lesser number of
vortices penetrate the unit cell.

The phase velocity cn = −ωn/kn of each neutral mode is shown in figure 10(a). For
each mode, it scales almost linearly with α. Scaling the phase velocity with the spanwise
component of the lid velocity Re sinα in figure 10(b), the scaled propagation speed is
almost independent of α for the second family of modes IV, V, VI, VII as well as for
mode I, which is stationary at α = 0◦. For all these modes, the scaled phase velocity is
always less than 0.5.

On the other hand, the scaled propagation speeds (figure 10b) of neutral modes which are
travelling at α = 0◦ (modes II and III) necessarily diverge as α → 0. However, the rescaled
phase velocities nearly saturate for α > 20◦. Moreover, as discussed earlier, the direction
of propagation of modes II and III is initially opposing the direction of the spanwise lid
motion for small yaw angles α.

Figure 3 reveals that the critical Reynolds numbers are less than Rec < 800 for most
inclination angles. In particular, Rec(α = 22.5◦) = 619.9 (kc = 6.96, ωc = −454.56),
Rec(α = 45◦) = 753.3 (kc = 5.56, ωc = −360.74) and Rec(α = 67.5◦) = 643.3 (kc =
3.19, ωc = −629.58). These results deviate from those of Theofilis et al. (2004) who also
performed a linear stability analysis of the same flow for α = 22.5◦, 45◦ and 67.5◦, but did
not find any unstable eigenmode at Re = 800 in the range k ∈ [0, 25]. Since our results are
at variance with these previously published data, we carried out an independent nonlinear
numerical simulation using NEK5000 for Γ = 1, α = 22.5◦ and for a slightly supercritical
Reynolds number with 800 > Re = 650 > Rec = 619.9 and periodic boundary conditions
in z with period λ = 2π/kc. Impulsively starting the lid motion from a state of rest at
t = 0, we find the basic flow to be established near t ≈ 0.5. At about the same time
small amplitude oscillations of w become visible and start growing exponentially in an
oscillatory fashion (figure 11a). Fitting the signal w(t) within the grey region shown in
figure 11(a) by wF(t) = a + beσFt sin(ωFt + c), we find the growth rate σF = 5.66 > 0
and the angular frequency |ωF| = 478.5 for spectral element polynomial order p = 6. The
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Figure 10. (a) Phase velocity cn of the neutral mode. (b) Phase velocity of the neutral mode, normalised by
the spanwise velocity of the lid Re sinα. The colour scheme is the same as in figure 3.

fit is not shown, because it cannot be visually distinguished from the simulation data on
the scale of figure 11(a). The growth rate σF compares reasonably well with the real part
σ = 4.63 of the eigenvalue of the linear stability problem at the same Reynolds and wave
number, and the oscillation frequency |ωF| is in excellent agreement with the imaginary
part of the eigenvalue |ω| = 475.7.

While relative deviations among growth rates with σ ≈ 0 obtained by different methods
may seem large, the deviations between corresponding values of Rec = Re(σ = 0) are
not. This is demonstrated in figure 11(b) which shows growth rates obtained by different
methods and resolutions. From the growth rates shown we obtain the critical Reynolds
numbers Rec = 613.9, 616.9 and 619.9, respectively, by quadratic interpolation of the data
obtained with NEK5000 and p = 6 (green), and those of the finite element linear stability
analysis with N = 80 (orange) and N = 40 (blue). Thus, the critical Reynolds number
varies by less than 1 % upon changing the methods and resolutions of the discretisation.
Moreover, the growth rates at Re = 650 obtained using the higher polynomial orders p = 8
and 10 deviate from the growth rate obtained for p = 6 only at the fourth significant digit.
Therefore, the three-dimensional simulation can be considered to be fully converged. Our
independent nonlinear simulation of the cavity flow thus confirms the instability of the
basic flow with a critical Reynolds number Rec < 620, consistent with the present linear
stability analysis.

4.3. Linear stability for Γ = 0.5
An overview on the linear stability analysis for a shallow cavity with Γ = 0.5 is shown
in figure 12. For the classical case with α = 0◦, we find that Rec = 706.7, kc = 10.64 and
ωc = 818.9. This is in very good agreement (differences less than 1 %) with the result of
Albensoeder et al. (2001) who obtained Rec = 706.1 ± 7, kc = 10.63 ± 0.01 and ωc =
928 A25-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

80
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.804


Obliquely driven cavity flow

56.5556

56.556

56.5564

56.5568

0.5 1.0 1.5

2

2.0

4

0

6

−2
650640630620610

Re

σ

t

w

N = 40

N = 80

NEK5000, p = 6

NEK5000, p = 8

NEK5000, p = 10

(a)

(b)

Figure 11. (a) Spanwise velocity component w(−0.4, 0.4, 0) obtained by nonlinear numerical simulation
using NEK5000. The lid motion is impulsively started from rest at t = 0. Shown is the saturation phase
of the basic flow and the subsequent exponential growth of an oscillatory perturbation. The parameters are
Γ = 1, α = 22.5◦, k = 6.96 and Re = 650 > Rec = 619.9. Note, the position z = 0 of the monitoring point is
arbitrary. The grey strip indicates the interval over which the signal is fitted with an exponential function (see
text). (b) Growth rates σ as functions of Re obtained by the linear stability analysis for different basic grids
with N = 40 and N = 80 in comparison to growth rates obtained by interpolating the signals from NEK5000
simulations (as shown in (a)) using different polynomial orders p = 6, 8 and 10 for the ansatz functions as
indicated by the legend.

819.9 ± 4. Except for kc our result is also in good agreement with the data of Theofilis
et al. (2004) (mode T2 from their table 7: Rec = 720.18, kc = 11.40, ωc = 838).

4.3.1. Mode I
The critical mode I at α = 0◦ is oscillatory and arises as a pair of waves with relatively
short wavelengths which propagate in the positive or negative z-direction. As α increases,
the degeneracy of the two waves (and the associated critical parameters) is removed. While
the wave propagating in the positive z-direction is stabilised, the wave propagating in the
negative z-direction, opposite to the z-component of the lid velocity vector, is destabilised
and becomes the critical mode. Increasing α, the phase velocity of the critical mode
slows down and the mode becomes stationary at α = 10.1◦. For larger yaw angles, the
mode starts propagating again, but now in the direction of the spanwise lid motion. The
same qualitative dependence on α of the propagation direction was found before for mode
IIIΓ=1.

For shallow cavities and elevated Reynolds numbers, the basic flow at α = 0◦ arises
as a spanwise vortex near the downstream end of the cavity. Similarly as described by
Albensoeder et al. (2001) for Γ = 0.25, the present basic flow at α = 0◦ and Γ = 0.5
becomes unstable due to a centrifugal instability in the region where the basic vortex
flow separates from the bottom wall. As α increases, the Couette part of the basic flow
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Figure 12. Neutral Reynolds number (a), wave number (b), angular frequency (c) and energy budget (d) as
functions of α for Γ = 0.5. Different branches are distinguished by colour and Roman numerals. Bold lines
indicate critical values. The numbers at the top of (a) are the angle at which critical curves intersect. The
square (�), the open circle (◦) and the diamond (♦) indicate the critical Reynolds number, wave number and
oscillation frequency, respectively, obtained by Albensoeder et al. (2001). Corresponding data of Theofilis et al.
(2004) are shown as an asterisk (∗) and down- (�) and up-triangle (�), respectively. In (d), I1, I2, I3 and I4 are
shown by dashed, full, dash–dotted and dotted lines, respectively.

uC
0 becomes stronger, but the basic vortex structure provided by u2-D

0 remains dominant.
This explains why the mechanics of the critical mode I for Γ = 0.5 and α = 15◦, shown
in figure 13, is similar to that at α = 0◦. From figure 13(b), the spanwise perturbation
vortex also arises near the separation of the basic flow from the bottom, indicated by the
streamlines of u2-D

0 . This is also the region of maximum energy transfer i.
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Figure 13. Critical mode I (orange in figure 12) for Γ = 0.5 and α = 15◦ with Rec = 600.6 and kc = 11.0.
All quantities as in figure 4, except for (c) showing isosurfaces of i = 0.2 × imax.

Mode I is the critical mode over a wide range of α ∈ [0◦, 45.7◦] with a minimum critical
Reynolds number of Rec = 599.5 at α = 13.6◦. For α = 0◦, the critical mode I is primarily
destabilised by the lift-up process described by i2. However, as α increases to α = 15◦,
the integral contribution I2 is reduced and, thus, cannot explain the destabilisation
by about �Re ≈ 100 compared with α = 0◦. The reason is I1 gains importance and
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overcompensates the reduction of I2 (see table 2 or figure 3d). This trend continues and, at
α = 40◦, I1 and I2 have become comparable in magnitude with a share of 42 % and 54 %,
respectively, of the total energy budget.

Different from i2, i1 vanishes in parallel flow, because the energy-transfer process of
i1 requires the direction of the basic flow to change perpendicular to itself. Therefore, i1
cannot build on gradients of the Couette part of the flow uC

0 . Moreover, as the swirling part
of the basic flow u2-D

0 becomes weaker as α increases, the destabilisation from α = 0◦

to α = 15◦ cannot be explained by u2-D
0 alone. Therefore, it is the change of the modal

structure accompanied with the increase of α which must be responsible for the ability of
the critical mode to extract more energy from u2-D

0 via i1, despite u2-D
0 becoming weaker

with α.
The change of the critical mode is demonstrated by figure 14 for α = 40◦. Compared

with α = 15◦ (figure 13) the vortex structures of the critical mode for α = 40◦ have
become stronger near the downstream half of the cavity and weaker in the upstream half.
The critical mode now arises mainly as vortices nearly perpendicular (but slightly tilted) to
the moving wall and near the downstream end of the cavity (figure 14a,b). This indicates
that the critical mode I for α = 40◦ mainly receives its kinetic energy from gradients of
the basic flow in the downstream half of the cavity, where the two regions in which i1 and
i2 dominate are interwoven in a complicated fashion (figure 14c).

4.3.2. Modes II and III
As the Couette part of the basic flow becomes dominant upon an increase of α, the critical
mode changes to mode II at α = 45.7◦ (green in figure 12). Mode II has a similar critical
wave number as mode I and it is illustrated in figure 15 for α = 50◦. The structure of
mode II is quite different from that of mode I and resembles the spiral critical modes for
Γ = 1 discussed in § 4.2. From table 2, the lift-up mechanism I2 dominates the energy
budget of the critical mode II, similar as for Γ = 1. From figure 15(b) we can see different
patches (blue) of localised energy production which are arranged around the periphery of
the basic vortex u2-D

0 . These local production regions extend in a spiral fashion in three
dimensions as shown in figure 15(c). The threads of energy production feed energy to the
helical-type of perturbation vortices which are visualised in figure 15(d) by isosurfaces of
λ2. One can identify six spiral vortices in the bulk of the flow, not all of which are visible
in an arbitrary cross-section, because, similar as for modes IVΓ=1 to VIIΓ=1 for Γ =
1, the spiral perturbation vortices are strongly suppressed when passing the downstream
corner. From figure 15(d) we can also recognise two weaker vortices per period of the flow
reaching into the upper half of the cavity near the upstream wall (x < −0.2, y > 0.05).
Since the basic flow is weak in this region, these perturbation vortex ‘appendices’ have
little effect on the instability and contribute less than ≈5 % to the energy budget.

As the inclination angle is further increased, mode III (pink in figure 12) becomes
critical at α = 55.9◦. As an example for mode III, we consider α = 65◦ in figure 16. For
mode III, the energy production I2 by the lift-up process is even more important than
for Γ = 1 with I1, I3 and I4 altogether contributing less than 16 % to the total energy
transfer (table 2). While mode III is similar to mode II, the wavelength of mode III is
about twice as long as that for mode II, and the perturbation vortices are more aligned
with the z-direction. The critical mode III is characterised by helical vortices which wind
about the recirculating basic vortex u2-D

0 . Three of the vortices are clearly visible in the
cross-section shown in figure 16(b). At the phase depicted, the major perturbation vortex
extends somewhat into the more quiescent region (with respect to u2-D

0 ) near the upstream
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Figure 14. Critical mode I (orange in figure 12) for Γ = 0.5 and α = 40◦ with Rec = 858.7 and kc = 9.05.
All quantities as in figure 4, except for (c) showing isosurfaces of i1 (blue) and i2 (green) at i1, i2 = 0.2 × imax.

corner of the cavity. In the plane shown the vortices are fed by four patches (blue) of energy
production (a double patch near the moving lid). Similar as for modes VIΓ=1 to VIIΓ=1
for Γ = 1, the spiral vortices are suppressed near the downstream singular corner and the
pitch of the perturbation vortices near the moving lid differs from the one near the bottom
of the cavity.
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Figure 15. Critical mode II (green in figure 12) for Γ = 0.5 and α = 50◦ with Rec = 1112.1 and kc = 7.81.
All quantities as in figure 6, except for λ2 = −20 in (d).

Increasing α from α = 55.9◦ the critical curve reaches a local minimum at α = 63.4◦.
On a further increase of α the basic flow is rapidly stabilised and we did not follow the
critical curve beyond α = 75◦. Up to this inclination angle, mode III remains critical and
retains the same characteristics as for α = 65◦.

4.4. Linear stability for Γ = 2
An overview on the neutral Reynolds numbers for a deep cavity with Γ = 2 is shown in
figure 17. Again, the critical data for the stationary mode at α = 0◦, Rec(α = 0◦) = 444.90
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Figure 16. Critical mode III (pink in figure 12) for Γ = 0.5 and α = 65◦ with Rec = 984.0 and kc = 4.13.
All quantities as in figure 4. In (a) the z-direction is not to scale.

and kc(α = 0◦) = 1.72 are in good agreement with those of Albensoeder et al. (2001) who
obtained Rec = 446.3 and kc = 1.71 (symbols in figure 17), while the comparison with
Theofilis et al. (2004) (Rec = 733.4 and kc = 6.57) is not so favourable. Unlike for the two
previous aspect ratios, only two different critical modes arise of which mode I is critical
within the large range α ∈ [0, 78.9] of inclination angles. A second-most dangerous mode
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Figure 17. Neutral Reynolds number (a), wave number (b), angular frequency (c) and energy budget (d) as
functions of α for Γ = 2. Different branches are distinguished by colour and capital Roman numerals. Bold
lines indicate critical values. The number at the top of the upper panel denotes the angle at which the critical
curves intersect (vertical dotted lines). The square (�), open circle (◦) and diamond (♦) indicate the critical
Reynolds number, wave number and oscillation frequency, respectively, obtained by Albensoeder et al. (2001).
In (d), I1, I2, I3 and I4 are shown by dashed, full, dash–dotted and dotted lines, respectively.

with a high wave number denoted III′Γ=1 is also shown. Its relevance and character will be
discussed in § 4.5.2 below.

As α is increased from zero, the stationary mode starts drifting in the positive
z-direction. The character of the critical mode does not change very much even at α = 50◦,
for which the critical mode is shown in figure 18. It is very similar to the stationary mode
for α = 0◦ reported in figures 20 and 21 of Albensoeder et al. (2001). The most important
region of energy production (again I2 is dominant) is located in the curved boundary
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Figure 18. Critical mode I (see figure 17) for Γ = 2 and α = 50◦ with Rec = 269.1 and kc = 1.75. All
quantities as in figure 4.
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layer of u2-D
0 just before the basic vortex flow separates from the downstream wall at

x = 1/2 (figure 18b). In the (x, y) plane the perturbation flow is a vortex slightly offset
from the basic state vortex in the direction towards the cavity centre. The perturbation
vortex changes its sense of rotation periodically in z, which leads to a modulation of
the total finite-amplitude vortex flow as has been observed experimentally for α = 0◦
and Γ = 1.6 by Siegmann-Hegerfeld, Albensoeder & Kuhlmann (2013). Associated with
the perturbation flow are periodic up- and down-flow (in the y-direction) regions at the
midplane y = 0 shown in figure 18(a,b) which arise just at the edge of the basic state
vortex.

As the inclination angle is increased beyond α ≈ 45◦, the wavelength of the critical
mode I increases and the critical mode changes to mode II at α = 78.9◦. Due to the
modal change the wavelength suffers a step reduction, but it grows again with α and
reaches λc = 2π/kc = 9.2 at α = 85◦. Mode II is shown in figure 19 for α = 85◦.
Due to the long wavelength the structure of the perturbation flow is stretched in the
z-direction. This is a consequence of the wall-bounded Couette part uC

0 of the basic
flow. Yet, the region near the separation line of the basic flow from the wall at x = 1/2
remains of crucial importance for the transfer of kinetic energy to the perturbation
(figure 19b), now being nearly exclusively due to I2. For α = 85◦, the critical mode has a
significant spanwise velocity component w. The ratios of the magnitude of the maxima
of the perturbation velocity components u and v compared with max(w) for α = 85◦
are max(u)/max(w) = 0.1950 and max(v)/max(w) = 0.1456, whereas the corresponding
ratios for α = 0◦ are max(u)/max(w) = 2.2195 and max(v)/max(w) = 1.8370. This
indicates the predominance of streaks in the perturbation flow. The streaks arise as
elongated structures of u‖ illustrated by isosurfaces of |u‖| = 0.5 max |u‖| in figure 19(c)
(the isosurfaces of i look very similar). The isosurfaces are coloured according to the
z-component of the perturbation velocity parallel to the basic flow w‖ = ez · u‖. In
addition, u⊥ is shown by arrows. The velocity components of u⊥, representing the
streamwise perturbation vortices, are almost confined to the (x, y) plane. Furthermore,
the z-component ez · u⊥ is about ten times smaller in magnitude than the maximum streak
velocity max |u‖|. The framing of the streaks by pairs of streamwise vortices is a visual
confirmation for the lift-up effect being the main instability mechanism.

Similar as for Γ = 1 and Γ = 0.5, the basic flow is strongly stabilised with respect
to linear perturbations as α → 90◦ (figure 17). Finally, common to all aspect ratios is
an increase of the critical wavelengths with α as well as an increase of the size of the
perturbation flow structures in the cross-sectional (x, y) plane.

4.5. Common properties of the critical modes and dependence on the aspect ratio

4.5.1. Comparison of results for Γ = 0.5 and Γ = 1
The instability scenario upon a variation of α for Γ = 0.5 is similar to that for Γ = 1.
Mode IΓ=0.5 of the former case corresponds to mode IIIΓ=1 of the latter: the propagation
direction for small yaw angles α is opposing the spanwise direction of the lid motion, but
progressively aligns with it as α increases. In both cases the critical Reynolds number
decreases with α, before increasing to values Rec(α) > Rec(α = 0◦). Furthermore, modes
IIΓ=0.5 and IIIΓ=0.5 seem to correspond to the modes VΓ=1 and VIΓ=1, respectively.
This is also suggested by the wave numbers of modes IIIΓ=1 and VΓ=1 being very close,
a behaviour which is also found for IΓ=0.5 and IIΓ=0.5.

This interpretation is also corroborated by Ren(Γ ) and σ(k) for α = 0◦ provided by
Albensoeder et al. (2001) in their figures 6 and 16, suggesting that the mode of Ding
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Figure 19. Critical mode for Γ = 2, α = 85◦, Rec = 1159.2 and kc = 0.68. (a,b) As in previous figures. The
z-direction in (a) is not shown to scale. (c) Isosurfaces at 50 % of the maximum value of |u‖|, on which
w‖ = ez · u‖ is indicated by colour. Black arrows show u⊥.
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Figure 20. Neutral Reynolds numbers Ren (a), wave numbers kn (b) and frequencies ωn (c) as functions of
the aspect ratio Γ for α = 25◦. Critical values are represented by thick lines.

& Kawahara (1999) (mode IIIΓ=1) is identical, i.e. smoothly connected in Γ , with mode
IΓ=0.5. Besides, modes (VI,VII)Γ=1 and IIIΓ=0.5 are characterised by common structures
with perturbation vortices winding about the core of the basic vortex. The perturbation
vortices of these modes are damped so strongly near the moving lid such that they are
practically disconnected from the vortices generated downstream of the singular corner.

4.5.2. Critical curves as functions of the aspect ratio
In order to verify whether the modes observed for different aspect ratios are connected
mutually, neutral curves are computed, now varying the aspect ratio Γ , for two
representative yaw angles α = 25◦ and α = 50◦. The mesh used for the computation is
initially 80 × 80 and refined in the same way as described in § 3. The computational
domain is rescaled upon variation of the aspect ratio, and the number of unknowns remains
the same for all Γ . Inferring from table 2, the critical parameters should vary from the
previously provided results only from the third or fourth significant digit depending on the
aspect ratio.

Figure 20 shows the variations of the neutral Reynolds numbers, wave numbers and
frequencies of the neutral modes for α = 25◦. It reveals that the critical modes at Γ = 0.5
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Figure 21. Neutral Reynolds numbers Ren (a), wave numbers kn (b) and frequencies ωn (c) as functions of the
aspect ratio Γ for α = 50◦. Critical values are represented in bold.

and Γ = 1 are indeed the same, continuously transforming into each other as the aspect
ratio is varied. However, the critical mode observed at Γ = 2 is only critical for Γ > 1.78
and stabilises rapidly as the aspect ratio is decreased.

In the range Γ ∈ [1.11, 1.78] mode III′Γ=1 (cyan in figure 20) is critical. This mode is
only slightly more stable than mode IΓ=2 at Γ = 2 (see also figure 17). The structure of
the velocity field and the local energy production rate of mode III′Γ=1 are extremely similar
to those of mode IIIΓ=1. Indeed, the neutral modes IIIΓ=1 and III′Γ=1 are the same. Only
in a certain narrow range of aspect ratios near Γ ≈ 1.1 the neutral curve Ren(k) develops
two local minima within a small distance in k near k ≈ 5.7. At Γ ≈ 1.11, at which both
minima are the same, the critical Reynolds number, belonging to the absolute minimum
of Ren(k), switches from one minimum to the other (from kc = 6.38 to kc = 5.06). It
is interesting to note that, for α = 0◦, a similar jump of the neutral mode IIIΓ=1 (alias
IΓ=0.5, alias the mode of Ding & Kawahara 1999) arises at Γ = 0.94 and Ren = 933 with
kn switching from kn = 6.1 to kn = 7.6 (all data extracted graphically from figure 6 of
Albensoeder et al. 2001). Unlike for α = 0◦ where mode IIIΓ=1 is only a neutral mode,
it is the critical mode for α = 25◦ over a wide range of Γ . The destabilisation trend with
increasing α of this mode can be recognised for all aspect ratios investigated (figures 3, 12
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and 17). Thus, the sequence of critical modes upon a variation of Γ for α = 25◦ is very
similar to the one observed in the classical cavity for α = 0◦ (Albensoeder et al. 2001),
except for the absence of the high-wave-number Taylor–Görtler mode (mode IΓ=1) when
α = 25◦.

The dependence of Rec on Γ for α = 50◦ is provided in figure 21. As anticipated, the
critical modes at Γ = 0.5 and Γ = 1 turn out to be the same, while the critical mode at
Γ = 2 is a different branch, not connected to the critical modes for Γ = 1 and Γ = 0.5.
Interestingly, the neutral Reynolds numbers, wave numbers and frequencies of the modes
IVΓ=1 and VΓ=1 do not change much for Γ � 1. Unlike for α = 25◦, mode IΓ=2 is critical
over a wider range of aspect ratios, i.e. for Γ > 1.04.

5. Discussion and conclusion

The linear stability of the steady flow in a rectangular cavity driven by the oblique
motion of a lid has been investigated with respect to spatially periodic perturbations. The
parameter space for this problem is made of the Reynolds number Re, the inclination angle
of the lid α and the cross-sectional aspect ratio Γ . Three representative cavities have been
investigated: a cavity with a square cross-section (Γ = 1), a shallow cavity (Γ = 0.5) and
a deep cavity (Γ = 2).

The basic flow in the obliquely driven cavity is a swirling flow made of a superposition
of two types of motion. One is the well-known two-dimensional cavity flow u2-D

0 (x, y),
driven by the x-component Re cos(α) of the normalised lid velocity which is reduced
compared with the absolute normalised lid velocity Re. The other part of the flow field
is made by the parallel Couette-type of flow uC

0 (x, y) in the spanwise direction. It is
driven by the spanwise component Re sin(α) of the normalised lid velocity. While the
recirculating part of the motion is independent of the spanwise motion, the Couette part
uC

0 (x, y) = w0(x, y)ez of the basic flow is affected by u2-D
0 which advects the spanwise

momentum w0.
Critical Reynolds numbers as a function of the yaw angle α have been computed for all

three aspect ratios. For α = 0◦, the accurate stability boundaries provided by Albensoeder
et al. (2001) are recovered. The slope ∂Rec/∂α|α=0◦ = 0 of the critical curve at α = 0◦
vanishes for critical modes which are stationary (Γ = 1, Γ = 2), because the isolated real
eigenvalue must evolve continuously and symmetrically with respect to α = 0◦. Therefore,
the critical Reynolds number increases quadratically as α is increased from zero, and
the critical modes start drifting in the direction of the spanwise lid motion (here in the
positive z-direction). On the other hand, the degeneracy of the critical Reynolds number
for oscillatory eigenmodes at α = 0◦ is removed for α /= 0◦ and ∂Rec/∂α|α=0◦ = ±a /= 0,
where a = const., such that the critical Reynolds number is always reduced and the critical
mode for α > 0 evolves from one of the travelling waves at α = 0◦. For those latter
cases, we find that the critical/neutral mode which destabilises the basic state for small
α (modes IIIΓ=1 and IΓ=0.5) is propagating in the spanwise direction opposite (ω > 0) to
the spanwise component of the lid motion. As α increases, the critical mode becomes
stationary near α ≈ 10◦ and turns propagating parallel to the z-component of the lid
motion for larger α.

When α is small, the basic flow is dominated by the recirculating part of the flow
u2-D

0 . In this situation all critical modes arise in the curved boundary layer of u2-D
0 and

receive their kinetic energy mainly due to the lift-up process described by i2 = −D−1∗ u‖ ·
(u⊥ · ∇u0). The similarity of the modal structures and of the instability mechanism with

928 A25-36

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

80
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.804


Obliquely driven cavity flow

those of the classical lid-driven cavity at α = 0◦ (Koseff & Street 1984a; Albensoeder
et al. 2001) suggests calling the modes for α /= 0◦ spiral Taylor–Görtler vortices. The
conceptual relationship between the Taylor–Görtler vortices in lid-driven cavities and
Taylor vortices between concentric rotating cylinders calls for a qualitative comparison
between the present results and the flow between rotating cylinders with axial through
flow. For intermediate yaw angles, the critical modes in the oblique cavity are spiral
waves. Between concentric cylinders azimuthally periodic spiral Taylor–Görtler vortices
are known to arise when (a) the inner cylinder translates axially with zero axial pressure
gradient (spiral Couette flow) (Ludwieg 1964; Wedemeyer 1967; Meseguer & Marques
2000), (b) the axial flow is purely pressure-driven (spiral Poiseuille flow) (Meseguer &
Marques 2002), or (c) the flow is driven both by an axial cylinder motion and a pressure
gradient (spiral Couette–Poiseuille flow) (Ali & Weidman 1993; Meseguer & Marques
2000). The main distinction from the obliquely driven cavity is the strong perturbation
of the azimuthal symmetry by the rectangular geometry and the discontinuous boundary
conditions. Nevertheless, for sufficiently strong spanwise/axial flow, the basic flow is
destabilised by spiral vortices whose number in the (x, y) plane typically increases for
intermediate values of α (Ali & Weidman 1993; Meseguer & Marques 2002). While the
spiral vortices are strictly periodic between concentric cylinders, they grow downstream
from the downstream singular corner in the obliquely driven cavity flow. This growth is
in parallel with the growth of the thickness of the curved boundary layer downstream
from the singular edge. Another similarity, for small yaw angles, is the spanwise wave
propagation opposite to the spanwise direction of the lid motion of certain modes without
a pronounced spiral character. In the spiral Couette–Poiseuille flow Ali & Weidman
(1993) found a similar retrograde drift with respect to the axial motion of the inner
cylinder of the toroidal modes for dominant swirl if the radius ratio is sufficiently
large.

For large inclination angles α → 90◦, the recirculating part u2-D
0 (x, y) of the basic flow

diminishes and the basic flow tends to the confined Couette flow (4.1). As the basic flow
becomes more parallel, the most dangerous modes become elongated in the spanwise,
i.e. streamwise, direction. In the limit the energy production terms in for n = 1, 3 and
4 vanish and only the lift-up term i2 remains. This trend is also reflected by the integral
contributions to the kinetic energy budget of the perturbation flow listed in table 2. As long
as even a weak recirculating part of the basic flow can provide a feedback from the streaks
to the nearly streamwise vortices which create the streaks, a linear instability is possible.
With the recirculating basic flow getting weaker the feedback becomes weaker and the
stability boundary Rec(α) increases strongly as α → 90◦. This interpretation is consistent
with the previous investigation of Theofilis et al. (2004). There does not seem to be any
linear process which could destabilise the wall-bounded Couette flow at α = 90◦.

Although the general interpretation of Theofilis et al. (2004) regarding the flow
stabilisation at very large yaw angles is corroborated by the present work, we found
that the critical Reynolds numbers for intermediate yaw angles are much lower than the
estimates provided by them. For Γ = 1 and all three yaw angles α = 22.5◦, 45◦ and
67.5◦, they bracketed the critical Reynolds number to be in the range Rec ∈ [800, 900]. On
the contrary, for Γ = 1, we find that Rec(α = 22.5◦) = 619.9 (confirmed by independent
nonlinear simulation), Rec(α = 45◦) = 753.3 and Rec(α = 67.5◦) = 643.3. Therefore,
the lower bound Re = 800 on Rec specified by Theofilis et al. (2004) seems too large
by 29 %, 6 % and 24 %, respectively.

Periodic instabilities of the flow in a cavity infinitely extended in the spanwise (z)
direction have been analysed. A natural extension of this problem would be an investigation
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of the local flow structure near distant end walls of a finite-length cavity, similar as in
Povitsky (2005), and to investigate the influence of the spanwise length of the system on
the flow stability, extending the work of Feldman (2015).

Supplementary movie. A supplementary movie is available at https://doi.org/10.1017/jfm.2021.804.
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Appendix A. Critical parameter curve tracking

Finding the critical Reynolds number for given (Γ, α) involves (a) finding the zero of the
largest growth rate for a given wave number yielding the neutral Reynolds number Ren,
and (b) minimising the neutral Reynolds number with respect to the wave number.

(a) To find the neutral Reynolds number Ren at which the largest growth rate vanishes
for given k, Ren is estimated by Re(1) and a linear stability analysis is performed for
Re(1) and for a slightly different Reynolds number Re(2) = Re(1) + 10. The linear
interpolation to zero of the maximum growth rates obtained for Re(1) and Re(2)

determines Re(3). If the absolute value of the largest growth rate for Re(3) is still
larger than a given tolerance ε, Re(4) is found by quadratic interpolation to zero
of the largest growth rates obtained for the previous three Reynolds numbers. The
iteration continues until the convergence condition |σ | < 10−4 is met.

(b) The wave number kc at which the neutral Reynolds number takes its minimum can
be estimated by kmax at which the growth rate of the most dangerous eigenmode
takes its maximum. This corresponds to minimising the function k → −Re[γ (k)] at
a given Reynolds number Re which leads to the minimisation problem

kmax(Re) = argmin {−Re[γ (k,Re)]} . (A1)

To that end, one can compute the sensitivity of the ith eigenvalue γi with respect to
changes of the wave number

∂γi

∂k
= −2k − i〈w0ûi, û†

i 〉 − i〈p̂i, ŵi〉 − i〈ŵi, p̂†
i 〉, (A2)

where 〈a, b〉 = ∫
V a∗b dV , the asterisk (∗) denotes the complex conjugate and the dagger

(†) indicates the adjoint of the ith eigenmode (see Appendix B for the derivation). This
sensitivity can then be used in a minimisation algorithm, e.g. the Broyden–Fletcher
Goldfarb–Shanno (BFGS) method, to find the local minimum.

Once the critical wave number kmax has been estimated it is used to return to step (a)
and find the corresponding neutral Reynolds number which improves on Rec. A couple
of iterations between the two steps (a) and (b) is usually sufficient to find kc and Rec
with high accuracy, because upon variation of α in small increments a good initial guess
for (kc,Rec) is already available. The iteration is terminated as soon as |�Re| + |�k| <
10−3, where �Re and �k denote the updates of Re and k, respectively, after one full
iteration step consisting of (a) and (b). We note, the minimisation method can be extended
to the sensitivity of the eigenvalue with respect to changes of the Reynolds number Re

928 A25-38

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

80
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.804
https://orcid.org/0000-0002-2656-1434
https://orcid.org/0000-0002-2656-1434
https://orcid.org/0000-0003-1783-3255
https://orcid.org/0000-0003-1783-3255
https://doi.org/10.1017/jfm.2021.804


Obliquely driven cavity flow

and the yaw angle α, similar as for the sensitivity with respect to changes in the boundary
conditions (Meliga, Sipp & Chomaz 2010).

To find (Rec, kc) as a function of α using the above iteration, a good initial guess is
required. This is obtained by extrapolating the converged critical data obtained for the
previous values of α. Based on the N + 1 known data (αi,Rec,i, kc,i) for i ∈ 0, . . . ,N the
distance function from the first point (α0,Rec,0, kc,0),

di =
√
(αi − α0)

2 + a
(
Rec,i − Rec,0

)2 + (
kc,i − kc,0

)2
, (A3)

is evaluated for i = 1, . . . ,N, where the Nth data set is the data set found in the
last converged iteration. The coefficient a = 0.1 has been selected in order to improve
the condition number of the fit, because the Reynolds number is typically two to
three orders of magnitude larger than α and k, which also applies to their variations.
Based on the parametrisation di each of the three quantities (α,Rec, kc) is fitted by a
polynomial Pf (di) of maximum order three, where f ∈ [α,Rec, kc]. The coefficients are
obtained by least-squares minimisation of the functional

∑N
i=1 wi[ fi − Pf (di)]2, where the

weights wi are selected to give preference to the last point by setting wi = i. The three
polynomials obtained are then evaluated for d > dN to arrive at the new initial guess
for (αN+1,Rec,N+1, kc,N+1). Using a low polynomial order (P ∈ P3) renders the method
stable.

Appendix B. Sensitivity of the eigenvalues with respect to a variation of the wave
number

Based on the eigenvalue equation (2.6) of the form [γiM + A(k)]q̂i = 0, where q̂i =
(ûi, p̂i)

T is the vector of the mode variables, we use the classical approach of Marquet, Sipp
& Jacquin (2008) who considered the sensitivity of the eigenvalue γi and eigenvector q̂i
with respect to a variation of the basic flow. As in Marquet et al. (2008), we use an optimal
control framework and define q̂i and γi as state variables and k as a control parameter. The
Lagrangian is defined as

L(γi, k, q̂i, q̂†
i ) = γi − 〈[γiM + A(k)]q̂i, q̂†

i 〉, (B1)

where q̂†
i = (û†

i , p̂†
i )

T defines the adjoint variables. Formally the first term on the
right-hand side of (B1) is the cost function of the problem, while the second term is
enforcing the constraints through Lagrangian multipliers. Cancelling the derivative with
respect to the Lagrangian multiplier q̂†

i is equivalent to enforcing the state equation, i.e. the
eigenvalue problem. Cancelling the derivative with respect to the state variables q̂i and γi
is equivalent to solving the adjoint problem and enforcing a normalisation condition on
q̂i and q̂†

i . Evaluating the derivative of the Lagrangian with respect to the parameter k
will give us the gradient of the cost function and, by construction, the sensitivity of the
eigenvalue with respect to variations of k.

B.1. Differentiating L with respect to γi

Evaluating the differential of the Lagrangian functional (B1) with respect to δγi and
requiring δγiL = 0 yields

〈∇γiL(γi, k, q̂i, q̂†
i ), δγi〉 = δγi − γi〈Mδq̂i, q̂†

i 〉 = 0. (B2)
This leads to the normalisation condition

〈M q̂i, q̂†
i 〉 = 1. (B3)
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B.2. Differentiating L with respect to any eigenvector q̂i

Setting the differential of the Lagrangian in the direction δq̂i to zero, δq̂i
L = 0, we obtain

〈∇q̂i
L(γi, k, q̂i, q̂†

i ), δq̂i〉 = −〈[γiM + A(k)]δq̂i, q̂†
i 〉 = 0, (B4)

which leads to the adjoint eigenvalue problem

[γ †
i M + A†]q̂†

i = 0. (B5)

B.3. Differentiating L with respect to k
Considering δkL = 0 we obtain

〈∇kL(γi, k, q̂i, q̂†
i ), δk〉 = −

〈
∂A (k)
∂k

δkq̂i, q̂†
i

〉
. (B6)

In the present formulation A is the right-hand side of (2.6). Taking the derivative of the
vectorial form of these equations with respect to k we obtain〈

∂A(k)q̂i

∂k
δk, q̂†

i

〉
= 〈2k δk ûi, û†

i 〉 + i〈w0ûi δk, û†
i 〉 + i〈p̂i δk, ŵ†

i 〉 + i〈ŵi δk, p̂†
i 〉. (B7)

The first term on the right-hand side derives from the viscous diffusion. The following
terms derive from the transport of perturbation momentum in the spanwise direction, the
pressure gradient and the continuity equation. Finally, we obtain the sensitivity of the
eigenvalue γi with respect to wave number changes

∂γi

∂k
δk = 〈∇kL, δk〉 = −2k δk − i〈w0ûi, û†

i 〉δk − i〈p̂i, ŵ†
i 〉δk − i〈ŵi, p̂†

i 〉δk, (B8)

where we used the normalisation 〈ûi, û†
i 〉 = 1 which derives from (B3).
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