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Abstract

An exact expression is given for the orbit of a charged particle accelerated by a non-propagating
electrostatic wave. The corresponding current is obtained, for untrapped particles, as an expansion
in Bessel functions, and a Lorentz transform allows us to treat the case of a propagating wave. An
appropriate form for the absorption coefficient is derived, and an interesting angular and frequency
dependence is revealed when the propagating wave is superluminal. Finally, the possible application
to pulsars, particularly in explaining the multicomponent pulse profiles, is discussed briefly.

Introduction

The purpose of this paper is to explore linear acceleration emission by charged particles, accelerated by
an electrostatic wave, with the electric field being treated exactly. In discussing application of the results
to pulsars, we concentrate on waves with phase speed greater than the speed of light. The motivations
for this work are as follows:

i. as'a process in its own right, linear acceleration emission (in an electrostatic wave) has not been
treated in detail and in particular, no-one has considered the case of superluminal waves;

#1. a coherent emission mechanism capable of explaining the high brightness temperatures of radio
pulsar emission has yet to be found, at least from the theoretical viewpoint and;

113, there are general theoretical grounds for believing that the linear acceleration process will be present
in pulsar magnetospheres.

Linear acceleration emission has to date been treated using a perturbation approach (e.g. Melrose
1978) in which the second order equation of motion is expanded in an arbitrary, small field. This
approach does not permit identification of the constant of the particle motion and, being based on an
iterative scheme, cannot sensibly be applied above the first order. An alternative, non-iterative expansion
method (Rowe 1990) which can be applied to a monochromatic wave in the rest frame of the wave,
involves expanding the Hamiltonian rather than the second order equation. This allows determination
of the constant of the particle motion in an exact, open form when carried to all powers in the field. An
exact treatment of acceleration by transverse waves was given by Gunn and Ostriker (1971), and here
we perform the equivalent calculation for the electrostatic case to give a closed form for the orbit and
drift velocity. This solution is valid for untrapped particles, with only minor modifications necessary
for trapped particles. From the particle orbit we derive an expansion for the particle current, which we
then Lorentz transform in order to obtain the result for an arbitrary wave with non-zero frequency, §2
[the work of Melrose (1978) was restricted solely to a time varying field—effectively a wave with infinite
phase speed—and one finds that this obscures an interesting angular dependence of the resulting maser].
Krishnan and Sivaram (1983) also- attempted to generalize to an arbitrary wave, within the iterative
perturbation approach, however their calculations contained an error. Our calculation of the absorption
coefficient follows Melrose (1980, p.157). We find that for a one-dimensional distribution the sign of the
absorption is dependent on two factors:

i. the sign of the slope of the particle distribution and;

i. the sign of the change in the particle momentum on emission (for superluminal waves this is not
always positive when emission is in the forward direction).

Emission from plasmas with superluminal longitudinal oscillations has been considered before but
not, to the author’s knowledge, in connection with radio pulsars. It is well known that a relativistic
electron-positron or electron-ion plasma wiil support superluminal oscillations (e.g. Silin 1960, Buti 1962,
Imre 1962). More importantly, in a relativistic plasma, subluminal oscillations are very effectively Landau
damped while the superluminal ones cannot be Landau damped. The linear acceleration process will,

123

https://doi.org/10.1017/50002731600154915 Published online by Cambridge University Press


https://doi.org/10.1017/S0002731600154915

124 Rowe

however, damp and/or amplify such waves and so, if they can be generated, it is important to understand
how they may be converted into observable transverse radiation. In attempts to understand pulsar radio
emission, the most widely invoked mechanism is curvature emission (e.g. Radhakrishnan 1969, Sturrock
1971, Gil 1986). Nevertheless, it is difficult to understand how the coherence of the radiation is attained
for it is known that curvature radiation does not admit maser action in vacuo (Blandford 1975) nor
in a plasma (Melrose 1978), and the most widely adopted solution, bunching (e.g. Sturrock, Petrosian
and Turk 1975, Elsasser and Kirk 1976), is still theoretically unsatisfactory (e.g. Melrose 1981). Even if
curvature emission is accepted, then there appears to be some other mechanism at work in the core of
the polar cap where the emission characteristics are different from those of the hollow cone (e.g. Rankin
1983a). The mechanism considered here provides a possible alternative to curvature emission, or at least
an additive, and the following points suggest it deserves attention:

i. in polar gap models some form of discharge across a spark gap is employed (e.g. Ruderman and
Sutherland 1975) which could conceivably generate large amplitude plasma oscillations;

i1. the configuration of the pulsar magnetosphere is still poorly understood and;

it1. the linear acceleration mechanism allows masering. The mechanism is favored in a region of rel-
atively straight, open or closed, field lines. Such a region of straight field lines would be severely
constrained geometrically, confining the emission to a region near to the poles and close to the
surface of the star.

This paper is organized as follows: Sections below give a) An exact solution for the orbit of untrapped
particles, b) A derivation of the single particle current, ¢) An extension of the results to propagating
waves, d) A calculation of the absorption coefficient for the emitted waves, and finally, a discussion of
how the results apply to pulsars. In this paper we use units with h = ¢ =1 and po = 4.

Particle orbit: An exact solution

Starting with the particle Hamiltonian for parallel wave, particle motion along the magnetic field
m~y + (¢Eo/K) cos(K [z — z]) = mo, (1)

in the rest frame of the wave, where Ey and K are the electric amplitude and wavenumber of the wave,
m, ¢ and v are the mass, charge and « factor of the particle and 2 is an arbitrary origin, we find that
particles are untrapped if vo — 1 > |g@o|/m. We now integrate eq.(1) in the untrapped case to obtain
the particle orbit in the unusual form of ¢ as a function of z (it is impossible to invert analytically the
resulting expression). We define the following parameters

r = g¢FE¢/(mK), (2)
e = - ®)
E& = vovg +17, (4)
A = ((w-12=r)((n+1)2-r?), (5)

1 & = A = 2yrcos(K[z — z))

mo= Mo €+ + A — 297 cos(K[z — z))’ (6)
_ 2r%cos?(K([z — z]) — 2yor cos(K [z — zo]) + &- )

P= &+ — 2707 cos(K [z — zo]) ’
n = (§+—A)/(E++A), (8)

and the functions
"_-A) _-A

Fi(n) = K (\/E__*_A' +F (Sin_lfl’ §_+A) ) (9)

_—A -—-A
Hi(n) = O (nz, o)+ (sin" - A) , (10)
Si(n) = =/24&sin™'p, (11)
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where K, F and II are elliptic functions. The orbit is now

LA L Y
= S0 e = CUREY e KU S

with the plus sign for z = 2Nx to z = (2N + 1)x and the minus sign for 2 = 2N+ 1)1 to 2 = 2(N + 1)x
and where the integer, N, is the number of completed half periods. The drift velocity Op, which is a
constant of the particle motion, is given by

1 2

Lpfaae s [e-a ) [ (. [c-a
Bp V2 +8) ( i+A E+A ("°’\/£-.+A ] (13)

The solution for trapped particles will not be written down here, it has only relatively minor differences
from eq.(12). The parameter A has physical significance: it represents how close to trapping a particle
is, being small (and real) for a nearly trapped particle. The limit for very small A can be treated directly
(avoiding elliptic functions), however, we do not do this here.

Single particle current

The Fourier transform of the particle current (e.g. Melrose 1986, p.74) for our case (z || v), as

Jw, k) = q/dz efwt(x)—kyz) (14)

with ¢ given by eq.(12) with eq.(13). We can expand this current in two types of sum over harmonics.
One leads to integral expressions for the contribution of each harmonic, the other (which we choose here)
gives complicated expansions but results in analytic expressions. Expanding the orbit of an untrapped
particle in harmonics of the longitudinal wave

t—ZC spr(z—zo)+ (15)
r=1
where ? is a constant and the coefficients C}, are the elliptic integrals
1 = mYK — qEgcosz

C, =— spzdz, 16
P prK Jo  \/(myoK — qdo cosz)? — mEK? cosp (16)

yields (the current is now written as a scalar since its direction along z is known)

j(w,k) =gt 3" e~V (s, Bp, k)2n6[w — Bp (k) — sK)], (17)
with
V(s,Bp,k) = fp Z Js—m(c)(wCh) H Js, (WCp), (18)
p=2
and

(o o]
m(¢) =) _ nan, (19)
n=2
and where ( is the countably infinite set of integers {8, ...,8n,...}. The sum in eq.(18) is thus over all
possible choices of this set.

In order to perform meaningful calculations, an approximation of V(s,8p, k) is required. We note
from the form of Cp, given in eq.(16) that the first of the constants (p = 1) is largest, and thus we take all
other C}, to be zero. In this approximation we retain in eq.(18) only contributions from Bessel functions
with C) in their argument, or which are of zero order and so the only terms that remain in the sum over
the set (, are those with s, = 83 = ... = 8,... = 0. Thus we have

V(s,Bp, k) ~ BpJ,(wCh). (20)
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The constant C) has been obtained analytically from eq.(16) (as can all C};) using an approximation
which does not involve elliptic integrals. It involves an alternative calculation of the particle orbit by
expanding the Hamiltonian in the rest frame, eq.(1), in the electric field. When carried to all orders, it
gives exact summation forms for Cp. One finds that for untrapped particles (cf. Rowe 1989)

Cl ~ (qu)/(m‘ygng{?). (21)

A final point to note here is that for a truly useful result the constant vy (the zero order particle
velocity) needs to be expressed in terms of the drift velocity, Sp, which is the true constant of the
motion. One cannot invert analytically the definition of Bp given by eq.(13), however, if the expansion
method used to approximate C) is applied here, one finds that the drift velocity is equivalent to wg
up to second order in Ey. The second order correction to fp results in a quintic equation for vg, and
consequently we shall assume for our purposes that p and vg are the same.

Propagating waves

To extend the previous results to a propagating electrostatic wave one can Lorentz transform the particle
current and write all rest frame quantities in terms of quantities in the new frame of reference. Fourier
transforming Maxwell’s equations implies (e.g. Melrose 1986, p.10)

plw, k) = kyj(w, k)/w, (22)

and a Lorentz transform, with Lorentz factor vg, along the direction of motion of the particle and
electrostatic wave results in

i'(w,k) = rli(w, k) = vrp(w, k)] (23)

!

w .
= E](w’k),

with other quantities transforming in the usual way. One can write down the quantities given in the
previous section in terms of the new frame parameters but here we will give only the new frame version
of C, corresponding to eq.(21):

Y'vl
cC(l)y ——r—-—-t—0o 24
Ye ( ) ’763(1’6"%)39" ( )
where
¥ = (¢Ep)/(mQ), (25)

is a dimensionless quantity in our units, vy is the phase speed of the longitudinal wave and v4 the
corresponding « factor. The current in the new frame is

j(w.k) = qe® Y emV(s, Bp, k')2mb[w — sQ — Bp (ky — sK)], (26)
8§=—00
with
ﬁ]lj — Uy 1; 5
Vi(s: 00 K) = T o= s XC: Toem(e) (W' = veki]716C1) L[zJ,p([w' - vekil1sCp)y  (27)

where n7 is the refractive index for a given mode of radiation, g, and 8 is the angle of emission to the
magnetic field. The current given above is valid for untrapped particles accelerated by a longitudinal
wave of arbitrary phase speed.

Absorption coefficient

The current given above can be used to write down the absorption coefficient for waves emitted by linearly
accelerated particles, which at a given harmonic is defined generally as (e.g. Melrose 1980, Ch.5)

¥ (k) = — / d’pp P,iff)Apn . 31;;;2))’ (28)
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where

P (k) = 8n%¢* Ry (k)le’ (k) - 5, (w, k)1, (29)
is the power emitted by a current j,(w, k) at a given harmonic in a mode of radiation, o. The ratio of
electric to magnetic energy in the wave mode is

R%(k) = (2n°9[wn®]/0w)?, (30)

for transverse waves in an isotropic, homogeneous medium (this will not apply in a ‘real’ pulsar but
we shall assume it here) and the polarization vector is e?(k). In eq.(28), one identifies pp, as the drift
momentum, pp, = mBp7p, a constant of the particle motion. One can determine App, the change in the
drift momentum on an emission, by appealing to the resonance condition for a given harmonic embodied
in the delta functions in the current. For a specific harmonic one finds

APD = k” - sK. (31)

A simplifying assumption is to choose a one dimensional distribution function, F(pp) = f(ppy)é(pL),
which is consistent with our treatment of particles moving along the magnetic field. A one-dimensional
distribution is also consistent with a pulsar magnetosphere where, due to the high magnetic fields (up to
10'2 G), particles rapidly loose perpendicular momentum. We split the growth rate into two parts

Y, (k) = —/dpnu P'a(k)Apon 97 (poy) + /dpou—a— [P’a(k)Apm] f(poy)s (32)
I pPDL=0

hwe 8pp Oppy | hwe

the second of which is zero for this mechanism.
Using eqs.(29), (31) and (32) and setting w = a2, the absorption coefficient reduces to (dropping
primes in the new reference frame)

4r%g®m cos® ¢ sin” fa(navy cosd — s)v}
" n99[an?]/8aQ{(avgn? cosd — 8)% — vi(a - 5)2}3/2

7 ('”{(a”"‘"a cosf — o)? — vj(a 3)2}3/2) |

a%vy(l — nvy cos 0)?

s (k) (33)

of mvg(a — )
6111)" {(av¢n0 cosf — 8)2 - v:‘;(a _ 8)2}1/2 ’

where we have used the approximate form of C; and again retained only the first Bessel function in
our current expansion. The angle ¢ is the polarization angle with respect to the plane of the magnetic
field and k. It was noted in the introduction that a one-dimensional, relativistic plasma will support (if
not prefer) superluminal oscillation modes. This point should be investigated in detail for plasmas with
specific distribution functions relevant to pulsar magnetospheres, as should the question of generation of
such waves. We do not do this here, rather the purpose of this section is to assume that superluminal
longitudinal waves are present in pulsar magnetospheres and ta discuss the consequences for the linear
acceleration emission maser.

We note firstly that the above calculations are valid for superluminal waves, > K in our units,
regardless of the fact that we started in a wave rest frame (one could in principle derive the results
for arbitrary §2 and K from the second order equation of particle motion). Secondly, our calculations
have been for untrapped particles which is the only scenario possible for this case, and finally emission
of longitudinal waves can also be treated, however we concentrate on transverse waves which are the
directly observable quantities.

The first suggestion that superluminal waves admit unique effects is in the resonance condition de-
scribing emission at the s'" harmonic by a particle accelerated by a longitudinal wave,

_ v¢(a - 8)
po = n°avécosd — s (34)

If the denominator is zero we require also that the numerator be zero. This occurs on the cone
cosf. = (n%v4)7 1, (35)
and at the frequency w = s{) [the result for the growth rate can be shown to reduce to that of Melrose

(1978) in the limit K — 0, in which case cos . — o0co]. We note the following points:
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i. only if the longitudinal waves are superluminal (Jvg| > |v,| ~ 1, where v,, is the phase speed of the
emitted wave) is 0. a real angle;

1. particles with positive drift velocity emit at w > s inside the cone and at w < sQ outside the cone.
The reverse is true for particles with negative drift velocity;

iii. for f. to be an observable quantity (in some sense) it must be small (i.e. an inside to outside cone
transition must occur within a narrow field of observation) and thus vy is positive ~ c.

Choosing the numerator and denominator of eq.(34) to be zero does not guarantee resonant particles
there, in fact if we consider instead the condition |p| < 1, we find that within the band

E (36)

about the cone angle no resonance is possible. The angle 8. is then a point of demarcation between two
types of emission, in separate frequency ranges and at different angles.

The absorption coeflicient eq.(33), contains a factor, (n°avg cos§ — s), which is zero when cosf =
3/(n?avy), and thus the absorption changes sign within the forbidden region. Table 1 gives the require-

cos B¢ [ﬁ -v¢|1 - EH < cosf < cosf,. [f +v¢|1 -2
a a a a

Table 1 The possibilities for maser amplification of the radiation emitted by linearly ac-
celerated charged particles in the field of a superluminal electrostatic wave

0 <8, 6 > 6.
af Bf
Bpoy 0 Bpoy < 0

ment on the distribution function for amplification to occur. It shows that amplification of the radiation
is possible in both emission regions, due to different particles in the distribution. A general analysis of
the absorption coeflicient at the first harmonic reveals that for a given frequency the emission peaks near
the field lines, drops away in the forbidden region and then peaks again before falling to zero. Over a
large frequency range (several times ) above (2, emission is due to fast particles and is confined to small
angles from the magnetic field. Emission below 2 is spread more widely over angle and is confined to a
narrower frequency range. The angle 6. can be made as small as required by taking vg as close toc =1
as is necessary.

A physical understanding of the table is based on the equation of conservation of energy in the particles
and waves. The equation can be derived directly from the quasilinear equations describing the evolution
of both wave and particle distributions (e.g. Melrose 1980, p.160). In the present case we find for each
mode of radiation:

% [/ dPD||fo(pDI|)+Z/(—g;r%ﬁ(w— sQ)NZ (k)| =0, (37)

where N? (k) is the number density of photons in mode o due to emission at the s*® harmonic. The first
term describes the rate of energy change in the particles, the second in the emitted waves and the last
in the longitudinal waves. This last term shows that the process can be viewed as a sum of all order
linear scatterings of the longitudinal waves by particles into transverse waves; taken in full we have a
non-linear process. Emitted waves are amplified and the longitudinal waves damped if dN?(k)/dt is
positive. For frequencies w > ), at the s*® harmonic, energy conservation requires that the particles
near the resonance lose energy. This occurs if there are more above the resonance energy than below it
(a rising distribution for positive velocities and a falling one for negative velocities). In this case, both
particles and longitudinal waves lose energy to the transverse waves. For w < s2, transverse waves are
amplified if the particles also gain energy and this occurs if more particles lie below the resonance energy
than above it (a falling distribution for positive velocities and a rising one for negative velocities). In this
case, both particles and transverse waves gain energy from the longitudinal waves.

https://doi.org/10.1017/50002731600154915 Published online by Cambridge University Press


https://doi.org/10.1017/S0002731600154915

Linear acceleration emission: A detailed analysis 129
Application to pulsars

One class of radio pulsars are those with multiple components. The triple component pulsars have been
taken as a prototype for a phenomenological model of pulsars by Rankin (1983a) and others, and several
have been scrutinized individually, including the frequency evolution of their average pulse profiles (e.g.
Hankins and Rickett 1986). As discussed in these papers it appears that there are two types of emission
from radio pulsars: core emission appearing in the center of profiles and conal emission appearing on the
outside edges. The following points are important:

i. the appearance of distinct pulse components with emission falling off between them, and

#1. the central core component appears to dominate the profiles at lower frequencies while the conal
component dominates at higher frequencies.

Phenomenologically, the distinct emission components are taken to represent two concentric annular
emission regions about a central core emission region. It is plausible that these different regions are
actually manifestations of angular structure in the emission mechanism itself, not physically distinct
regions of the magnetosphere. One appealing feature of this hypothesis is that one does not have to
explain how distinct emitting regions about the pole are to be created—we have a single emitting region
and a single mechanism seen from different angles.

We do not attempt to construct a complete model here, this has yet to be done, however, a sketch
of a model is as follows. Consider field lines coming from near the polar cap. The precise nature of the
field lines in these regions is unknown, however linear acceleration emission favors straight field lines.
If sparking across a polar gap, or some other mechanism, can be found to generate superluminal waves
then such waves would propagate along the field lines causing particles to radiate. Suppose the waves
propagate only on or within a narrow cone about the polar cap. In that case the absorption coeflicient
has an angular dependence about each field line on the cone, the total observed emission being the sum of
emission along our line of sight from each part. Each point of the cone will contribute different amounts
to the emission depending on the angle of our line of sight to the field at that point and, througheout
a pulse different parts of the cone will dominate the emission, giving it a distinct linear polarization
(< 100%) which will rotate throughout the pulse. The important questions are

t. can the angular behavior of the growth rate about a single field line recreate the pulsar profiles
with multiple components when integrated over a cone, and

1. how can superluminal waves be generated and amplified?

Conclusion

We have given more detailed calculations for linear acceleration emission than are to be found elsewhere,
the most important of which is the growth rate. We have shown that in the case of superluminal waves
an angular variation in the growth occurs which implies two separate angular regions of emission favoring
different frequency regimes roughly separated at Q2 (this can be taken to be the plasma frequency). We
have suggested that the angular variation may be used to explain the multicomponent pulsar pulse profiles
and this application is presently under consideration.
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